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1. INTRODUCTION

In this paper we attack the problem of proving a finitely presented
group G to be infinite by exploiting the representation theory of a finite

w xfactor group. It may be viewed as a continuation of 10, 15 , where steps in
w xthe same direction have been taken. In 10 , a cohomological criterion is

used to decide whether an epimorphism onto a finite group can be lifted to
w xan epimorphism onto an extension of a lattice by this finite group. In 15 ,

modular representations are lifted to representations over a local ring and
finally transformed into representations over a global field having an
infinite image. In this paper we combine modular and global methods to
decide whether an epimorphism of G onto a finite group H can be lifted
to an epimorphism of G onto an extension of some Z H-lattice L by H.

1Ž . 1Ž .In Section 2 we compare H G, M and H H, M for FH-modules M
over prime fields F to find H-modules in the kernel of an epimorphism w
of G onto H. Here M is regarded as a G-module via w. We demonstrate
that the situation over finite fields imposes strong restrictions on the
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REPRESENTATIONS OF FINITE GROUPS 691

situation over Q and derive a modular property of QH-modules that gives
strong evidence for a QH-module to contain a lattice isomorphic to a
Z H-lattice in the kernel of w.

1Ž .In order to compute H G, M one needs the action of H on the
module M explicitly and therefore has to construct the corresponding

w xrepresentation. In 2 a formula is given to extend an absolutely irreducible
monomial representation of a subgroup S of a finite group H to a
representation of H in case it exists. One of the drawbacks of the formula
is that the field of definition gets rather big, because the monomial
representation of S often requires roots of unity which are unnecessary if
the character is realized by a suitable equivalent representation. In Section
3 we exhibit a point of view which not only re-proves the Alperin]James
formula in a more general context but allows us in principle to realize the
representation over a minimal splitting field. Alternative methods to

w xconstruct irreducible representations have been given in 12 and for the
Ž . w xspecial case H s L p in 3 .2

In Section 4 we investigate the case that the finitely presented group has
Ž .an epimorphism onto L p for some prime p. By a close analysis of the2

Ž .p-modular and the rational modules of L p we can apply the results of2
Section 2 to arrive at a criterion which, given a finitely presented group G

Ž .and a prime p, extracts the characters of Z L p -lattices L such that G is2
Ž .very likely to have an epimorphism onto an extension of L by L p .2

We conclude the paper with an application of our methods to the family
² < 2 2 2 Ž .2 Ž .3 Ž .7of groups given by the presentation x, y, z x , y , z , xy , xz , yz ,

Ž .n: 3, 7, n w xxyz which is denoted by G in 6 . In particular we prove:

THEOREM 1.1. The group G3, 7, 23 is infinite.

This theorem is proved by showing that KrK9 has a Z H-homomorphism
to a lattice of dimension 276, where K is the kernel of an epimorphism

Ž .G ¸ H ( L 139 .2
We finally indicate that our method is often applicable and successful by

giving tables for those groups G3, 7, n where n - 100 is odd and G3, 7, n has
Ž .an epimorphism onto L p for p - 500.2

2. LIFTING HOMOMORPHISMS

DEFINITION 2.1. Let G be a group, H a finite group, and w : G ¸ H an
epimorphism. A simple FH-module M for some prime field F is called

n
w-extendable if there is an exact sequence 0 ª M ª E ª H ª 1 and a
homomorphism c : G ª E such that cn s w and Gc \ H.
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PROPOSITION 2.2. Let G be a group, H a finite group, w : G ¸ H an
epimorphism, and M a simple FH-module M for some prime field F. Let K be
the kernel of w and regard M as an FG-module ¨ia w.

Ž . Ž . � 4i M is w-extendable if and only if Hom KrK9, M / 0 .F G

Ž . 1Ž . 1Ž .ii If dim H G, M ) dim H H, M , then M is w-extendable.F F

Ž . 2Ž . 1Ž . 1Ž .iii If H H, M s 0, then dim H G, M ) dim H H, M if andF F
only if M is w-extendable.

Ž .Proof. Part i is obvious.
Since K acts trivially on M, the Lyndon]Hochschild]Serre spectral

Ž w x.sequence yields the five-term exact sequence cf. 17, Theorem 11.5

inf res1 1 1 20 ª H H , M ª H G, M ª H K , M ª H H , M .Ž . Ž . Ž . Ž .

