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We take for granted the ability to fall asleep or to snap out of sleep into wakefulness, but these changes in
behavioral state require specific switching mechanisms in the brain that allow well-defined state transitions.
In this review, we examine the basic circuitry underlying the regulation of sleep and wakefulness and discuss
a theoretical framework wherein the interactions between reciprocal neuronal circuits enable relatively rapid
and complete state transitions. We also review how homeostatic, circadian, and allostatic drives help regu-
late sleep state switching and discuss how breakdown of the switching mechanism may contribute to sleep
disorders such as narcolepsy.
We spend nearly one-third of our lives asleep, and many

mammals, including small laboratory rodents, spend half or

more of their existence in this state (Savage and West, 2007;

Siegel, 2009). Because sleeping animals are inherently more

vulnerable, it is necessary for an animal to be able to awaken

quickly so it can flee or defend itself. Conversely, it is a common

experience that one can fall asleep over just a few seconds or

minutes. These state transitions involve dramatic alterations in

easily observed physiological variables, including eye closure,

breathing, arousability, and muscle tone. We measure the

changes in cortical activity and muscle tone, respectively, by

recording the electroencephalogram (EEG) and electromyogram

(EMG), and the actual transitions in electrophysiologically moni-

tored state occur over just a few seconds (Takahashi et al.,

2010). Similarly, during the sleep period, animals and people

rapidly transition between rapid eye movement (REM) and

non-REM (NREM) sleep states. Recent advances in under-

standing the brain circuitry underlying the waking and sleeping

states have given rise to models that may explain these transi-

tions. The principles that govern these models for state transi-

tions may ultimately apply to many other state changes, such

as emotional responses, sexual arousal, or cognitive state

changes such as reorienting attention. Hence the mechanisms

for wake-sleep state transitions potentially have broad implica-

tions for a variety of behavioral states.

As an individual falls asleep, the EEG initially transitions from

a state of high-frequency, low-voltage waves in the waking state

to higher voltage, slower waves representing NREM sleep.

These changes take place over a few seconds or less in rodents

but may take 10 s to a minute in humans (Takahashi et al., 2010;

Wright. et al., 1995). The EEG then progressively slows during

NREM sleep until it is dominated by high-voltage, slow wave

(0.5–4 Hz) activity, after which the slow waves progressively

diminish, a typical bout lasting from 40 min to an hour or more

in humans. In rodents, this process is much shorter, with slow

waves established within seconds of entering NREM sleep,

and the entire NREM bout generally lasting three to five minutes,

although occasionally it may extend to 20 min or more. Across

species, wake bout lengths follow a power law distribution (the

log of probability of a bout of a certain length and the log of the
bout length forming a linear relationship), whereas the durations

of sleep bouts follow an exponential distribution (Lo et al., 2004;

Phillips et al., 2010). In each case though, the transitions

between NREM sleep and wakefulness typically take less than

1% of the duration of an average NREM bout. The EEG then

makes another abrupt transition over a few seconds from

NREM into REM sleep, with lower voltage, higher frequency

activity. In rodents, the EEG recorded from the cortical surface

during REM sleep is dominated by 5–8 Hz theta activity gener-

ated by the underlying hippocampus; in humans, theta activity

is present during REM sleep, particularly in the hippocampus,

but the dominant cortical frequencies are faster and lower

voltage. During REM sleep, there is almost complete loss of

tone in skeletal muscles (except those used for breathing and

eye movements), accompanied by rapid eye movements that

give the state its name. Humans report active dreams during

REM sleep but less lively mentation during NREM sleep. Over

the sleep period, an individual may switch back and forth from

NREM to REM sleep, with occasional transitions to periods of

wakefulness. The duration of the NREM, REM, and wake bouts

varies with the species, age, and health of the individual, but

the electrographic transitions between these states are relatively

rapid in comparison to bout duration.

Researchers first began mapping the general circuitry that

controls wakefulness and sleep over 50 years ago, and in the

last 10–20 years, much has been learned about the specific

systems that regulate these states. Progress over the last few

years has been especially rapid, leading to an improved under-

standing of the neurochemicals, pathways, and firing patterns

that regulate NREM and REM sleep. Other new work has exam-

ined the ways in which behavioral drives, including homeostatic,

circadian, and allostatic influences, may affect these switching

mechanisms. We will first review these advances and place

them into the context of a model we have proposed for sleep/

wake state transitions based upon mutually inhibitory circuits,

as are seen in electronic flip-flop switches (Saper et al., 2001,

2005). We will then explore recently proposed mathematical

models based on this circuitry that can explain many of the

features of natural sleep and state transitions. Finally, we will

examine how this circuitry can explain many of the features of
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Figure 1. The Wake-Sleep Switch
Many wake-promoting projections arise from neurons in the upper brainstem
(A). Cholinergic neurons (aqua) provide the major input to the thalamus,
whereasmonoaminergic and (presumably) glutamatergic neurons (dark green)
provide direct innervation of the the hypothalamus, basal forebrain, and cere-
bral cortex. The orexin neurons in the lateral hypothalamus (blue) reinforce
activity in these brainstem arousal pathways and also directly excite the
cerebral cortex and BF. The main sleep-promoting pathways (magenta in B)
from the ventrolateral (VLPO) and median (MnPO) preoptic nuclei inhibit the
components of the ascending arousal pathways in both the hypothalamus
and the brainstem (pathways that are inhibited are shown as open circles
and dashed lines). However, the ascending arousal systems are also capable
of inhibiting the VLPO (C). This mutually inhibitory relationship of the arousal-
and sleep-promoting pathways produces the conditions for a flip-flop switch,
which can generate rapid and complete transitions between waking and
sleeping states. The following abbreviations are used: DR, dorsal raphe
nucleus (serotonin); LC, locus coeruleus (norepinephrine); LDT, laterodorsal
tegmental nucleus (acetylcholine); PB, parabrachial nucleus (glutamate); PC,
precoeruleus area (glutamate); PPT, pedunculopontine tegmental nucleus
(acetylcholine); TMN, tuberomammillary nucleus (histamine); vPAG, ventral
periaqueductal gray (dopamine).
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the sleep disorder narcolepsy, an example of state instability in

which the circuitry that stabilizes switching is damaged.

Networks Supporting Sleep and Wakefulness
Wake-Promoting Networks

Current models of the ascending arousal system are still gener-

ally based on the observations by Moruzzi and Magoun (1949)

that electrical stimulation of the paramedian reticular formation,

particularly within the midbrain, produces EEG desynchroniza-

tion consistent with arousal. Subsequent studies identified

a slab of tissue at the junction of the rostral pons and caudal

midbrain as critical for maintaining the waking state (Lindsley

et al., 1949). Although the neurons responsible for arousal

were initially thought to be part of the undifferentiated reticular

formation, subsequent studies showed that the cell groups at

the mesopontine junction that project to the forebrain mainly

consist of monoaminergic and cholinergic neurons that reside

in specific cell groups rather than the reticular core (Figure 1)

(see Saper [1987] for review).

Cholinergic neurons that project to the forebrain are found in

the pedunculopontine and laterodorsal tegmental nuclei (PPT

and LDT). They provide the main innervation from the mesopon-

tine junction to the thalamic relay nuclei but also innervate the

intralaminar and reticular thalamic nuclei, as well as the lateral

hypothalamus, basal forebrain, and prefrontal cortex (Hallanger

et al., 1987; Satoh and Fibiger, 1986). Many neurons in the

PPT and LDT fire most rapidly during wakefulness and REM

sleep, and most slowly during NREM sleep, suggesting that

they help drive cortical activation (el Mansari et al., 1989;

Steriade et al., 1993). These nuclei are heterogeneous, but extra-

cellular recordings combined with juxtacellular labeling confirm

that cholinergic neurons in the LDT fire during cortical activation,

usually increasing their firing rates just before the transition from

cortical slow waves to faster frequencies (Boucetta and Jones,

2009).

The monoaminergic cell groups at the mesopontine level that

project to the forebrain include the noradrenergic locus coeru-

leus (LC) and the serotoninergic dorsal and median raphe nuclei

(Aston-Jones and Bloom, 1981; Dahlstroem and Fuxe, 1964;

Kocsis et al., 2006), as well as dopaminergic neurons adjacent

to the dorsal raphe nucleus (Lu et al., 2006a). Histaminergic

neurons in the tuberomammillary nucleus (TMN) have similar

projection targets and firing patterns (Panula et al., 1989;

Steininger et al., 1999). Axons from these cell groups predomi-

nantly target the lateral hypothalamus, basal forebrain, and

cerebral cortex, where they terminate extensively, particularly

in the prefrontal cortex. Each of these monoaminergic systems

also sends smaller but important populations of axons to the

thalamus where they largely target the intralaminar and reticular

nuclei. Generally, neurons in these cell groups fire most actively

during wakefulness, decrease activity during non-REM sleep,

and fall silent during REM sleep (Aston-Jones and Bloom,

1981; Kocsis et al., 2006; Steininger et al., 1999; Takahashi

et al., 2006, 2010).

Another source of arousal influence from the rostral pons may

be glutamatergic neurons in the parabrachial nucleus and the

adjacent precoeruleus area (PC, the lateral corner of the rostral

pontine periventricular gray matter, just rostral to the main
1024 Neuron 68, December 22, 2010 ª2010 Elsevier Inc.
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body of the LC), which have been found to send major projec-

tions to the lateral hypothalamus, basal forebrain, and cerebral

cortex (Hur and Zaborszky, 2005; Lu et al., 2006b;Saper, 1987;

Saper and Loewy, 1980). The activity patterns of these glutama-

tergic neurons have not yet been studied, but recordings in this

area in cats and Fos studies in rats have shown predominantly

wake- and REM-sleep-active neurons (Chu and Bloom, 1973;

Lu et al., 2006b; Saito et al., 1977). Tests of the role of these

neurons in wakefulness would be of great interest.

Several forebrain neuronal systems also support wakefulness.

