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Using a recent global analysis result after the precise measurement of θ13, a possible symmetric neutrino
mixing ansatz is proposed, the mixing matrix is symmetric and also symmetric with respect to the
second diagonal line in the leading order. This leading order ansatz predicts θ13 = 12.2◦. Next, consider
the hierarchy structure of the lepton mass matrix as the origin of perturbation of the mixing matrix, we
find that this ansatz with perturbation can fit current data very well.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

Many neutrino experiments have revealed that the three known
light neutrinos must have finite but small masses and that dif-
ferent flavor neutrinos oscillate from one to another. The massive
neutrino states νL are related to the flavor states ν f L by the 3 × 3
PMNS matrix:⎛
⎝ νe

νμ

ντ

⎞
⎠

L

= UPMNS

⎛
⎝ ν1

ν2
ν3

⎞
⎠

L

. (1)

The PMNS matrix is unitary, which can be parameterized in the
standard way, with three mixing angles and three CP-related
phases.

Before the recent experiment results of T2K [1], MINOS [2]
and Double Chooz [3], the best-fit of neutrino oscillation angles
are usually taken to be θ13 ≈ 0◦ , θ23 ≈ 45◦ and θ12 ≈ 34◦ . Many
ansatzes are proposed to explain the smallness of sin θ13 and max-
imality of sin θ23 [6]. The well-known tri-bimaximal mixing pattern
is consistent with experiment data then [8]. But Daya Bay SBL ex-
periment made a precise measurement of θ13 from the νe → νe

oscillations [4]. The θ13 best-fit (±1σ range) result is

sin2 2θ13 = 0.092 ± 0.016(stat) ± 0.005(syst), (2)

which is to say that θ13 �= 0◦ at the 5.2σ level. The RENO Collabo-
ration confirmed the Daya Bay result soon [5].
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θ13 is not really very small. This fact makes many ansatzes face
difficulties [6] and opens the door of possible new phenomenolog-
ical applications. The possible explanation and impact of large θ13
have been discussed recently by many authors for example [25–
32]. The precise measurement of θ13 also has impact on the global
analysis of all the mixing parameters. Many groups have already
performed global analysis recently [9,10]. And we pay particular
attention to the result of [9]. There is an interesting indication
that the mixing angle θ23 deviates from the maximal mixing, i.e.,
θ23 < π

4 (at � 3σ in NH and � 2σ in IH) [9], and a weak hint
that the CP-violation phase δ ∼ π . But a reliable result on δ is not
available without the future long-baseline neutrino oscillation ex-
periments.

In the phenomenological view, the new global analysis result
may change the form of the PMNS matrix significantly. If the
value of θ23 is much smaller, the absolute value of Uτ1 (|Uτ1| =
|s12s23 − c12c23s13eiδ|) would also decrease. This makes the sym-
metric ansatz of PMNS matrix seem more possible. In fact, a sym-
metric mixing pattern has been discussed by some authors [11,
15], and the phenomenological view of the Hermitian PMNS ma-
trix also appears in a recent paper [16]. Encouraged by the global
analysis result [9], we study the possible view that the PMNS ma-
trix is symmetric in the leading order. Consider the strategy that
the PMNS matrix has the following structure [6],

UPMNS = (
U (0)

s + �U
)

K , (3)

where U (0)
s is the symmetric mixing pattern in the leading order,

and �U is the perturbation, K = diag(eiρ, eiσ ,1), which related
with Majorana CP phase.
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2. The ansatz

To get a proper ansatz, we turn to the experiment data [9]. As
observed by Yoni BenTov and Zee [16], the exact Hermitian mixing
matrix would predict that the Dirac CP phase is zero. And as we
have mentioned above, we expect the CP-violation is very small if
the symmetric ansatz is proper. If the CP-violation originates from
a small perturbation of an ansatz, it is more natural to assume
δ ∼ 0. We just ignore the possibility that δ ∼ π , and use the NH
best-fit data [9]

sin2 θ12 = 0.307, sin2 θ13 = 0.0241, sin2 θ23 = 0.386.