1Ž . 1Ž . 1Ž .This implies that dim H K, M G dim H G, M y dim H H, MF F F
2Ž . 1Ž . Ž .and equality holds if H H, M s 0. But H K, M ( Hom KrK9, M ,F G

Ž . Ž . Ž .since K acts trivially on M, hence ii and iii follow from i .
iŽ .Consider the case F s Q. Then clearly H H, M s 0 for i G 1, i.e.,

w xMH is split. This is the case considered in 10 . The image of G under c is
a split or non-split extension of a full Z H-lattice L in M by H and we

1Ž .conclude that G is infinite. The cohomology group H G, M can be
Žcomputed from the presentation via derivations in the same way as

w x .suggested in 19 for the computation of space groups , for instance using
Ž w x.Fox derivatives see 9, Chap. 4.2 . However, one requires the action of

the generators of H on M explicitly. The construction of these representa-
tions will be discussed in Sections 3 and 4.

Next consider the case F s F for some prime p. In this case c isp
necessarily an epimorphism. Usually there are other means to compute

iŽ . Ž .H H, M in this situation, as is demonstrated for H s L p in Section 4.2
1Ž .The computation of H G, M is done in the same way as for the rational

number field; however, it is much easier in this case, as only linear algebra
over a finite field is involved.

The rational case and the characteristic p case are connected by the
following trivial remark.

Remark 2.3. If the simple QH-module M is w-extendable, then for
every prime p there is some simple F H-module which is also w-extend-p
able.

Proof. Let L s Kc be a full ZG-lattice in M. Then any simple
F H-module in the head of LrpL is w-extendable.p
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DEFINITION 2.4. Let M be a simple QH-module with character x and
let x s Ýs x be its decomposition into absolutely irreducible charac-is1 i
ters. For a chosen prime p denote by x the restriction of x to theî i
p-prime classes of H and let x s Ý d b be the decomposition intoî j i j j
irreducible Brauer characters. The module M is called a p-candidate for w
if for every 1 F i F s there exists an irreducible Brauer character b suchj
that

Ž .i d ) 0i j

Ž .ii b occurs as a constituent of the Brauer character of a w-extend-j
able F H-module.p

COROLLARY 2.5. A w-extendable QH-module M is a p-candidate for w
for e¨ery prime p.

The contraposition of Corollary 2.5 gives a strong criterion to rule out
QH-modules to be w-extendable. Although the converse of the corollary
does certainly not hold in general, it is a good guideline to find promising
candidates for w-extendable modules. In fact, we have never encountered a

Žp-candidate that is not w-extendable though such examples could cer-
.tainly be constructed .

We therefore propose the following strategy:

v find an epimorphism w of G onto a finite group H
v Ž .choose a suitable prime p
v find the w-extendable simple F H-modulesp

v determine the p-candidates for w

v for each p-candidate M for w construct the action of H on M and
1Ž .check whether dim H G, M ) 0.Q

3. CONSTRUCTION OF REPRESENTATIONS

In this section we describe a method to extend a representation in
characteristic 0 from a subgroup H to the full group G. The idea is to
express the images of the elements in G as linear combinations of the
images of elements in H, if possible.

PROPOSITION 3.1. Let G be a finite group, H a subgroup of G, x a
Ž .character of G, and D: H ª GL K a representation of H with charactern

Ž .x , where K is a field of characteristic 0. Assume that x , x s< H G
Ž .x , x . Then the following holds:< H < H H

Ž . Ž .i There exists a unique representation G: G ª GL L with charac-n
Ž Ž . < .ter x such that G s D, where L s K x g g g G .< H
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Ž . Ž . Ž . Ž U U .ii Let b , . . . , b be a basis of D KH and b , . . . , b the dual1 s 1 s
n=n Ž .basis with respect to the trace bilinear form induced from K on D KH ,

Ž U .i.e., Tr b b s d . For g g G one hasi j i j

s
UG g s x gb b ,Ž . Ž .Ý i i

is1

where by slight abuse of notation the linear extension of x to KG is again
denoted by x .

Proof. Let K be the algebraic closure of K. Clearly D has some
extension G to G over K with character x . For every g g G we have

Ž Ž . Ž .. Ž Ž .. Ž .Tr G g D h s Tr G gh s x gh for all h g H. But by the assumption
Ž . Ž . Ž .on the norms of x and x we have G KG s K m D KH . Hence, G g< H K

Ž . Ž .has to be as given in part ii of the claim. Moreover, the formula for G g
Ž Ž . < .shows that G can be realized over K x g g g G .