The importance of these forebrain regions is underscored by the

observation that over a period of weeks to months after acute

lesions of the brainstem arousal system, animals and humans

eventually recover wake-sleep cycles (Adametz, 1959; Posner

et al., 2008). Thus, while these forebrain areas appear to depend

upon the brainstem arousal influence in the intact individual, they

apparently can reorganize to support cortical arousal even

without input from the brainstem.

One of these forebrain arousal systems is found in the poste-

rior half of the lateral hypothalamus. Just dorsal and rostral to the

histaminergic neurons of the TMN, the lateral hypothalamus

contains neurons producing the orexin neuropeptides (orexin-A

and -B, also known as hypocretin-1 and -2). Many of the orexin

neurons also contain glutamate, and nearly all also contain the

neuropeptide dynorphin (Chou et al., 2001; Torrealba et al.,

2003). They send axons to the entire cerebral cortex, as well

as to the brainstem and basal forebrain, with particularly intense

input to the TMN and the LC (Peyron et al., 1998). There is also

less intense orexin innervation of the intralaminar nuclei of the

thalamus as well as the anteroventral thalamic nucleus. There

are two known orexin receptors, both of which are G protein

coupled receptors with excitatory membrane effects (Sakurai

et al., 1998). Orexin neurons receive afferents frommany compo-

nents of the ascending arousal system, including the LC, dorsal

raphe (DR), and parabrachial nucleus, as well as from cortical

(medial prefrontal) and amygdaloid (central nucleus) sources

associated with arousal and ventral tegmental sites associated

with reward (Yoshida et al., 2006). They fire predominantly during

wakefulness, and fire particularly briskly during active explora-

tion of the environment or during motivated behaviors (Lee

et al., 2005; Mileykovskiy et al., 2005). Orexin neurons are also

driven by low glucose (Moriguchi et al., 1999) and may play an

important role inmotivating foraging behaviors in hungry animals

as well as in reward and drug seeking behaviors (Harris et al.,

2005; Yamanaka et al., 2003). Selective activation of the orexin

neurons with a light-sensitive sodium channel awakens mice

from sleep, suggesting that the orexin neurons are capable of

driving arousal from sleep (Adamantidis et al., 2007; Carter

et al., 2009). Most importantly, selective destruction of the orexin

neurons with a genetically targeted toxin results in the symptoms

of narcolepsy (Hara et al., 2001), which will be discussed in

a separate section below. Overall, the orexin neurons are

thought to sustain wakefulness and suppress REM sleep.

On the other hand, large lesions of the posterior lateral hypo-

thalamus (Gerashchenko et al., 2003; Nauta, 1946; Ranson,

1939; Swett and Hobson, 1968) produce much more extensive

sleepiness than can be explained by elimination of just orexin

and histamine transmission. This suggests the presence of other
important arousal-producing neurons in the posterior lateral

hypothalamus. There is an additional population of neurons in

the supramammillary region and extending laterally to the sub-

thalamic nucleus, which is a known source of projections to

the cerebral cortex and basal forebrain (Grove, 1988; Saper,

1985). Many neurons in this region express the vesicular gluta-

mate transporter 2 (Hur and Zaborszky, 2005; Ziegler et al.,

2002) but whether these glutamatergic neurons promote arousal

remains to be determined.

The most rostral population of arousal-promoting subcortical

neurons is located in the basal forebrain. Many of these

neurons contain either acetylcholine or gamma-amino-butyric

acid (GABA), and a small number contain glutamate (Manns

et al., 2001; Hur and Zaborszky, 2005). Basal forebrain cholin-

ergic neurons innervate, both directly and indirectly activate

cortical pyramidal cells, and probably augment cortical activa-

tion and EEG desynchronization (Jones, 2004). GABAergic basal

forebrain neurons innervate and presumably inhibit cortical

GABAergic interneurons and deep layer pyramidal cells (Freund

and Meskenaite, 1992; Henny and Jones, 2008), both of which

most likely result in disinhibition of cortical circuits. Many of

these basal forebrain neurons are wake-active and fire in bursts

correlated with specific EEG rhythms. Small ibotenic acid lesions

of the basal forebrain result inmodest slowing of the EEGwithout

changing the amount of wake or sleep, while specific lesions of

basal forebrain cholinergic neurons reduce wakefulness tran-

siently, without affecting the EEG frequency spectrum (Kaur

et al., 2008). On the other hand, acute inactivation of the basal

forebrain with the anesthetic procaine produces deep NREM

sleep, whereas activation with glutamatergic agonists causes

wakefulness (Cape and Jones, 2000). A definitive understanding

of the roles of the basal forebrain cell groups in arousal awaits

studies that differentially eliminate the GABAergic population.

The thalamic relay nuclei (such as the anterior, ventral, and

lateral thalamic cell groups; medial and lateral geniculate nuclei;

mediodorsal nucleus; and pulvinar) are the most important and

abundant sources of subcortical glutamatergic afferents to the

cerebral cortex, and the intralaminar and midline nuclei provide

a diffuse source of cortical input (Jones and Leavitt, 1974).

Surprisingly, there is little evidence that these inputs play amajor

role in producing wakefulness. Early electrical stimulation

studies suggested that the midline and intralaminar thalamic

nuclei might constitute a diffuse, nonspecific cortical activating

system (Morison and Dempsey, 1942; Steriade, 1995), but

lesions of the midline and intralaminar nuclei did not prevent

cortical activation (Moruzzi and Magoun, 1949; Starzl et al.,

1951). Extensive ablation of the thalamus in cats actually caused

an increase in wakefulness (Villablanca and Salinas-Zeballos,

1972) but in rats has been reported to have little if any effect

on wakefulness or EEG waveforms, other than to eliminate sleep

spindles (Buzsaki et al., 1988; Vanderwolf and Stewart, 1988).

When overall arousal is impaired with thalamic lesions in

humans, close examination of the pathology has shown that

there is also damage to the paramedian midbrain or underlying

hypothalamus (Posner et al., 2008). Conversely, patients with

bilateral thalamic damage are often in a persistent vegetative

state, with preserved wake-sleep cycles but without retained

cognitive content (Kinney and Samuels, 1994), and patients
Neuron 68, December 22, 2010 ª2010 Elsevier Inc. 1025
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with fatal familial insomnia have thalamic degeneration and sleep

loss (Montagna et al., 2003). It is difficult to reconcile these

observations with the thalamus playing a role in promoting over-

all cortical arousal.

On the other hand, the thalamus may be important for

selecting aspects of the environment for attention and in this

regard may interact with the arousal system. Selective activation

of specific cortical areas is thought to be regulated by the

reticular nucleus of the thalamus, which covers the rostral and

lateral surface of the thalamus and has a major inhibitory influ-

ence over the thalamic relay nuclei. The reticular nucleus

consists of GABAergic neurons, which sample thalamocortical

traffic, and inhibit thalamic relay neurons, resulting in targeted

modulation of thalamocortical transmission. Thus, selective

inhibition of thalamic reticular neurons may be a critical mecha-

nism for selective attention and a major function of the arousal

system. Inputs to the reticular nucleus arise from cholinergic

(Levey et al., 1987; Parent and Descarries, 2008), noradrenergic

(Asanuma, 1992), serotoninergic, and histaminergic (Manning

et al., 1996) arousal systems, along with pyramidal neurons

of the frontal cortex (Zikopoulos and Barbas, 2007), and

GABAergic neurons of the basal forebrain (Asanuma, 1989; Asa-

numa and Porter, 1990; Bickford et al., 1994). These probably

represent important mechanisms through which the brainstem,

basal forebrain, and frontal cortex modulate activity within thala-

mocortical circuits.

Finally, the telencephalon is not just a target of the arousal

system (as measured by EEG and behavioral activation), but

itself contributes to regulation of arousal. All components of

the arousal system intensively innervate the prefrontal cortex,

in particular the medial prefrontal region, which in turn sends

descending projections back to the basal forebrain, hypothal-

amus, and brainstem components of the arousal system (Aston-

Jones and Cohen, 2005; Hurley et al., 1991). Reciprocal excita-

tion might allow the medial prefrontal cortex to rapidly escalate

arousal when a behaviorally important stimulus is present.

The presence of such a large number of cell groups that are

thought to promote arousal raises the question of how they

interact in this process. It is interesting that drugs that block

transmission for one or another of these pathways (e.g., musca-

rinic antagonists, H1-histamine antagonists, or a2-adrenergic

agonists) cause acute sleepiness, but chronic ablation of the

basal forebrain cholinergic neurons (Kaur et al., 2008), tubero-

mammillary histaminergic neurons (Gerashchenko et al., 2004),

the LC and pontine cholinergic neurons (Lu et al., 2006a; Shouse

and Siegel, 1992; Webster and Jones, 1988), or combinations of

these structures (Blanco-Centurion et al., 2007) have minimal

effects on the amount of wakefulness. One possible reason for

this puzzling result is that the arousal system may contain suffi-

cient redundancy that remaining wake-promoting systems may

be able to compensate for the chronic (but perhaps not acute)

loss of one or even a few components, e.g., by increasing activity

or receptor sensitivity in intact arousal systems.

A related issue is which of these wake-promoting cell groups

participate in the switching between sleep and wakefulness,

as opposed to the maintenance of the waking state. This issue

will be taken up in the section of this review on switching

circuitry.
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During the epidemic of encephalitis lethargica around the time

of the World War I, Von Economo (1930) reported that patients

with lesions in the preoptic region around the rostral end of the

third ventricle demonstrated profound insomnia. Experimental

lesions of the preoptic-basal forebrain region reduced sleep in

rats and cats (McGinty and Sterman, 1968; Nauta, 1946), but

the exact population of sleep-promoting neurons was unknown.