(4)

And we choose δ = 0. Here we simply take the global analysis best-
fit data of the mixing parameters into the standard parametriza-
tion. Then the matrix Uexp , after a basis transformation, is

Uexp =
⎛
⎝ −0.822 0.547 0.155

0.514 0.599 0.614
0.243 0.584 −0.777

⎞
⎠ . (5)

We notice the assumption that the PMNS matrix is symmetric
at the leading order with respect to second diagonal line has been
discussed in [12]. Now the data still favor this assumption, and the
data also hint the PMNS matrix is possibly symmetric. Encouraged
by the data, we put forward a simple ansatz of the matrix U . The
form of this matrix is the following:

U (0)
s =

⎛
⎝ −a b c

b b b
c b −a

⎞
⎠ . (6)

This form of the mixing matrix also exhibits symmetry in the lep-
ton sector. The general real and symmetric matrix is

Us =
⎛
⎝ −a b c

b d e
c e f

⎞
⎠ . (7)

If the Z2 transformation ν1 ↔ ν3 and e ↔ τ keeps the mixing ma-
trix invariant, we have −a = f and b = e. We just need d = b to
get the form (6), it turns out that this requirement results from a
certain form of the mass matrix, as will be discussed in Section 4.
The unitary property of matrix U helps us to fix the parameters a,
b and c. The numerical result is

U (0)
s =

⎛
⎜⎜⎝

1√
3−3

1√
3

1√
3+3

1√
3

1√
3

1√
3

1√
3+3

1√
3

1√
3−3

⎞
⎟⎟⎠ . (8)

U (0)
s has a simple and beautiful structure. Comparing with the

standard parametrization, we get θ13 ≈ 12.2◦ , deviating from ex-
periment result about 3◦ , the degeneration of the θ23 and θ12, and
of course no CP-violation in this simple mixing pattern. According
to (3), the deviation of our ansatz from the best-fit data (5) is

�U =
⎛
⎝ −0.0333 −0.0304 −0.0563

−0.0634 0.0216 0.0366
0.0317 0.00660 0.0117

⎞
⎠ . (9)

The magnitude of each element of �U is of O (0.01) (Uexp is of
O (0.1)). This implies that all the elements of mixing matrix should
receive the same order correction in a natural way [6]. The relative
deviation of θ13 is much larger than others because of the small-
ness of θ13. We will show in Section 3 that it is easy to make a
perturbation to match the experimental data.
3. High order corrections

The lepton flavor mixing matrix UPMNS is directly related with
the diagonalization of the charged lepton mass matrix Ml and neu-
trino mass matrix Mν . We only consider the low energy theory
here, heavy fermions have been integrated out and the neutrino
mass term comes from the effective dimension-five Weinberg op-
erator [13]. So there is only the left-handed Majorana mass term.
In SM, there is no constraint on the form of the mass matrix of
charged leptons. But we can always make arbitrary unitary trans-
formation of the right hand charged lepton in SM and use the
freedom to choose the charged lepton mass matrix to be Hermi-
tian [14]. In many special models (for example some left–right
symmetric theories), the mass matrix of charged leptons should
be Hermitian by the restriction of symmetry [17,18]. We take the
charged lepton mass matrix to be Hermitian in this Letter. So we
can diagonalize the mass matrix as

V †
l Ml Vl = diag

(
me, mμ, mτ

)
(10)

and

V †
ν Mν V ∗

ν = diag
(

m1, m2, m3
)
. (11)

The PMNS matrix is UPMNS = V †
l Vν . In general, it is the product

of V †
l and Vν that determines the mixing pattern. So there are

many possible ways to get the PMNS matrix. And the possibility
that the leading effect of mixing pattern is caused by Vν or Vl
with the other one as the NLO perturbation has been suggested
and studied for example [19–23]. The structure of mass matrix is
directly related with the transformation matrix, and the mass spec-
trum of charged lepton and neutrino would give some information
about the mass matrix structure. The much larger mass hierarchy
of charged leptons may have some relation with the mass matrix
elements hierarchy structure. And the mass hierarchy of neutrino
is not so large, so it may be natural to think that the mass ma-
trix elements are not in the hierarchy structure. One possible and
simple charged lepton mass matrix structure is that it is nearly
diagonal. Then in the leading order the transformation matrix of
charged lepton is close to 1. So it is the transformation matrix Vν

that determines the leading mixing pattern.
We start from the charged lepton mass matrix:

Ml =
⎛
⎜⎝

m′
1 ε η

ε∗ m′
2 κ

η∗ κ∗ m′
3

⎞
⎟⎠ , (12)

where m′
1, m′

2 and m′
3 are all real, ε , η and κ are complex. Con-

sidering the mass hierarchy of charged leptons, we assume the
following relation between these parameters:

|ε|,m′
1 � m′

2,m′
3; |η|, |κ | � |ε|,m′

1; m′
1 � |ε|. (13)

The charged leptons mass matrix is nearly diagonal. In the view of
model building, a model based on FN mechanism may produce the
mass matrix structure like this. The leading order structure is the
following:

M(0)

l =
⎛
⎝ 0 0 0

0 m′
2 0

0 0 m′
3

⎞
⎠ . (14)

M(0)

l is diagonal with the mass of electron being zero. It is rea-

sonable for the big mass hierarchy between e and μ (
mμ

me
≈ 210).1

1 Here we use the up-dated values of charged lepton masses renormalized to the
M Z scale in [7], with Me(M Z ) ≈ 0.4866 MeV and Mμ(M Z ) ≈ 102.7181 MeV.
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The unitary transformation matrix Vl is trivial, i.e., V (0)

l = 1. So the

transformation matrix Vν is just the leading mixing matrix U (0)
s K .

And we assume the transformation matrix Vν stays the same in
the NLO and NNLO calculation. The NLO and NNLO correction are
only related with the structure of the charged lepton mass ma-
trix. This is a very strong assumption, but still can be realized
in some situations. We may expect the high order correction of
lepton mass matrix only effect the charged lepton sector because
of the special symmetry forbids the correction term of neutrino
sector. Or the different origin of the mass matrix of charged lep-
tons and the neutrinos may keep the correction term of neutrinos
much smaller than the charged leptons so that we could ignore
the variation of the Vν . It is also possible that the correction term
of neutrino mass matrix do not change the structure and symme-
try of the leading order mass matrix. All the three situations can
lead to the assumption that only the charged lepton mass matrix
is the origin of perturbation of the leading mixing matrix. But we
may need more special symmetry or mechanism in a model to get
any situation mentioned above.

Before we go on to consider the NLO calculation, let us com-
pare the leading order prediction with the data. The leading or-
der predicts that sin2 θ

(0)
12 = sin2 θ

(0)
23 ≈ 0.349. θ

(0)
23 is in the 2σ

region and θ
(0)
12 is just in the 3σ region. θ

(0)
13 is even worse, since

sin2 θ
(0)
13 ≈ 0.0446, which is out of the 3σ allowed region of the

data, so the NLO calculation is necessary.
Considering (12)–(13), the NLO mass matrix of charged lepton

is [24]

M(1)

l =
⎛
⎝ 0 ε 0

ε∗ m′
2 0

0 0 m′
3

⎞
⎠ , (15)

with ε = |ε|eiλ. This matrix deviates from the diagonal matrix by
off-diagonal element ε , but it is also easy to be diagonalized by
the transformation matrix

V (1)

l =
⎛
⎜⎝

cos θ sin θeiφ 0

− sin θe−iφ cos θ 0

0 0 1

⎞
⎟⎠ , (16)

where tan θ =
√

me
mμ

≈ 0.0688, m′
3 = mτ , m′

2 = mμ − me ,

|ε| = √
memμ and φ = λ. Using the relation U (1)

s K = V (1)†
l Vν =

V (1)†
l U (0)

s K , we get the NLO mixing matrix:

U (1)
s =

⎛
⎜⎜⎜⎝

cos θ√
3−3

− sin θeiλ√
3

cos θ√
3

− sin θeiλ√
3

cos θ√
3+3

− sin θeiλ√
3

cos θ√
3

+ sin θe−iλ√
3−3

cos θ√
3

+ sin θe−iλ√
3

cos θ√
3

+ sin θe−iλ√
3+3

1√
3+3

1√
3

1√
3−3

⎞
⎟⎟⎟⎠ .