Remark 3.2. A slight generalization of the above may sometimes be
Ž .useful. Let p be a permutation of the elements of D H inducing a vector

Ž . Ž p y1space automorphism on D KH also denoted by p for instance x s x
Ž .. Ž . Ž .for x g D H . Define a bilinear form F on D KH by F X, Y [

Ž p . Ž .Tr XY for X, Y g D KH . Then in Proposition 3.1 the dual basis with
Ž U .respect to F can be considered, i.e., F b , b s d , since F is non-i j i j

Ž .degenerate. This yields the following formula for G g :

s
UpG g s x gb b .Ž . Ž .Ý i i

is1

The following example shows that Proposition 3.1 generalizes the main
w xresult in 2 .

EXAMPLE 3.3. Let G be a finite group and H a subgroup of G. Let x
be an irreducible character of G such that x is an irreducible monomial< H
character of H, i.e., x is induced from a linear character q of a< H
subgroup U of H. Let D be a representation of H with character x .< H

Ž < < Ž y1 . . Ž .Define e [ D 1r U Ý q u u to be the image in D KH of the11 ugU
central primitive idempotent corresponding to q . Let h , . . . , h be a1 n
transversal of U in H.

Ž y1 . Ž .Then e [ D h e h , 1 F i, j F n form a basis of D KH and wei j i 11 j
have eU s e . Proposition 3.1 now yieldsi j ji

< < y1G g s x ge e s 1r U q u x gu eŽ . Ž . Ž . Ž .Ý Ý Ýi j ji ji
i , j i , j ugU

w xwhich is exactly the formula given in 2 .
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Note that this construction of G requires the character values of q as
coefficients, which may lie in a much larger field than required to realize
the character x . This can be avoided by choosing a suitable basis of
Ž .D K 9H , where K 9 is a subfield of K over which x can be realized.< H

w xA different approach has recently been suggested in 12 , where for
irreducible x and x the formula< H

x 1Ž . y1G g s x h g D hŽ . Ž .Ž .Ý< <H hgH

Ž Ž . < .is proved, which allows us to construct G over K x g g g G as does
Proposition 3.1.

The second example shows how the irreducible representations of de-
Ž .gree p y 1 of L p can be constructed. An alternative construction for2

w xthis situation is given in 3 .

Ž . Ž .EXAMPLE 3.4. Let x be an irreducible character of L p with x 1 s2
Ž .p y 1; then x can be extended to an irreducible character of PGL p2

which we again denote by x . The restriction of x to the image H of a
Ž .Borel subgroup of GL p is absolutely irreducible. Note that H ( C i2 p

C has a unique faithful irreducible character, hence any of the charac-py1
ters of degree p y 1 must restrict to this character.

Now let a be an element of order p y 1 in H and b an element of order
Ž . Ž .p. Then A s D a may be chosen as a permutation matrix and B s D b

as the companion matrix of the pth cyclotomic polynomial. Moreover, the
i j Ž .elements A B with 0 F i, j - p y 1 form a Q-basis of D QH . Define a

Ž . Ž Ž . Ž .. Ž Ž . Ž .y1 .bilinear form F on D QH by F D h , D h [ Tr D h D h for1 2 1 2
h , h g H as suggested in Remark 3.2. Evaluating this bilinear form on1 2
the basis yields

F AiBi , AkBl s Tr AiB jy lAyk s d ) y1 q d ) pŽ . Ž . Ž .Ž .i k jl

since for i / k the element AiB jy lAyk is non-trivial of order / p and
therefore has trace 0. Choosing the ordering of the basis such that AiB j

Ž .has position p y 1 ) i q j q 1 in the basis, the Gram matrix for F is a
block diagonal matrix with each block equal to p) I y J , wherepy1 py1
I is the identity matrix of size p y 1 and J the matrix with allpy1 py1

Ž . py1 jentries 1. The inverse of this matrix is 1rp) I q J . Since Ý Bpy1 py1 js0
s 0 one has Ý py2B j s yBy1, hence the element of the dual basisjs0

i j iŽ j y1.corresponding to A B is 1rp) A B y B . To identify in which conju-
Ž .gacy class an arbitrary element g of PGL p lies it is enough to look at2
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Ž .the trace and determinant of a preimage of g in GL p . The only classes2
which cannot be separated by the traces and determinants of their preim-
ages are the class containing the identity and the class containing the
elements of order p which, however, are easy to distinguish.