Sherin and colleagues (Sherin et al., 1996) subsequently identi-

fied a population of neurons in the ventrolateral preoptic nucleus

(VLPO) that innervate the histaminergic TMN and that express

Fos protein selectively during sleep but not wakefulness. VLPO

neurons, containing the inhibitory neurotransmitters GABA and

galanin, innervate other components of the ascending arousal

system as well, including the LC, raphe system, periaqueductal

gray matter, parabrachial nucleus, and lateral hypothalamic

area (Sherin et al., 1998). The VLPO was found to consist of

a dense core of sleep-active, galanin-positive neurons that

project heavily to the TMN. However, this is surrounded dorsally

and medially by a more diffuse population of sleep-active, gala-

nin-positive neurons, the extended VLPO, which more exten-

sively targets the dorsal raphe and LC (Lu et al., 2000; Sherin

et al., 1998). As is true for many cell groups in the hypothalamus

that are defined on the basis of common neurotransmitter,

connections and physiology, the VLPO neurons are mixed in

among other cell types. In addition, while there are other galani-

nergic neurons laterally in the basal forebrain and medially in the

preoptic area, none of these are sleep-active or project to the

TMN, LC, or dorsal raphe (Sherin et al., 1998; Gaus et al.,

2002). These complexities make it difficult to interpret single

unit recording studies, which necessarily record from only one

cell at a time, but rarely identify their chemical phenotype. Never-

theless, such recordings in rats demonstrated that many

neurons in the VLPO region fire at about 1–2 Hz during wakeful-

ness, about 2–4 times faster during NREM sleep, and about

twice as fast again during deep NREM sleep after 12 hr of sleep

deprivation (Szymusiak et al., 1998). However, some of the

neurons were found to fire fastest during REM sleep. Similar

observations have been made in mice (Takahashi et al., 2009).

These observations suggest that VLPO neurons constitute

a sleep-promoting pathway from the preoptic area that inhibits

many arousal systems during sleep. However, there are also

somewake-active neuronsmixed in with the VLPO cells (Szymu-

siak et al., 1998; Modirrousta et al., 2004; Takahashi et al., 2009)

whose function with respect to wake-sleep regulation is not

known. To test the net effect of the neurons in the VLPO region

on sleep regulation, Lu et al. (2000) performed sleep recordings

in animals with cell-specific lesions of the VLPO, and these

showed a decrease in NREM, REM, and total sleep by up to

50%. Cell loss in the VLPO core correlated most closely with

loss of NREM sleep, while loss of REM sleep was more closely

correlated with loss of neurons in the extended VLPO (Lu et al.,

2000).

The preoptic area and basal forebrain near the VLPO also

contain other populations of sleep-active neurons (Lee et al.,

2004; Szymusiak and McGinty, 1986; Modirrousta et al., 2004;

Hassani et al., 2009; Takahashi et al., 2009), however the ability

of these cell groups to cause sleep, as opposed to simply firing
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during sleep, is less clear. The best studied of these is a popula-

tion of neurons in the median preoptic nucleus (MnPO). Like the

VLPO, the MnPO contains many neurons that produce Fos

during sleep and contain GABA (although they do not contain

galanin) (Gong et al., 2004). About 75% of MnPO neurons fire

faster during sleep (Suntsova et al., 2002), although only about

10% are differentially more active in NREM or REM. Unlike

VLPO neurons, whose firing increases at just about the same

time as sleep onset (Szymusiak et al., 1998; Takahashi et al.,

2009), MnPO neurons often fire in advance of sleep, suggesting

a role in accumulating sleep pressure. This hypothesis has been

strengthened by the observation that MnPO neurons also

express Fos during sleep deprivation, while the VLPO neurons

only express Fos during sleep (Gvilia et al., 2006). The MnPO

provides a major input to the VLPO (Chou et al., 2002; Uschakov

et al., 2007), which may allow it to drive VLPO activity. Other

projections from the MnPO target the lateral hypothalamic

area, the dorsal raphe, the LC, and the midbrain periaqueductal

gray matter but not the cholinergic PPT and LDT nuclei or the

TMN (Uschakov et al., 2007). It is not knownwhether the neurons

that contribute to these projections are the same ones that are

sleep-active, GABAergic neurons. Studies of the effects of

selective MnPO lesions on sleep would be of great value in

defining its contribution to sleep regulation.

A key property of VLPO neurons is that they receive reciprocal

inputs from many regions implicated in arousal, including the

TMN, dorsal raphe nucleus and adjacent ventral periaqueductal

gray matter (vlPAG), parabrachial nucleus, and LC (Chou et al.,

2002; Lu et al., 2006a). Slice recordings of identified VLPO

neurons show that they are inhibited by acetylcholine, norepi-

nephrine, dopamine, and serotonin (Gallopin et al., 2000;

Gallopin et al., 2004). While VLPO cells are not inhibited by hista-

mine, the TMN neurons also contain the mu-opioid peptide

endomorphin, which inhibits VLPO neurons (Greco et al.,

2008). MnPO neurons receive only sparse inputs from the LC

and periaqueductal gray matter and little if any from the dorsal

or median raphe nuclei or from the TMN (Saper and Levisohn,

1983). The effects of these inputs on the MnPO sleep-active

neurons remain unknown.

Because even rats with very large VLPO lesions still sleep

about 50% as much as normal animals, it is likely that the

sleep-promoting system in the brain is distributed with compo-

nents in addition to the VLPO thatmay contribute to the inhibition

of the arousal systems during sleep. These may include other

sleep-active neurons in the MnPO and basal forebrain (Modir-

rousta et al., 2004; Takahashi et al., 2009), but evidence that

these cells promote sleep is lacking. Recent studies on lesions

of the striatum and globus pallidus have reported substantial

increases in wakefulness and sleep fragmentation (Qiu et al.,

2010). The descending projections from both the nucleus

accumbens and globus pallidus are largely GABAergic and

include the basal forebrain and lateral hypothalamus (Baldo

et al., 2004; Kim et al., 1976; Swanson and Cwan, 1975). In addi-

tion, a population of cortical neurons has been described that

express cFos during sleep and are immunoreactive for both nitric

oxide and neuropeptide Y (Gerashchenko et al., 2008). However,

their role in producing sleep states, or in state switching, remains

to be studied.
Thus, although it is likely that other sleep-promoting neurons

participate in the induction and maintenance of sleep, the

VLPO neurons appear to play a particularly important role in

this process, as VLPO lesions can substantially reduce sleep

formonths (Lu et al., 2000). Therefore, in ourmodel for behavioral

state switching, we will focus on the interactions of the VLPO

with wake-promoting systems.

REM Sleep-Promoting Networks

After the discovery of REM sleep in the 1950s, its regulation

became a major focus of research. Much work has indicated

that neurons in the pons play an essential role as REM sleep is

disrupted by transections of the pons or large excitotoxic lesions

of this region (Jouvet, 1962; Webster and Jones, 1988). In addi-

tion, just prior to and during REM sleep, high-voltage EEGwaves

occur in the pons, lateral geniculate, and occipital cortex (hence

PGOwaves) in cats. These PGOwaves are time locked to bursts

of firing by PGO burst neurons in the region of the cholinergic

PPT and LDT nuclei at the junction of the midbrain and the

pons (el Mansari et al., 1989; Sakai and Jouvet, 1980).

Conversely, firing of neurons in the LC, dorsal raphe nucleus,

and TMN was found to slow almost to a halt during REM sleep

(Aston-Jones and Bloom, 1981; Hobson et al., 1975; Steininger

et al., 1999; Takahashi et al., 2010; Trulson et al., 1981). This

reciprocal relationship suggested that the PPT and LDT might

interact with monoaminergic neurons to regulate the alternation

of NREM and REM sleep.

McCarley andHobson produced a predator-preymodel of this

NREM-REM sleep mechanism using Lottka-Volterra equations

(Hobson et al., 1975; McCarley and Hobson, 1975; Pace-Schott

and Hobson, 2002). In a predator-prey model, an increase in the

prey population allows an increase in the predator population,

but this then reduces the prey population, resulting in a subse-

quent decrease in the predators, thus permitting another cycle

in which the prey population expands again. In the Hobson-

McCarley model, the cholinergic neurons act like prey in that

an increase in their firing during REM sleep excites monoamine

cells. However, the monoaminergic neurons are like predators

in that an increase in their firing inhibits the cholinergic neurons

and terminates the REM period. The oscillations in a predator-

prey model require a substantial time delay between the expan-

sion of the prey and predator populations. While this delay is

maintained by breeding cycles in the predator-prey model, it is

not clear how this model would apply to neurons, which commu-

nicate with each other in a matter of milliseconds.

The model of cholinergic-monoaminergic interactions regu-

lating REM sleep was supported by the observations that appli-

cation of cholinergic drugs to the mesopontine tegmentum can

cause REM sleep, whereas drugs that increase monoaminergic

signaling inhibit REM sleep (Luppi et al., 2006). On the other

hand, the importance of the PPT/LDT and LC in the control of

REM sleep has been challenged by studies in which lesions of

these nuclei had surprisingly little effect on REM sleep. Electro-

lytic lesions of the PPT in cats mildly reduced the number of tran-

sitions into REM sleep, but lesions of the LDT and LC had no

effect (Shouse and Siegel, 1992; Webster and Jones, 1988).

More limited lesions of the PPT or LDT in rats have demonstrated

minimal effects on REM sleep (Lu et al., 2006b). Even quite

complete lesions of the LC using specific toxins showed no
Neuron 68, December 22, 2010 ª2010 Elsevier Inc. 1027



Figure 2. The REM-NREM Sleep Switch
Two populations of mutually inhibitory neurons in the upper pons form a switch
for controlling transitions between REM and NREM sleep (A). GABAergic
neurons in the vlPAG and the adjacent LPT (vlPAG/LPT; shown in gold) fire
during non-REM states to inhibit entry into REM sleep. During REM sleep,
they are inhibited by a population of GABAergic neurons in the sublaterodorsal
region (SLD, red) that fire during REM sleep. This mutually inhibitory relation-
ship produces a REM-NREM flip-flop switch, promoting rapid and complete
transitions between these states. The core REM switch is in turn modulated
by other neurotransmitter systems (B). Noradrenergic neurons in the LC and
serotoninergic neurons in the DR (green) inhibit REM sleep by actions on
both sides of the flip-flop switch (exciting REM-off and inhibiting REM-on
neurons) and during REM sleep they are silent (dashed lines), whereas cholin-
ergic neurons (aqua) promote REM sleep by having opposite actions on the
same two neuronal populations. The orexin neurons inhibit entry into REM
sleep by exciting neurons in the REM-off population (and by presynaptic
effects that excite monoaminergic terminals), whereas the VLPO neurons
promote the entry into REM sleep by inhibiting this same target. During REM
sleep (C), a separate population of glutamatergic neurons in the SLD (red) acti-
vates a series of inhibitory interneurons in the medulla and spinal cord, which
inhibit motor neurons, thus producing the atonia of REM sleep. Withdrawal of

1028 Neuron 68, December 22, 2010 ª2010 Elsevier Inc.
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lasting changes in REM sleep (Blanco-Centurion et al., 2007; Lu

et al., 2006b). Thus, the available evidence suggests that the

cholinergic and monoaminergic systems are potent modulators

of REM sleep but are not likely to participate in its switching

mechanism.