(17)

There is only one free parameter λ here. And the possible Dirac
CP-violation phase is also included in the NLO. Now after rephras-
ing (17) and comparing with the standard parametrization, it is
straightforward to write down the mixing parameters after NLO
correction,

sin2 θ
(1)
13 �

(
1√

3 + 3

)2

− 2

3 + 3
√

3

√
me

mμ
cosλ, (18)

sin2 θ
(1)
23 �

2 + 2(
√

3 − 1)
√

me
mμ

cosλ

4 + √
3 + 2(

√
3 − 1)

√
me
mμ

cosλ
, (19)
sin2 θ
(1)
12 �

2 − 4
√

me
mμ

cosλ

4 + √
3 + 2(

√
3 − 1)

√
me
mμ

cosλ
, (20)

sin δ(1) � 1

2
(3

√
3 − 1)

√
me

mμ
sinλ. (21)

Here we only keep the order O (
√

me
mμ

). The mixing parameters af-

ter NLO correction as a function of λ are displayed in Fig. 1. If
λ is in the first and fourth quadrant, the degeneration of θ23 and
θ12 disappears with θ23 becoming larger and θ12 becoming smaller,
which is in keep with the experiment data. The NLO correction to
sin2 θ

(0)
13 is about −0.02, which makes θ13 fit the data much bet-

ter. More precisely, θ
(1)
13 can lie in the 2σ range if 0 � λ � 0.413

or 5.870 � λ � 2π , θ
(1)
13 can lie in the 3σ range if 0 � λ � 0.687

or 5.596 � λ � 2π . θ
(1)
23 can be in the 2σ range in a large area

of the parameter space of λ. θ
(1)
12 fits the data very well in the

NLO, when λ is small or near 2π , θ
(1)
12 would lie in the 1σ re-

gion. The best-fit point of θ12 can also be included. Eq. (21) shows
that there are two possible values of Dirac CP-violation phases δ in
our NLO prediction, one is near zero, another is near π , depend-
ing on the value of λ (see Fig. 1). As we have assumed, δ should
be near zero in the natural way, λ is constrained in the first quad-

rant. And the rephrasing-invariant parameter J ≈
√

3
18

√
me
mμ

sin λ ∼
O (0.001).

As we can see, the NLO correction can fit the data. But it is
still not very satisfactory, let us consider the NNLO correction now.
With the assumptions (12) and (13), the mass matrix of charged
lepton would be of the following structure

M(2)

l =
⎛
⎜⎝

m′
1 ε 0

ε∗ m′
2 0

0 0 m′
3

⎞
⎟⎠ . (22)

It is also very easy to diagonalize (22) by a similar matrix

V (2)

l =
⎛
⎜⎝

cos ζ sin ζeiρ 0

− sin ζe−iρ cos ζ 0

0 0 1

⎞
⎟⎠ , (23)

where tan ζ =
√

me+m′
1

mμ
, m′

3 = mτ , m′
2 + m′

1 = mμ − me and ρ = λ.

In addition to the parameter λ, a new parameter appears, i.e. m′
1.

We define m′
1 ≡ (C2 −1)me (with C > 1), where C is real and posi-

tive. Then tan ζ = C
√

me
mμ

. As we have assumed m′
1 � |ε| and know

|ε| is of O (
√

mμme ) ∼ O (10)me , m′
1 should be order me , i.e., C is

of O (1). It is straightforward to calculate the NNLO correction by
the same way as the NLO correction.

sin2 θ
(2)
13 �

(
1√

3 + 3

)2

− 2

3 + 3
√

3

√
me

mμ
C cosλ, (24)

sin2 θ
(2)
23 �

2 + 2(
√

3 − 1)
√

me
mμ

C cosλ

4 + √
3 + 2(

√
3 − 1)

√
me
mμ

C cosλ
, (25)

sin2 θ
(2)
12 �

2 − 4
√

me
mμ

C cosλ

4 + √
3 + 2(

√
3 − 1)

√
me
mμ

C cosλ
, (26)



1388 W.-z. Guo, M. Li / Physics Letters B 718 (2013) 1385–1389
Fig. 1. Behavior of sin2 θ13, sin2 θ23, sin2 θ12, sin δ as a function of λ in the NLO.

Fig. 2. The parameter space of λ and C allowed by the experiment data in the 1σ
region of sin2 θ13 (top), sin2 θ23 (middle), sin2 θ12 (bottom) in the NNLO.

sin δ(2) � 1

2
(3

√
3 − 1)

√
me

mμ
C sinλ. (27)

If λ is in the first or the fourth quadrant, the new parameter
C would be a linear decreasing function of θ13, and θ13 is sensi-
tive to the value of C . And it is possible to make sin2 θ

(2)
13 lie in

the 1σ region. But when C is large, the interval of λ is very nar-
row (as we can see in Fig. 2). sin2 θ