Ž .4. MODULES OF L p2

Ž .We first look at the simple modules of L p in characteristic p. The2
Ž .simple F L p -module V of dimension n can be obtained from thep 2 n
Ž .action of SL p on the homogeneous polynomials of degree n y 1 in two2

iŽ Ž . .variables for odd n F p. The cohomology groups H L p , V for i s 1, 22 n
Ž . Ž .can be read off the Brauer tree see below of L p using dimension2

w xshifting. As an extension of 15, Lemma 3.4 we obtain:

Ž .LEMMA 4.1. Let H [ L p with p ) 3 prime and denote by V the2 n

simple F H-module of dimension n.p

1 if n s p y 21Ž . Ž .i dim H H, V sF n ½p 0 otherwise.

1 if n s 32Ž . Ž .ii dim H H, V sF n ½p 0 otherwise.

We now turn to the situation in characteristic 0. The Frobenius charac-
Ž .ters of L p are characterized by their degrees and values on fixed2

Ž . Ž .elements x and y of orders p y 1 r2 and p q 1 r2, respectively.
We first obtain characters of degree p q 1 by inducing the linear

Ž .characters of the Borel subgroup of SL p having the center in their2
Ž .kernel. Let r be a primitive p y 1 st root of unity. Then we obtain

Ž . Ž .characters c for 0 F i F p y 1 r2 and i even with c x s 0 andi i
Ž . i yic y s r q r .i

We next define characters of degree p y 1 belonging to the non-split
Ž . Ž .torus in SL p . Let s be a primitive p q 1 st root of unity. Then we2

Ž . Ž . Ž iobtain characters u for 1 F i F p q 1 r2 and i even with u x s y si i
yi . Ž .q s and u y s 0.i

Ž . ŽNow the absolutely irreducible characters of L p are the following cf.2
w x. Ž . Ž .18 : 1; p [ c y 1; u , 1 F i F p y 1 r2, i even; c , 1 F i F p y 3 r2,0 i i

Ž .i even; a pair x , x 9 of algebraic conjugate characters of degree p q « r2,
where « s "1 and « ' p mod 4 such that x q x 9 s u if « s y1Ž pq1.r2
and x q x 9 s c if « s 1.Ž py1.r2
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Ž .PROPOSITION 4.2. Let H [ L p for a prime p ) 3. Let M be a simple2
QH-module, L a full Z H-lattice in M, and L [ Z m L where Z denotesp p p

the ring of p-adic integers.

Ž .i The character of H on M is either of :
1, p , u if p ' y1 mod 4, c if p ' 1 mod 4,Ž pq1.r2 Ž py1.r2
Q [ Ý u , where i is an e¨en dï isor of p q 1 and 1 F i Fi Ž j, pq1.s i j

Ž .p y 1 r2,
C [ Ý c , where i is an e¨en dï isor of p y 1 and 1 F i Fi Ž j, py1.s i j

Ž .p y 3 r2.

Ž .ii L is isomorphic to a direct sum of irreducible Z H-lattices each ofp p

which is uniserial.

Ž .iii LrpL is a direct sum of indecomposable F H-modules, which arep
Ž .determined by the simple components of L rrad L .p p

Proof.

Ž .i This is clear, since the Q and C are the sums over the Galoisi i

orbits of the u and c , respectively.i i

Ž .ii The Schur indices of all characters are 1, hence every absolutely
irreducible representation of H can be realized over its character field.

For the characters of degree p q 1 the character field is generated by
r q ry1 where r is a root of unity of order dividing p y 1. As Qp

contains these roots of unity it is a splitting field for the characters of
degree p q 1.