What then are the cell groups in the pons that regulate REM

sleep? To identify populations of REM-promoting neurons,

subsequent studies have examined Fos expression during

periods of augmented REM sleep (Boissard et al., 2002; Lu

et al., 2006b). While these studies have found relatively few

Fos immunoreactive neurons in the PPT or LDT, Fos expression

was elevated in three slightly more caudal cell groups: the sub-

laterodorsal nucleus (SLD), which is ventral and caudal to the

LDT; the precoeruleus region (PC), which lies just dorsal to the

SLD and caudal to the LDT; and the medial parabrachial nucleus

(MPB), which is just dorsolateral to the SLD (Figure 2).

The role of the SLD in producing REM sleep has been studied

by injecting it with bicuculline, a GABA antagonist, which disin-

hibits the SLD neurons and elicits REM sleep-like behavior

(Boissard et al., 2002). Lesions in the SLD region of cats, also

called the subcoeruleus area, have been known since the

1970s to disrupt atonia during REM sleep such that animals

appear to act out their dreams (Hendricks et al., 1982; Sastre

and Jouvet, 1979; Shouse and Siegel, 1992). However, lesions

of the SLD in rats have more profound effects, fragmenting

and reducing the amount of REM sleep (Lu et al., 2006b).

Injections of retrograde tracers into the SLD identified major

GABAergic inputs from the vlPAG and adjacent lateral pontine

tegmentum (LPT) (Boissard et al., 2003; Lu et al., 2006b). This

same region receives convergence of inputs from the extended

VLPO and the orexin neurons in the lateral hypothalamus

(Lu et al., 2006b). Because the extended VLPO neurons

promote REM sleep but are inhibitory, and the orexin neurons

prevent REM sleep and are excitatory, the vlPAG-LPT region

would be expected to prevent REM sleep. As neurons in the

vlPAG-LPT that project to the SLD are GABAergic, they would

be expected to fire when REM sleep is inhibited (i.e., to show

a REM-off firing pattern). Indeed, inhibition of the vlPAG and

LPT with GABA agonists increases REM sleep (Crochet et al.,

2006; Sapin et al., 2009; Sastre et al., 1996), and lesions in-

crease REM sleep, particularly during the dark phase (Lu et al.,

2006b).

Injections of retrograde tracers into the vlPAG and LPT

demonstrate retrogradely labeled GABAergic neurons in the

SLD and anterogradely labeled axons from the SLD are found

in close apposition to GABAergic neurons in the vlPAG and

LPT (Lu et al., 2006b). These findings suggest that the vlPAG-

LPT and the SLD have a mutually inhibitory relationship that

may govern switching in and out of REM sleep, much like the

relationship between the VLPO and the ascending arousal

systems, which we hypothesize is the basis for switching

between sleep and wake states.
tonic excitatory input from the REM-off regions may also contribute to the loss
of muscle tone. At the same time, ascending projections from glutamatergic
neurons in the PB and PC activate forebrain pathways that drive EEG desynch-
ronization and hippocampal theta rhythms, thus producing the characteristic
EEG signs of REM sleep.
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Glutamatergic neurons that are mixed in with the REM-on

GABAergic neurons give rise to long projections that activate

the principle components of the REM state (Lu et al., 2006b;

Luppi et al., 2004; Luppi et al., 2006; Shouse and Siegel, 1992;

Webster and Jones, 1988). Many of these neurons in the SLD

contain Fos protein during REM sleep, and they send descend-

ing projections to brainstem and spinal inhibitory systems that

ultimately hyperpolarize motor neurons and cause atonia (Lu

et al., 2006b; Luppi et al., 2004; Vetrivelan et al., 2009). In addi-

tion, mixed in with the REM-off GABAergic neurons is a REM-off

glutamatergic population with spinal projections that may

support motor tone during NREM sleep. Inhibition of these

neurons during REM may withdraw motor tone, contributing to

atonia in at least some motor neuron pools (Burgess et al.,

2008). Other glutamatergic REM-on neurons in the parabrachial

nucleus and PC project to the forebrain and cause the EEG

phenomena that characterize REM sleep (Lu et al., 2006b).

Because these REM effector neurons are in isolated pools,

they can be regulated independently. In a healthy brain this rarely

occurs, but in the absence of sufficient input from the orexin

system, the components of the REM switch can become

unstable and independent (see section on narcolepsy below).

As with the regulation of wakefulness, the lateral and posterior

hypothalamus contains a large number of neurons that influence

REM sleep. Neurons producing the peptide melanin-concen-

trating hormone (MCH) are mixed in with the orexin neurons

and innervate many of the same targets. Interestingly, the

MCH neurons fire mainly during REM sleep (Hassani et al.,

2009; Verret et al., 2003). MCH inhibits target neurons, and

many of the MCH neurons contain the inhibitory amino acid

transmitter GABA (Elias et al., 2001). This gives them the exact

opposite activity profile and neurotransmitter action as the

orexin neurons, inhibiting the same targets during sleep that

the orexin neurons activate during wakefulness. Intraventricular

injection of MCH increases REM sleep (Verret et al., 2003), and

an MCH antagonist decreases REM sleep (Ahnaou, 08). Still, it

remains unclear whether the MCH neurons are truly necessary

for REM sleep as mice lacking MCH or the MCH1 receptor

have no clear decrease in the daily amount of REM sleep

(Adamantidis et al., 2008; Willie et al., 2008).

A Flip-Flop Model of Sleep State Transitions
The Flip-Flop Switch Model

As outlined above, one of the most remarkable features of

these state control systems is that both the wake- and sleep-

promoting neurons, like the REM-on and REM-off neurons in

the pons, appear to be mutually inhibitory. We propose that

this mutually antagonistic relationship can give rise to behavior

similar to that seen with a flip-flop switch (Saper et al., 2001;

Mano and Kime, 2004). These types of switches are incorpo-

rated into electrical circuits to ensure rapid and complete state

transitions. In the brain, because the neurons on each side of

the circuit inhibit those on the other side, if either side obtains

a small advantage over the other, it turns the neurons off on

the other side, thus causing a rapid collapse in activity and

a switch in state. Although an electronic flip-flop switch contains

a single element on either side and acts almost instantly, in the

brain the mutual antagonism is between large populations of
neurons, numbering in the thousands on each side, which may

also be responding to other inputs. As a result, the transitions

occur over seconds to minutes (depending upon the species

being studied), but result in clearcut changes in behavioral

and EEG states. Recordings in a wide range of species show

that the transitions typically take less than 1% of bout length

(Takahashi et al., 2010; Wright et al., 1995). Once a state

boundary is crossed, the firing of the counterpoised population

is suppressed. In practical terms, this should produce stable

wake and sleep, preventing an individual from falling asleep

during a boring activity or waking up during the night with every

small sound in the house.

Although the concept of mutual inhibition causing relatively

rapid and complete state transitions is analogous to an elec-

tronic flip-flop switch in some ways, the changes in behavioral

state are not instantaneous and generally take place over

a few seconds in rodents or a few minutes in humans. Individual

neurons in the VLPO, LC, and TMN of rodents change their firing

rates over less than a second when transitioning from wake to

NREM or from NREM to wake (Takahashi et al., 2006, 2009,

2010) (Figure 3), but not all of the neurons in a population will

switch at the same instant. Thousands of sleep- and wake-

promoting cells must shift their activity, and the emergent behav-

ioral state most likely reflects the summated activity across all

these neurons. The time it takes for one population of neurons

to overcome the resistance of the other population and the

stability of the state once that transition point is crossed may

vary with the size and complexity of the brain. This may explain

why bout durations and transition state durations vary in a similar

proportion across a wide range of mammals (Lo et al., 2004;

Phillips et al., 2010) On the other hand, the rate of change in firing

of the two populations is maximal near the inflection point (the

half-way point in the transition) so that the behavioral state

changes often appear to occur rather rapidly.

The REM-off and REM-on neuronal populations in the meso-

pontine tegmentum are also configured in a mutually inhibitory

circuit (Lu et al., 2006b; Luppi et al., 2004, 2006; Sapin et al.,

2009; Sastre et al., 1996; Verret et al., 2006). Each population

is a mixture of both GABAergic neurons and glutamatergic

neurons. The GABAergic neurons in each cluster innervate and

inhibit both the GABAergic and glutamatergic neurons in the

other side of the switch. The result is that transitions into and

out of REM sleep are rapid and complete. As would be predicted

from this arrangement, lesions of either the REM-on or REM-off

population respectively reduce or increase the time spent in

REM sleep, but both NREMandREMsleep become fragmented.

Mathematical Modeling of the Flip-Flop Switch

Hypothesis

Mathematical modeling of these mutually inhibitory circuits can

generate simulated sleep-wake behavior with temporal proper-

ties very similar to those seen in natural sleep-wake transitions.