(2)
12 can still be in the 1σ region

in a large interval of C and λ. sin2 θ
(2)
23 is an increasing function

of C , if λ is fixed in the first or fourth quadrant. But sin2 θ
(2)
23 in-

creases very slowly, so a large value of C is needed to get the 1σ

region data. On the other hand, too large C would make sin2 θ
(2)

12
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and sin2 θ
(2)
13 decrease too much. Though λ could be adjusted to re-

duce sin2 θ
(2)
12 , the parameter space of λ and C is expected to be

narrow. But when C is near 2 and λ is near 1, all the three mixing
parameters would lie in the 1σ region. Fig. 2 shows the parameter
space of C and λ allowed by the 1σ data. The CP-violation phase
δ(2) is still near zero with a deviation about 8◦ . Future measure-
ment of δ will test our theoretical consideration.

As we can see, the NNLO correction can fit the data very well.
According to (12) and (13), the higher order corrections would be
much smaller. We do not consider higher order corrections here.

4. The neutrino mass matrix

In this last section, we make some comments on the mass
matrix of neutrinos. The hierarchy structure of the mass matrix
elements of charged leptons gives the nearly diagonal matrix. The
transformation matrix Vν is just the product of leading order mix-
ing matrix U (0)

s and K , i.e., Vν = U (0)
s K . Using (11), we can get the

mass matrix of neutrinos as the following

Mν = Vν diag
(

m1, m2, m3
)

V T
ν . (28)

Taking Vν = U (0)
s K into (28), we get Mν

Mν =
⎛
⎝ x + y z y + z

z x 2y + z
y + z 2y + z x − y

⎞
⎠ , (29)

with

x = 1

3
(m̂1 + m̂2 + m3), (30)

y = 1

2
√

3
(m̂1 − m3), (31)

z = 1

3

(
m̂2 + 1√

3 + 1
m3 − 1√

3 − 1
m̂1

)
, (32)

where m̂1 = m1e2iρ , m̂2 = m2e2iσ . From the oscillation experiment
and the cosmology observation, we know that the mass spec-
trum of the three light neutrinos is m1 ≈ m2, m1(m2) � m3 or
m3 � m1(m2). So elements of neutrino mass matrix do not show
the hierarchy structure as the charged lepton mass matrix, which is
what we expect. But (29) has an interesting property. The sums of
every column and every row are all equal, i.e.,

∑
i=1,2,3 Mν,λi = x+

2y +2z (λ = e,μ, τ ) and
∑

λ=e,μ,τ Mν,λi = x+2y +2z (i = 1,2,3).
The matrix of this type is called magic matrix [36]. This prop-
erty also appears in some models with discrete symmetry which
lead to the tri-bimaximal mixing pattern for example [33,34]. Com-
paring with the A4 models [35], the mass matrix of neutrinos is
also invariant by transformation of the following matrix S , i.e.,
SMν S = Mν .

S = 1

3

⎛
⎝ −1 2 2

2 −1 2
2 2 −1

⎞
⎠ . (33)

S is one of the element of the three-dimensional unitary represen-
tation of A4 group in a suitable basis [35]. But the matrix (29) do
not show the μ–τ symmetry, so the mixing pattern is quite differ-
ent from the tri-bimaximal mixing. We still need another condition
(maybe a new symmetry) to fix the form of the mass matrix of
neutrinos (29), which is worth to explore in the future. If the mass
matrix has the structure as (29), we can diagonalize it and get the
mixing ansatz (8). We expect some models with new symmetry
or underlying mechanism would give the mass matrix structure
(12) and (29). Then we can learn more about the origin of the
mass matrix structure, which may be related with the high-scale
physics. We also notice the different mass matrix form between
charged leptons and neutrinos. But it is not unnatural for the ori-
gins of the mass matrix of charged leptons and neutrinos may be
due to different mechanisms.

We show in this Letter that a symmetric ansatz can be made
to fit the experimental data very well. The mixing ansatz that we
propose in Section 2 is just a phenomenological consideration, its
theoretical mechanism is unclear yet. But we can observe the sym-
metry property of the mass matrix of neutrinos, which gives the
clue to the model building. The future precise measurements of
the mixing parameters, especially of the CP-violation phase δ in
the LBL experiments, will provide more information on the mix-
ing pattern and constrain all the parameters. We expect δ be near
zero, and then the symmetric ansatz can be an important hint at
the underlying physical theory.
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