The character field for the characters of degree p y 1 is generated by
s q sy1 where s is a root of unity of order dividing p q 1. The

Ž .unramified quadratic extension of Q contains the p q 1 st roots of unityp
Ž .and the Frobenius automorphism maps a p q 1 st root of unity to its

inverse, hence Q is also a splitting field for the characters of degreep

p y 1.
Ž .Finally, the splitting field for the characters of degree p " 1 r2 is a

ramified extension of degree 2 of Q , hence the character x q x 9 isp
irreducible over Q . Over a splitting field, M is a direct sum of absolutelyp

irreducible modules of the same degree, hence the irreducible constituents
whave no common composition factors modulo p. It follows from 14,

xTheorem I.1 that L is a direct sum.
ŽSince the irreducible characters are of defect 1 with the exception of p ,

. w xwhich is of defect 0 , 4, Theorem 11 implies that the irreducible Z H-p
lattices are uniserial.
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Ž . Ž .iii L rrad L is the direct sum of the simple modules in the headp p
of the indecomposable modules in LrpL.

We will now derive an explicit criterion, which, given an epimorphism
Ž . Ž .w : G ¸ L p and the w-extendable F L p -modules, determines the2 p 2
Ž . Ž .simple QL p -modules which are p-candidates for w Definition 2.4 .2

Ž .The main ingredients are the above analysis of the rational L p -modules2
Ž . Ž w x w xand the Brauer tree for L p which looks as follows cf. 1 ; see 13, p. 222

.for the identification of the Frobenius characters

b b b b b1 py2 3 py4 Ž pq« .r2
vo o o o o o o???

p1 u c u c x , x 92 2 4 4

where « s "1 with p ' « mod 4 and the exceptional vertex has multiplic-
ity 2.

From the Brauer tree we see that the restriction of u to the p9-classesi
decomposes as b q b and that the restriction of c decomposes asiy1 pyi i

Ž .b q b . This leads to the following criterion for the simple QL p -iq1 pyi 2
modules to be p-candidates for w.

Ž .COROLLARY 4.3. The simple QL p -module with character x is a2
p-candidate for w if and only if one of the following holds:

Ž .i x is the trï ial character and V is w-extendable1

Ž .ii x s p and V is w-extendablep

Ž .iii p ' y1 mod 4, x s u , and V is w-extendableŽ pq1.r2 Ž py1.r2

Ž .iv p ' 1 mod 4, x s c , and V is w-extendableŽ py1.r2 Ž pq1.r2

Ž . Ž . Ž .v x s Q and for e¨ery j F p y 1 r2 with j, p y 1 s i one ofi
V , V is w-extendablejy1 pyj

Ž . Ž . Ž .vi x s C and for e¨ery j F p y 3 r2 with j, p y 1 s i one ofi
V , V is w-extendable.jq1 pyj

5. THE GROUPS G3, 7, n

In this section we apply the methods developed in the preceding sections
to some groups of the family G3, 7, n which is given by the presentation
Ž w x.cf. 6

n2 3 72 2 2<x , y , z x , y , z , xy , xz , yz , xyz .² :Ž . Ž . Ž . Ž .

We first deal with the case n s 23 in detail and prove Theorem 1.1.
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3, 7, 23 w xLet G [ G . By the methods described in 15 one easily checks that
Ž .G has an epimorphism onto L 139 and that 139 is the only such prime.2

The epimorphism w can be given by

50 1 0 1 17 120x ¬ " , y ¬ " , z ¬ " .ž / ž / ž /1 89 138 0 125 122

Ž .Application of Proposition 2.2 and Lemma 4.1 to the simple F L 139 -139 2
modules shows that the only w-extendable modules are those of dimen-
sions 41 and 125. It then follows from Corollary 4.3 that Q s u q u is14 14 42

Ž .the only p-candidate for w, hence no other QL 139 -module can be2
w-extendable.

Ž .The representation of L 139 on the module with character u is2 14
Ž y1 .constructed over Q z q z as described in Example 3.4. A good test20 20

for the assumption that this module is w-extendable is to choose a prime p
Ž .not dividing the order of L 139 such that the character u can be2 14

realized over F . Choosing p s 41 we find that the corresponding F -mod-p 41
ule is in fact w-extendable.

The next step is to set up the system of linear equations the solutions of
which are the cocycles. Since the elements y and z generate a dihedral
group of order 14 the cocycles may be chosen to be trivial on these two
generators which gives a system of equations of size 138 = 4)138. More-
over, one easily computes from the character values that the fixed space of
the group generated by the images of y and z has dimension 10, hence the
space of coboundaries being trivial on y and z has dimension at most 10.
The calculations over F prove that it has dimension exactly 10.41

Unfortunately, there is no direct way of finding the dimension of the
space of cocycles by going through a Gaussian elimination on the system of
equations over the algebraic number field, since the size of the entries
explodes already in the first few steps. We therefore replace z q zy1 by20 20
its companion matrix, thus obtaining a rational system of equations of size
552 = 2208, which should have a space of solutions of dimension 44.