Phillips and Robinson (2007) used a model based upon the

mutual inhibitory interactions of the VLPO and the monoamin-

ergic systems and included both homeostatic and circadian

influences (see next section). By varying the time constant for

the buildup of homeostatic sleep drive and the mean drive to

the VLPO, they could produce sleep patterns that mimicked

those seen in a wide range of mammals, from rodents to humans
Neuron 68, December 22, 2010 ª2010 Elsevier Inc. 1029



Figure 3. Reciprocol Firing Patterns between Sleep-Promoting
Neurons in the Preoptic Area and Wake-Promoting Neurons in the
LC, TMN, and Basal Forebrain
Top: Changes in firing rate during the transition from NREM sleep to wake and
(bottom) firing rates during the transition from wake into light NREM sleep.
Note that the firing rates of some cell groups, such as the LC, begin to increase
or decrease 1–2 s in advance of awakening or falling asleep, suggesting that
they may help drive the transition. In contrast, neurons in the TMN begin to
fire only after the transition to wake, suggesting these cells may play more of
a role in maintenance of wakefulness. Recordings were made in unanesthe-
tized, head-restrained mice. Adapted with permission from Takahashi et al.
(2010).
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(Phillips et al., 2010). The same group alsomodeled the effects of

sleep deprivation and produced estimates of sleep debt and

recovery in good agreement with experimental data (Phillips

and Robinson, 2008). They then added an arousing stimulus to

their model in the form of a simulated auditory tone that provided

a sensory input to activate the monoaminergic systems (Fulcher

et al., 2008). Their modeling of arousal threshold and its variation

across the night closely approximates responses seen in clinical

studies.

Rempe and colleagues (Rempe et al., 2010) used coupled

oscillator equations to implement a similar model that also incor-

porated both the wake-sleep and REM-NREM circuitry and

integrated them with models of circadian and homeostatic influ-

ences. Their model produced simulated behavior that agreed

well with experimental data in intact individuals and demon-
1030 Neuron 68, December 22, 2010 ª2010 Elsevier Inc.
strated increased sleep and wake fragmentation in individuals

with loss of orexin neurons as is seen in narcolepsy (see final

section). Diniz Behn and colleagues (Diniz Behn et al., 2008)

also used coupled oscillator equations to incorporate the influ-

ence of the orexin neurons into the flip-flop switch model,

showing how these neurons stabilize behavioral state by pro-

longing the duration of both waking and sleeping bouts. They

have also been able to use this model to reproduce accurately

the effects of pharmacological agents on sleep and wakefulness

(Diniz Behn and Booth, 2010).

Flip-flop models for neuronal circuitry have recently been

proposed to explain rapid and complete state transitions in func-

tions as diverse as alternating zigzag turns in silkworm moths,

visual perceptual rivalry in the brains of primates, and Parkinso-

nian tremor in humans (Burne, 1987; Iwano et al., 2010; Lank-

heet, 2006). In fact, mutually inhibitory relationships may be

a common motif in a wide variety of neural circuits that require

rapid and complete state transitions. This property is critical

for wake-sleep circuitry because, as we will discuss below,

homeostatic and circadian drives for sleep and wake accumu-

late slowly over many hours. In the absence of a switchingmech-

anism, an individual would drift slowly back and forth between

sleep and wakefulness over the course of the day, spending

much of the time somewhere in between in a twilight state.

Clearly, a half-asleep state would be a liability in finding food

or avoiding predation. When conditions of external threat

demand sudden state changes (an allostatic input, see next

section), the flip-flop mechanism ensures that the transition is

accomplished rapidly.

Experimental Evidence for the Flip-Flop Model

Experimental evidence bearing on the flip-flop model derives

from three lines of work. First, direct recordings from neurons

in the cell groups that constitute the model show that their

behavior is very close to what the model would predict. Record-

ings from VLPO neurons in both rats and mice show a sharp

increase in firing just before or at the transition from waking

to NREM sleep and a sharp decrease in firing just before the

transition from NREM or REM to waking (Szymusiak et al.,

1998; Takahashi et al., 2009). Individual VLPO neurons differ

somewhat in their onset of firing relative to the onset of NREM

sleep, presumably because the individual cells differ slightly in

their inputs and responses. A neural network model of these

neurons permitted the 2000 neurons on each side of the switch

to have independent behavior, and this arrangement demon-

strated a similar variability in the onset of firing compared to

the actual state transition (Chou, 2003). A key feature in both

the modeled neuronal behavior and the actual recordings was

the bistable nature of the firing, with abrupt transitions between

rapid and slow firing right around the actual state transitions.

Another interesting aspect of this system is the time relationship

between changes in VLPO neuron firing and cortical activity. The

onset of firing began about 200 msec before the EEG synchroni-

zation and did not reach a peak until 300 msec after the transi-

tion, whereas the fall in firing occurred over about 200 msec

beginning just before the loss of EEG synchronization (Takahashi

et al., 2009). The neural networkmodel (Chou, 2003) predicts this

behavior, and suggests that it underlies the hysteresis in the

response of the brain to homeostatic sleep drive, as suggested



Figure 4. Space State Analysis of the EEG Enables Visualization of
Distinct Sleep/Wake States and Switching between States
By segmenting the EEG power spectrum into ranges and comparing ratios of
EEG power in different ranges, it is possible to produce graphs that separate
the different wake-sleep states spatially. Higher values on the x axis represent
greater amounts of theta activity (6.5 to 9 Hz), which is characteristic of active
wake and REM sleep. Higher values on the y axis reflect greater amounts of
slow EEG activity as is characteristic of NREM sleep. In these graphs, the
ratios of power in different EEG bands are computed for each second of
EEG activity, which is plotted as a separate point. The EEG and EMG are
then scored by experimenters, who designate each second as wake (blue),
NREM sleep (red), REM sleep (green), or cataplexy (magenta). In a wild-type
mouse (A), the clusters of EEG activity associated with each state are distinct,
but in a narcoleptic mouse lacking orexin peptides (B), the wake and NREM
sleep clusters are closer together with more periods spent in the region
between these states. (C) The average densities of EEG activity as a function
of low-frequency EEG power (a projection of the cluster plots above into the
y axis) in groups of wild-type mice (n = 6) and orexin knockout mice (n = 7).
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by Borbély and Achermann (1999). Thus, the threshold at which

homeostatic drive triggers sleep is higher than the threshold at

which falling homeostatic sleep drive terminates sleep. This

property may arise from a key aspect of the mutually inhibitory

sleep-wake circuitry: sleep-promoting VLPO neurons can only

be activated during wakefulness by stimuli that overcome their

inhibition by wake-promoting neurons, but during sleep, when

VLPO neurons are not inhibited by wake-promoting neurons,

they can be activated by relatively weak stimuli such as low

levels of homeostatic sleep drive.

The activity of LC and TMN neurons also anticipates state

transitions (Figure 3). The firing of LC neurons slows many

seconds before sleep onset and then gradually increases 1–2 s

prior to wake onset (Aston-Jones and Bloom, 1981; Takahashi

et al., 2010). The firing of TMN neurons also slows about 1 s prior

to EEG signs of NREM sleep, but, unlike the LC, TMN neurons

only start to fire about 1 s after wakefulness is established (Taka-

hashi et al., 2006). These observations suggest that the inputs to

these different populations of wake- and sleep-promoting

neurons are distinct and that each may contribute differentially

at distinct time points during state transitions. Similar recordings

from the MnPO sleep-related neurons would be of great interest

in this context as the Fos studies suggest that theymight fire with

buildup of homeostatic sleep drive, a property that VLPO

neurons lack (Gong et al., 2004).

Second, lesions of sleep- and wake-regulating cell groups

produce alterations in wake and sleep that are generally consis-

tent with the flip-flopmodel. Lesions of the VLPO not only reduce

the amount of time spent asleep but also reduce the stability in

both sleep and wake, resulting in more frequent transitions

(Lu et al., 2000). Similarly, lesions of REM-off population in the

vlPAG also produce not only increased REM sleep but also frag-

mentation of sleep (Kaur et al., 2009; Lu et al., 2006b), and

lesions of the REM-on neurons in the SLD cause decreased

and fragmented REM sleep as the flip-flop model predicts.

Interestingly, lesions of monoaminergic or cholinergic cell

groups on the arousal side of the switch, either alone or in combi-

nation, have been far less effective either at causing a change

in overall amounts of sleep or in sleep-wake fragmentation

(Blanco-Centurion et al., 2007; Lu et al., 2006b). On the other

hand, the effects on wake and sleep were measured after

recovery from the lesions, which may have permitted surviving

neuronal systems to compensate for the loss of the injured

components (e.g., upregulation of receptors for other wake-

promoting neurotransmitters). However, the prominent loss of

sleep and increase in sleep fragmentation, which lasts for

months after VLPO lesions (Lu et al., 2000), suggests that the

VLPO neurons represent a central and irreplaceable component

of the sleep-promoting system.

Finally, state space analysis of the EEG power spectrum has

recently been used to map the dynamic changes in behavioral

states over time (Figure 4) (Diniz Behn et al., 2010). This method

uses principal components analysis of the EEG to generate
Wild-type mice (blue line) spend most of their time (high densities) in well-
defined wake and NREM sleep, but orexin knockout mice (green line) spend
more time in the transitional region between wake and NREM sleep, in part
because of the greater number of state transitions in these mice.
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a state space map (Gervasoni et al., 2004), in which wake, REM,

and NREM sleep are reflected as three clusters of points. This

analysis allows the examination of second-by-second variations

in sleep and wakefulness as shown by a moving point traveling

from one state cluster to another as the animal’s EEG character-

istics shift. This approach shows that within states such as wake

or NREM sleep, the EEG changes fairly slowly over time, but

during transitions between states, the EEG rapidly switches

into a new pattern. This property underscores the relatively rapid

changes in neural activity that occur at the boundaries between

states as predicted by the flip-flop model.

The Hands on the Switch: Homeostatic, Circadian,
and Allostatic Influences on Sleep and Wakefulness
Changes in internal physiology and the external environment

influence transitions from one behavioral state to another. Over

time, these forces may change slowly, but, as noted previously,

the shifts in behavioral state are relatively rapid and complete. It

is the job of the switching mechanisms we have described to

respond to these slowly accumulating influences, integrate

them over time, and convert their influence into sharp transitions

in behavioral state. The neurons that regulate switching between

behavioral states receive inputs from a wide range of different

sources (e.g., Chou et al., 2002; Yoshida et al., 2006), and the

circuitry that mediates specific types of influences on state tran-

sitions will be reviewed briefly.

One of the most widely recognized properties of NREM and

REM sleep is that they are homeostatically regulated (Acher-

mann and Borbély, 2003; Borbély and Tobler, 1985). In other

words, if an individual is deprived of sleep for some period of

time, there will be a subsequent increase in the amount of sleep

to compensate. However, the neurochemical factors and

neuronal mechanisms that drive these homeostatic responses

are the subject of ongoing and intense investigation.

Over one hundred years ago, Pieron and Ishimori indepen-

dently discovered that the cerebrospinal fluid of sleep-deprived

dogs contains a sleep-promoting factor (Ishimori, 1909; Legen-

dre and Pieron, 1913). Much recent work has focused on aden-

osine, which may accumulate extracellularly as a rundown

product of cellular metabolism, at least in some parts of the

brain (Benington and Heller, 1995; Huang et al., 2005; Porkka-

Heiskanen et al., 1997; Radulovacki et al., 1984; Strecker

et al., 2000). Astrocytes are the main site of energy storage in

the brain in the form of glycogen granules that are depleted

during prolonged waking (Kong et al., 2002). As these energy

stores run down, astrocytes may cause an increase in extracel-

lular adenosine that then promotes sleep. This phenomenon

was nicely demonstrated in a recent study in which genetic

deletion that blocked the rise in adenosine mediated by astro-

cytes prevented rebound recovery sleep after sleep deprivation

(Halassa et al., 2009).

There are two major classes of adenosine receptors in the

brain. Adenosine A1 receptors are predominantly inhibitory,

while A2a receptors are excitatory. Signaling through A1 recep-

tors, which are diffusely distributed in the brain, may directly

inhibit neurons in arousal systems such as the LC, TMN, and

orexin neurons via the A1 receptor (Liu and Gao, 2007; Oishi

et al., 2008; Pan et al., 1995; Strecker et al., 2000). On the other
1032 Neuron 68, December 22, 2010 ª2010 Elsevier Inc.
hand, A2a receptors are highly enriched in the striatum and in the

meningeal cells underlying the VLPO (Svenningsson et al., 1997).

We focus here on the A2a receptors near the VLPO, although it is

possible that A2a receptors in the striatum, or at other sites not

yet known to play a role in sleep state switching, may also be

involved (Qiu et al., 2010). Application of an A2a agonist to the

subarachnoid space underlying the VLPO causes sleep and

induces Fos in the VLPO and the underlying meninges (Scam-

mell et al., 2001). In addition, the wake-promoting drug caffeine

is believed to act through blockade of A2a receptors as caffeine

loses its wake-promoting effect in A2a receptor knockout mice

(Huang et al., 2005). Given the absence of A2a mRNA in the

VLPO, these findings suggest that adenosine may cause the

meningeal cells to produce a second messenger that activates

the VLPO. Whole-cell patch-clamp studies of the effects of

adenosine on VLPO neurons in hypothalamic slices have

produced conflicting results. Two studies using patch-clamp

intracellular recordings reported that adenosine disinhibited

VLPO neurons by reducing presynaptic inhibitory inputs

(Chamberlin et al., 2003; Morairty et al., 2004; Strecker et al.,

2000), but another study using extracellular recordings found

that adenosine reduced firing of VLPO neurons via a direct A1

effect but increased it via an A2a effect (Gallopin et al., 2005).

It is not known whether these hypothalamic slices may have

retained the basal meninges, but future work should probably

make note of this. These effects of adenosine on VLPO neurons

may bias the switch toward increased activity and thus increase

the likelihood of it flipping into a sleep state. Models of the

flip-flop switch under conditions of high sleep pressure on the

VLPO indicate that it may become more unstable (Fulcher

et al., 2010), perhaps accounting for microsleep episodes and

lapses in attention seen in human subjects during sleep depriva-

tion (Van Dongen et al., 2003). Still, it is unlikely that adenosine

alone can explain the homeostatic drive for sleep and much

ongoing work focuses on additional sleep-promoting factors

(Krueger, 2008).

Regardless of what constitutes the homeostatic sleep factors,

there is much evidence that prolonged wakefulness results in

more intense slow waves in the EEG during NREM sleep and

that these decrease over the sleep period (Achermann and Bor-

bély, 2003). This relationship suggests that the slowwave activity

is homeostatically controlled and reflects sleep drive (Vyazovskiy

et al., 2009). Slow waves during NREM sleep represent

the summation of synaptic potentials onto cortical neurons,

which are hyperpolarized and silent (in a down state) during

the troughs of the waves and fire bursts of action potentials

(in an up state) during the peaks. The duration and frequency

of the down periods correlates strongly with the intensity of

slowwave activity during spontaneous sleep and recovery sleep.

Prolonged wakefulness increases the firing rates of cortical

neurons (Vyazovskiy et al., 2009), and cortical areas that recently

have been especially active have local increases in slow waves

during subsequent NREM sleep, suggesting that the slow

wave activity may be homeostatically driven (Huber et al.,

2004; Vyazovskiy et al., 2000). It has been proposed that the

slow wave activity may reflect synaptic reorganization during

sleep in response to recent activity (Vyazovskiy et al., 2009),

but it is also possible that the increased metabolic activity may
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elevate levels of adenosine and other sleep-promoting factors

that drive slow wave activity (Bjorness et al., 2009; Halassa

et al., 2009).

Recordings from VLPO neurons across the wake-sleep cycle

show that their firing rates increase with EEG slow waves

(Szymusiak et al., 1998). During recovery sleep after 12 hr of

sleep deprivation, the slow wave power in the EEG and the firing

of VLPO neurons both approximately double. On the other hand,

the firing of VLPO neurons does not increase during prolonged

wakefulness. Thus, as homeostatic sleep drive accumulates,

it may influence other neurons in the brain, such as the median

preoptic neurons, which provide input to the VLPO (Chou

et al., 2002; Gvilia et al., 2006), but VLPO neurons do not fire until

the state transition itself (Takahashi et al., 2009). This funda-

mental property of VLPO neurons is consistent with their role in

causing rapid and complete state transitions.

A second major influence on sleep state switching is the input

from the circadian system (Achermann and Borbély, 2003;

Borbély and Tobler, 1985). In mammals, daily rhythms are driven

by the suprachiasmatic nucleus (SCN) in the hypothalamus,

a key pacemaker that influences the timing of a wide range of

behaviors and physiological events. SCN neurons are intrinsi-

cally rhythmic and drive behavioral responses with a roughly

24 hr period, even in complete darkness. This rhythmicity is

generated by a network of transcriptional/translational/post-

translational feedback loops that regulate the expression of

clock genes (Jin et al., 1999; Reppert and Weaver, 2002). The

clock genes are themselves transcription factors that regulate

the expression of hundreds if not thousands of other genes.

The activity of the SCN is entrained to the daily light-dark cycle

by inputs from intrinsically photosensitive retinal ganglion cells

that express the photopigment melanopsin (Gooley et al.,

2001; Hattar et al., 2002). Lesions of the SCN, or disruption of

expression of key clock genes, results in loss of most circadian

rhythms (Bunger et al., 2000; Edgar et al., 1993; Moore and

Eichler, 1972).

Surprisingly, the SCN has very little direct output to either the

wake or sleep regulatory systems (Watts et al., 1987). Instead,

the bulk of its projections run into the subparaventricular zone,

a region just dorsal and caudal to the SCN. Cell-body-specific

lesions of the ventral subparaventricular zone nearly eliminate

the circadian rhythms of sleep and wakefulness, suggesting

that neurons in this region are necessary for conveying these

output signals (Lu et al., 2001). However, the ventral subparaven-

tricular neurons have few direct outputs to either wake or sleep

networks. Instead, they send axons to the dorsomedial nucleus

of the hypothalamus (Chou et al., 2003; Deurveilher and Semba,

2005). The dorsomedial nucleus contains GABAergic neurons

that heavily innervate the VLPO and glutamatergic neurons that

innervate the lateral hypothalamic area, including the orexin

neurons (Chou et al., 2003; Thompson et al., 1996). Cell-body-

specific lesions of the dorsomedial nucleus nearly eliminate the

circadian rhythms of sleep and wakefulness, as well as feeding,

locomotor activity, and corticosteroid secretion (although some

rhythms, such as body temperature and melatonin secretion

persist because they take a different pathway) (Chou et al.,

2003; Saper et al., 2005). This three-stage pathway from the

SCN to the subparaventricular zone and then to the dorsomedial
nucleus appears necessary for conveying circadian information

to the neurons that control wake-sleep state switching, yet it still

allows some flexibility for altering the timing of sleep and wake-

fulness depending upon seasonal changes and the timing of

food availability (Fuller et al., 2008; Gooley et al., 2006; Mieda

et al., 2006).

In the absence of the dorsomedial nucleus, wake-sleep cycles

become ultradian, with 7–8 sleep-wake cycles per day. In mice

that are arrhythmic due to clock gene deletions, activity patterns

likewise become ultradian (Bunger et al., 2000). However, there

is a paucity of information concerning whether the wake-sleep

cycles of individual animals become ultradian as well because

the few reports on sleep behavior in such mice provide only

graphs that summate across groups of animals, which obscures

whether ultradian cycles (which are not synchronized across

animals) were present (Laposky et al., 2005; Wisor et al., 2002).

Like lesions of the SCN in primates, lesions of the dorsomedial

nucleus in rats, or deletions of certain clock genes (such as

cryptochromes 1 and 2 or Bmal1), which cause loss of circadian

cycling of the SCN in mice, reduce the total amount of wakeful-

ness (Chou et al., 2003; Edgar et al., 1993; Laposky et al., 2005;

Wisor et al., 2002). These observations suggest that the

circadian systemmainly promotes wakefulness during the active

period, which is consistent with the main outputs of the dorso-

medial nucleus being to inhibit the VLPO and excite lateral

hypothalamic neurons.