Ž w x.Applying the modified LLL-algorithm cf. 16 to the lattice generated by
the rows of this matrix we find that its rank is at most 508, hence by the
modular computation over F it has exactly rank 508, which proves the41
existence of a non-trivial cocycle.

Ž .Remark 5.1. Although we are interested in L p -modules over Q it is2
convenient to work with representations over algebraic number fields. An
obvious reason is that we try to keep the degrees of the representations as
small as possible, but the crucial point is that we have to satisfy the
assumptions of Proposition 3.1. Looking for instance at the characters Qi

Ž .of L p , let d be the degree of the character field of u over Q. As2 i
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Ž .described in Example 3.4 we regarded u as a character of PGL p andi 2
its restriction to the projective Borel subgroup B. Since all algebraic

Ž .conjugates of u restrict to the same rational character of B, we havei
Ž . Ž . 2Q ,Q s d and Q , Q s d . This shows that in this case we have toi i i < B i < B < B
construct the representation with character u over a field containing thei
character field.

In general, we obtain a rational module from a representation D of H
over an algebraic number field F by replacing a generator of F by its
companion matrix in the entries of D. If D is absolutely irreducible, the
resulting QH-module is the d-fold direct sum of isomorphic simple QH-
modules, where d is the degree of F over a minimal splitting field for D.
In particular, the QH-module is simple if and only if F is a minimal
splitting field.

One idea to simplify the problem of finding the dimension of the space
of cocycles would be to perform a Galois descent before blowing up the
system of equations to a rational matrix, since the constructed representa-

'Ž .tion is written over an extension of degree 2 of its character field Q 5 . It
is not difficult to find a matrix X such that for the Galois automorphism s

y1 s y1'Ž .of Q z q z fixing 5 one has g s XgX for every g in the20 20
Ž .representation of L 139 , since X has to lie in the centralizer of the2 'Ž . Ž .Borel subgroup in L 139 , which is isomorphic to Q y 139 . However,2

for the Galois descent one has the additional condition XX s s 1, which is
a relative norm equation. In this example the coefficients in this norm
equation are of magnitude 107, which makes it impossible to find a
solution by the existing algorithmic methods.

The Galois descent can be performed in a different way once the
cohomology computation has been completed. For this choose a non-trivial

Ž .1-cocycle d from G into the QL 139 -module M with character 2Q and2 14
Ž .let c be the homomorphism of G into the extension of M by L 1392

defined by d . Add relators w to the given presentation of G to obtain ai
Ž .presentation of L 139 . Now evaluating the relators w on the images of2 i

the generators of G under c gives elements in M which cannot all be
Ž .zero. Each nonzero element obtained this way can be spun to a QL 139 -2

module with character Q . Viewing this module over its endomorphism14
field yields the desired Galois descent and gives a representation over the
minimal splitting field.

We conclude this paper by illustrating that our method can also be
successfully applied to other groups of the family G3, 7, n.

3, 7, 2 m Ž .For n s 2m the group G contains the group 2, 3, 7; m given
² < 2 3 Ž .7 w xm:by the presentation x, y x , y , xy , x, y as a subgroup of index 2

Ž Ž ..a quotient of the abstract triangle group D 2, 3, 7 . These groups are well
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understood and known to be finite for m F 8 and to be infinite for m G 9
Ž w x. Ž . w xsee 10, 11 . An interesting case is the group 2, 3, 7; 84 which in 5 is
proved to have the alternating and symmetric groups A and S asn n

epimorphic images for all but finitely many values of n. It is not known
whether m s 84 is the smallest value with this property.

3, 7, n w xThe groups G with odd n are finite for n F 17. In 7 it is shown
3, 7, 27 Žthat G is infinite and the same method looking at the abelianization

.of subgroups of low index proves infiniteness for the cases n s 39, 49, 81,
w x 3, 7, 19 Ž .91, 95. It is stated in 8 that G maps onto J and L 113 and that1 2

the group is likely to be infinite, but to the authors’ knowledge this is still
an open problem. Very little seems to be known about these groups for
higher values of n.