Finally, animals often encounter conditions in their environ-

ment that require urgent alterations of specific physiological

responses, including wake-sleep states. These would include

stressful situations, such as confronting a predator or a hostile

conspecific but also situations such as encountering a potential

mate, seasonal changes, or the need for migration that may

require an adjustment of wake-sleep behavior (Palchykova

et al., 2003; Rattenborg et al., 2004). These situations have been

called allostatic loads by McEwen and colleagues (McEwen,

2000), and they require additional circuitry for modifying wake-

sleep cycles.

One common stressor in the wild is a lack of food, and in small

animals that can carry minimal energy reserves, the effects of

food deprivation on sleep are dramatic. Food-deprived mice

have marked increases in wakefulness and locomotor activity,

probably reflecting a strong drive to forage for food. However,

mice lacking the orexin-producing neurons show very little

arousal or increase in locomotion when food deprived, suggest-

ing that these cells are required for the arousing effects of hunger

(Yamanaka et al., 2003). In contrast, mice lackingMCH show just

the opposite response to food deprivation, with exaggerated

increases in locomotion, more wakefulness, and much less

REM sleep than normal mice (Willie et al., 2008). Most likely,

both the orexin and MCH neurons respond to the stress of

insufficient food but with quite opposite effects on sleep-wake

pathways.

Another common allostatic load is behavioral stress, which

frequently causes insomnia. For example, mice exposed

to foot shock or restraint stress have increased activity of corti-

cotrophin-releasing hormone (CRF) neurons that may cause

arousal by exciting the orexin neurons through CRF-R1 recep-

tors (Winsky-Sommerer et al., 2005). In another study, Cano
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and colleagues (Cano et al., 2008) examined stress-induced

insomnia by placing a male rat early in the sleep period into

a cage previously occupied by another male rat. The stressed

rat took twice as long to fall asleep as control animals placed

into a clean cage and then had disturbed sleep for the remainder

of the next 6 hr, sleeping only about 50% (instead of the usual

70%–80%) of the fifth and sixth hours after cage exchange. At

the end of this period, the insomniac animals expressed Fos in

a surprising pattern: both the VLPO and some of the arousal

systems (LC and TMN) were active. This dual activation of both

the wake and sleep circuitry suggests that the VLPO was

activated by both homeostatic and circadian sleep drives, while

the LC and TMNwere driven by the allostatic stress. Thus stress-

induced insomnia may represent an unusual state in which

neither side of the wake- and sleep-regulating circuitry is able

to overcome the other because both receive strong excitatory

stimuli.

These stressed animals also expressed Fos in the infralimbic

cortex, the central nucleus of the amygdala, and the bed nucleus

of the stria terminalis (Cano et al., 2008). These corticolimbic

sites project to the LC and TMN, as well as the areas in the upper

pons that regulate REM sleep switching (Dong et al., 2001;

Hurley et al., 1991; Van Bockstaele et al., 1999). The infralimbic

cortex also provides a major input to the VLPO (Chou et al.,

2002).These inputs may be important in maintaining a waking

state during periods of high behavioral arousal, such as an

emergency that occurs during the normal sleep period. Their

activation by residual stress or anxiety may contribute to inability

to sleep in stress-induced insomnia. Lesions of the infralimbic

cortex reduce Fos expression in the LC and the TMN and restore

NREM but not REM sleep in animals with experimental stress-

induced insomnia (Cano et al., 2008). Lesions of the extended

amygdala, including the bed nucleus of the stria terminalis,

also quieted both arousal systems, as well as the infralimbic

cortex, and restored both REM and NREM sleep. Thus, it

appears that the activation of medial prefrontal and amygdaloid

circuitry can drive arousal circuitry even in the face of VLPO

activity (a state that has been called hyperarousal). These

stressed rats also had excessive high-frequency EEG activity

during NREM sleep, consistent with cortical activation, even

during periods of slow wave generation. Increased activation

of these corticolimbic sites has also been demonstrated in

human subjects with insomnia (Nofzinger et al., 2004). This coac-

tivation may also contribute to the excessive high-frequency

EEG activity seen during NREM sleep in people with insomnia,

and the sensation in some insomniacs that they are awake

even when the EEG appears to be NREM sleep, a condition

known as ‘‘sleep state misperception.’’

One common feature of stressful situations is the need to

maintain vigilance. The medial prefrontal cortex, in addition to

providing the major cortical source of inputs to the wake-sleep

system, plays a critical role in determining which stimuli in the

environment require attention (Aston-Jones and Cohen, 2005).

It therefore may provide an important wake-promoting input

when attention to the environment is required. In humans who

have been sleep deprived, there is decreased activation of the

medial prefrontal cortex during tasks that require sustained

attention (Chee and Choo, 2004; Chuah et al., 2006). Thus,
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excessive homeostatic drive for sleep may ultimately degrade

the ability of the allostatic system to maintain wakefulness.

Switches Gone Bad: The Example of Narcolepsy
The common sleep disorder narcolepsy is an excellent clinical

example of how sleep switches can become destabilized by

loss of a single component of the sleep-wake circuitry. Narco-

lepsy was first described over 125 years ago (Gelineau, 1880;

Westphal, 1877), but only in the last 10 years has the underlying

neurobiology become clear. People with narcolepsy often have

severe sleepiness that makes it a struggle to stay awake at

school or remain alert while driving. In addition, these individuals

frequently have what appear to be fragments of REM sleep that

intrude into wakefulness: vivid, often frightening, dream-like

hallucinations as they drift off to sleep and cataplexy, brief

episodes of muscle paralysis triggered by strong emotions.

These symptoms typically begin abruptly in the teens or young

adulthood and then persist for life. For years, researchers sus-

pected that narcolepsy was caused by some dysfunction of

the hypothalamus or REM sleep-regulating pathways, but the

fundamental neuropathology had remained a mystery until the

last few years.

Substantial research has now established that narcolepsy is

caused by a selective loss of orexin signaling in the brain. This

connection was first made in 1999, when Lin and colleagues

(Lin et al., 1999) found that dogs with inherited narcolepsy had

an exon-skipping mutation in the type 2 orexin receptor gene.

At the same time, Chemelli and colleagues (Chemelli et al.,

1999) reported that mice with a deletion of the gene coding for

the orexin peptides displayed severe sleepiness and cataplexy-

like events. The following year, two groups of investigators found

that patients who had narcolepsy with cataplexy had a 90% or

greater loss of the orexin-producing neurons (Peyron et al.,

2000; Thannickal et al., 2000). This finding was quite selective,

as theMCHneurons, which are intermingledwith the orexin cells,

were completely spared, and it probably represented cell loss

rather than downregulation of orexin expression as there was

concomitant loss of other markers (dynorphin and neuronal

activity-related pentraxin) of the orexin cell population (Crocker

et al., 2005). The loss of orexins is not due to a simple genetic

abnormality, as orexin deficiency is acquired during young

adulthood, and the vast majority of people with narcolepsy do

not have mutations of the genes encoding the orexin peptides

or their OX1 or OX2 receptors (Olafsdóttir et al., 2001; Peyron

et al., 2000). However, because about 90%of people with narco-

lepsy have human leukocyte antigen DQB1*0602 (Mignot et al.,

2001), researchers have hypothesized that the loss of orexin

neurons may be immune-mediated (Lim and Scammell, 2010;

Scammell, 2006). It has recently been proposed that, at least in

some individuals, an autoimmune attack on the orexin neurons

may be related to antibodies to Tribbles homolog-2, a protein

produced by the orexin neurons and other cells in the brain (Cvet-

kovic-Lopes et al., 2010; Kawashima et al., 2010).

Several models have been proposed to explain how loss of the

orexin neurons results in severe sleepiness. One popular hypoth-

esis is that individuals with narcolepsy may be more sensitive to

homeostatic sleep drive as, after a period of sleep deprivation,

they fall asleep faster than normal (Tafti et al., 1992a, 1992b).



Figure 5. Summary of the Cascading Wake-Sleep and
REM-NREM Flip-Flop Switches and How They Are
Both Stabilized by Orexin Neurons
The populations of wake- and sleep-promoting neurons are
shown as components of a counterpoised switch at the upper
left and the REM-on and REM-off populations at the lower
right. (Red arrows indicate inhibitory projections and green
arrows excitatory ones.) The monoaminergic arousal neurons
that inhibit the VLPO during wakefulness also inhibit the REM-
on and excite the REM-off neurons in the REM switch, thus
making it nearly impossible for normal individuals to transition
directly from wakefulness to a REM state. On the other hand,
when there is loss of orexin signaling in narcolepsy, both
switches become destabilized and their normal cascading
relationship is disrupted so that it is possible for individuals
with narcolepsy to enter fragmentary components of REM
sleep (cataplexy, sleep paralysis, and hypnagogic hallucina-
tions) directly from the waking state. The clinical phenomena
encountered in narcolepsy when each population of wake-,
sleep-, or REM-promoting neurons fires at the wrong time is
identified in parentheses. Modified from Lu et al., 2006b.
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Mice lacking orexins also tend to fall asleep very quickly after

being deprived of sleep, but they recover the lost sleep at

a normal rate and to the same extent as wild-type mice (Mochi-

zuki et al., 2004). Thus, orexin deficiency hastens the transition to

sleep, but the accumulation and expression of homeostatic

sleep drive appears normal in mice and people with narcolepsy

(Khatami et al., 2008; Mochizuki et al., 2004). Another potential

explanation is that circadian waking drive is impaired in narco-

lepsy. However, this too seems unlikely as mice lacking orexins

have normal circadian rhythms of wake and NREM sleep when

housed in constant darkness (Kantor et al., 2009; Mochizuki

et al., 2004).

A better explanation may be that impaired orexin signaling

causes behavioral states to become unstable (Figure 5). In

fact, this idea was first raised by Broughton over 20 years ago

as narcoleptic people and animals have great difficulty remaining

awake, but they also have fragmented sleep and many more

transitions between all states (Broughton et al., 1986).

This breakdown in the ability to produce cohesive wake and

sleep states is consistent with a destabilized switching mecha-

nism. Across 24 hr, people and animals with narcolepsy have

essentially normal amounts of wake and sleep, but they have

manymore transitions between states. Under normal conditions,

the sleep-wake switch resists switching until a sufficiently

strong stimulus such as homeostatic sleep drive accumulates

to a critical level. In contrast, most individuals with narcolepsy

can rapidly doze off at any time of day, especially when they

are sedentary. Narcoleptic mice also transition quickly and

frequently from well-established wake into NREM sleep (Diniz

Behn et al., 2010; Kantor et al., 2009; Mochizuki et al., 2004).

At the same time, because orexins activate REM sleep-

suppressing neurons, loss of the orexin neurons permits more
Neur
frequent transitions into REM sleep. Patients may

enter REM sleep after only brief periods of NREM

sleep, and REM sleep can occur at any time of

day (Dantz et al., 1994; Rechtschaffen et al.,

1963). In addition, people and animals with narco-

lepsy often enter into partial REM sleep-like states,
such as cataplexy, in which strong, generally positive emotions

activate the REM sleep atonia pathways in the midst of wakeful-

ness. At other times, the atonia of REM sleep can persist for

a minute or two upon awakening (sleep paralysis) or vivid,

dream-like hypnagogic hallucinations can occur around the

onset of sleep. These phenomena rarely occur in healthy, well-

rested individuals because the orexin neurons reinforce the

activity of themonoaminergic neurons in the LC and dorsal raphe

nucleus (Bourgin et al., 2000; Kohlmeier et al., 2008), which in

turn activate REM-off neurons and inhibit REM-on neurons,

thus locking the individual out of REM sleep and its component

behaviors during wakefulness. We propose that these frequent

transitions between states, odd mixtures of states, and poor

control of REM sleep are consistent with destabilization of the

flip-flop switches that regulate REM-NREM and wake-sleep

transitions because of the loss of orexin signaling.

Several lines of research are now beginning to identify how

orexin deficiency destabilizes the wake-sleep switch. In normal

animals, the orexin neurons are active during wakefulness, espe-

cially during active exploration of the environment (Estabrooke

et al., 2001; Lee et al., 2005; Mileykovskiy et al., 2005), and

they provide excitatory tone to wake-promoting monoaminergic

and cholinergic cell groups. In the absence of this activity, these

key arousal systems may have reduced or inconsistent activity,

which would manifest as sleepiness and frequent transitions

into sleep. Orexins have no direct effects on VLPO neurons,

but may increase presynaptic inhibition of VLPO neurons (Egger-

mann et al., 2001; Methippara et al., 2000). Both of these mech-

anisms are supported by mathematical modeling (Diniz Behn

et al., 2008; Rempe et al., 2010). Thus, reduced activity in

wake-promoting neurons and less inhibition of the VLPO could

destabilize the sleep-wake switch.
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Cataplexy is probably due to transient activation of the REM

sleep atonia pathways during wakefulness, but how these

events are triggered by strong positive emotions, such as

laughter and joking, remains a mystery. Feeling weak with

laughter is common inmany cultures, and even in normal individ-

uals laughter briefly reduces muscle tone (Overeem et al., 1999).

However, in people with narcolepsy, positive emotions can

trigger partial or generalized atonia. In fact, as cataplexy

develops, people often have intermittent lapses in tone that

then develop into sustained paralysis lasting a minute or two.

This intermittent atonia strongly suggests instability in the brain-

stem switch controlling atonia. As suggested by Nishino et al.

(2000), it seems likely that cataplexy is caused by ‘‘increased

sensitivity in the pathways that link emotional input and spinal

motor inhibition’’. The flip-flop switch model predicts that in

normal individuals, even though laughter may inhibit the motor

tone-producing system, orexins may prevent transitions into

full atonia. In the absence of orexins, these emotionally triggered

signalsmay be unopposed, permitting full activation of the atonia

pathways.

In this model, orexins may act through several pathways to

inhibit cataplexy. First, during cataplexy, LC and dorsal raphe

neurons are essentially silent, just as in REM sleep (Wu et al.,

1999, 2004). However, the histaminergic neurons of the TMN

remain active, possibly accounting for the preservation of

consciousness during this state (John et al., 2004).Orexins excite

neurons of the LC and dorsal raphe nucleus(Brown et al., 2001;

Hagan et al., 1999), and drugs that increase noradrenergic or

serotoninergic tone suppress cataplexy (Nishino and Mignot,

1997). Thus, enhancement of monoaminergic tone by orexins

may directly increase the activity of motor neurons and inhibit

brainstem atonia mechanisms. In addition, orexins may directly

and indirectly excite bulbar and spinal motor neurons probably

via OX2 receptors (Fung et al., 2001; Greco and Shiromani,

2001; Peever et al., 2003; Volgin et al., 2002; Yamuy et al., 2004).

Looking Forward to Sleep
We have reviewed some of the current thinking on the regula-

tion of sleep and wakefulness and how this might be influenced

by mutually inhibitory circuitry functioning analogous to elec-

tronic flip-flop switches. We recognize that this is a working

model that has stimulated active debate and that there are

alternative models of sleep state switching (e.g., the Hobson-

McCarley model of REM state switching, as discussed above).

However, we expect that ongoing and future experimental tests

of the model will help resolve the many important questions

that remain to be addressed. For example, both wake and

sleep may be governed by additional brain regions not yet iden-

tified, as lesions of the cholinergic or monoaminergic neurons

in the brainstem, hypothalamus, or basal forebrain have only

minimal effects on the total amounts of sleep or wakefulness.

Even lesions of several of these cell groups in combination

have only slightly greater effects (Blanco-Centurion et al.,

2007). Similarly, even very large and complete lesions of the

VLPO at most reduce sleep by about 50%, suggesting that

there are other pathways capable of inhibiting the ascending

arousal system in the absence of VLPO neurons. Thus, there

are likely to be components of our proposed wake-sleep flip-
1036 Neuron 68, December 22, 2010 ª2010 Elsevier Inc.
flop switch that are as yet unknown, and evidence in support

of this switch and its full understanding will require a more

complete knowledge of its components. In addition, it will be

important to gain a more complete understanding of the inter-

actions of these components of both the proposed wake-sleep

and NREM-REM sleep switches, and to test these circuit

models rigorously. One challenge in dissecting these circuits

and testing their functions is that wake-promoting and sleep-

promoting cell populations may overlap spatially in some

locations. Fortunately, these neurons have different neurotrans-

mitters and connections, which allow us to introduce novel

genetic and transneuronal methods for manipulating them

independently. Approaches might include testing the functional

roles of these components with optogenetic or perhaps

genetically driven, ligand-gated channels such as ivermectin-

activated chloride channels (Adamantidis et al., 2007; Lynagh

and Lynch, 2010). It would be particularly valuable to record

simultaneously from neurons in multiple components of a

putative switch while driving one component and to examine

their firing patterns across wake-sleep or NREM-REM sleep

transitions.

We also know little about the mechanisms by which homeo-

static sleep drive is either accumulated or discharged. Current

evidence points to a role of adenosine, but it is unlikely that

this explains the entire process as adenosine levels in many

parts of the brain do not increase with prolonged wakefulness

(Strecker et al., 2000) and homeostatic sleep drive persists

even in the absence of adenosine receptors. It remains possible

that slower, progressive changes as animals rest before sleep

may contribute to modulating the flip-flop switch and are not

necessarily in conflict with this model. Multiple neuronal

dynamics with different time scales are likely to occur within

the wake-sleep system. Such slower modulation may contribute

to reducing noise and stabilizing the switch and could help

explain how putative flip-flop switches could accommodate

noisy, unstable neuronal circuits and integrate multiple influ-

ences into sharp transitions. It will also be important to under-

stand better how motivation and emotions influence the wake-

sleep system. As these terms imply, these drivers for animal

behavior involve movement, which is the antithesis of quiet

sleep. Unraveling how the orexin neurons and other systems

impelmotivated behaviors, addictions, and rewardwill be impor-

tant new vistas for understanding their overall role in the func-

tions of the brain. At the same time, we need to understand

how stress, anxiety, and depression can drive insomnia. Finally,

the extent to which the wake-sleep circuitry is so deeply

embedded within the brain and intricately related to circuitry

controlling movement, motivation, and emotion suggests that

sleep is fundamentally important for normal brain function. Yet

the way in which sleep is restorative and why brain function is

impaired in its absence remain among the most enduring

mysteries of neuroscience.
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Bickford, M.E., Günlük, A.E., Van Horn, S.C., and Sherman, S.M. (1994).
GABAergic projection from the basal forebrain to the visual sector of the
thalamic reticular nucleus in the cat. J. Comp. Neurol. 348, 481–510.

Bjorness, T.E., Kelly, C.L., Gao, T., Poffenberger, V., and Greene, R.W. (2009).
Control and function of the homeostatic sleep response by adenosine A1
receptors. J. Neurosci. 29, 1267–1276.

Blanco-Centurion, C., Gerashchenko, D., and Shiromani, P.J. (2007). Effects
of saporin-induced lesions of three arousal populations on daily levels of sleep
and wake. J. Neurosci. 27, 14041–14048.

Boissard, R., Gervasoni, D., Schmidt, M.H., Barbagli, B., Fort, P., and Luppi,
P.H. (2002). The rat ponto-medullary network responsible for paradoxical
sleep onset and maintenance: a combined microinjection and functional
neuroanatomical study. Eur. J. Neurosci. 16, 1959–1973.

Boissard, R., Fort, P., Gervasoni, D., Barbagli, B., and Luppi, P.H. (2003).
Localization of the GABAergic and non-GABAergic neurons projecting to the
sublaterodorsal nucleus and potentially gating paradoxical sleep onset. Eur.
J. Neurosci. 18, 1627–1639.
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