Table I shows for n odd and 19 F n - 100 the primes p such that
3, 7, n Ž .G has an epimorphism onto L p .2

Ž .Table II gives for the pairs n, p with p - 500 the w-extendable
Ž . Ž .F L p -modules denoted by their degrees and the characters for w-p 2

Ž .extendable QL p -modules. In all cases the p-candidates for w are in fact2
Ž . Ž . Ž . Ž . Ž .w-extendable. The pairs n, p s 19, 113 , 21, 43 , 39, 13 , 45, 29 ,

Ž . Ž . Ž . Ž . Ž . Ž .57, 113 , 63, 43 , 65, 13 , 75, 29 , 91, 13 , 95, 113 are omitted, since no
Ž .w-extendable F L p -module exists. Combining these results with thep 2

w xcases n s 27, 39, 49, 81, 91, 95 covered by the method of 7 we get the
following:

COROLLARY 5.2. The groups G3, 7, n are infinite for n s 23, 27, 35, 39, 41,
45, 49, 53, 63, 69, 73, 77, 81, 91, 95.

TABLE I

n p n p n p n p

19 113
21 43 41 83 61 161407 81 5132161
23 139 43 8513 63 43, 127 83 1163, 564899
25 449 45 29, 181 65 13, 20411 85 2549, 75991
27 } 47 45121 67 10120753 87 1217, 189139
29 1217 49 97, 197 69 139, 126547 89 10501, 217517
31 743 51 29989 71 2639071 91 13, 181, 4733
33 727 53 211, 1483 73 293, 235789 93 743, 7253
35 71 55 216481 75 29, 449, 1499 95 113, 520981
37 1553 57 113, 7069 77 307, 461, 617 97 1163, 7732451
39 13, 701 59 797917 79 233968769 99 727, 2723687
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TABLE II

n p Brauer characters Rational characters

23 139 41, 125 Q14
25 449 41 }

35 71 41, 53, 65 Q , Q6 18
41 83 41, 53, 65, 69, 77 u , Q , Q42 6 14
45 181 41, 53, 65, 69, 77, 81, 83, 89, 125, Q , C , C14 4 20

137, 149, 153, 161, 165, 167, 173, 177
49 97 41, 53, 65, 69, 77, 81, 83, 89, 93, 97 p , Q , C , C , C , C14 4 8 16 32
49 197 41, 53, 65, 69, 77, 81, 83, 89, 93]97, Q , Q , Q , C6 18 66 4

125, 137, 149, 153, 161, 165, 167, 173,
177]181, 185, 189]193

53 211 41, 53, 65, 69, 77, 81, 83, 89, 93]97, p , u , Q , C , C106 2 2 10
101, 105, 125, 137, 149, 153, 161, 165,
167, 173, 177]181, 185, 189]197, 201]

211
63 127 41, 53, 65, 69, 71, 77, 81, 83, 89, 93] Q , Q , C , C2 32 2 14

101, 105]113, 117]125
69 139 41, 125 Q14
73 293 41, 53, 65, 69, 77, 81, 83, 89, 93]97, 2p , Q , Q , 2Q , 3Q ,2 6 14 42

101, 105]113, 117]125, 129]145, 149, 2Q , C , 2C98 2 4
153, 161, 165, 167, 173, 177]181, 185,
189]197, 201]209, 213]293

75 449 41 }

77 307 41, 53, 65, 69, 77, 81, 83, 89, 93]97, 2p , 2u , 2Q , Q ,154 2 4
101, 105]113, 117]125, 129]153, 159, 3Q , 2Q , 2Q , Q ,14 22 28 44
161, 165, 167, 173, 177]181, 185, 189] 2C , C , C , 2C ,2 6 18 34
197, 201]209, 213]307 C102

77 461 41, 53, 65, 69, 77, 81, 83, 89, 93]97, 4p , c , 2Q , 3Q ,230 2 6
101, 105]113, 117]125, 129]153, 161, 3Q , 2Q , 4Q , 3Q ,14 22 42 66
165, 167, 173, 177]181, 185, 189]197, 4Q , 2C , 3C , 2C ,154 2 4 10
201]209, 213]461 3C , 2C , 3C20 46 92

91 181 41, 53, 65, 69, 77, 81, 83, 89, 93]97, 2p , 2Q , Q , 2C , C ,14 26 4 10
101, 105]113, 117]125, 129]181 C , 2C , C , C , C12 20 30 36 60
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