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A method is defined and discussed for constructing higher dimensional codimension two knots. 

These methods generalize the various known methods of spinning of knots. Although the focus 

is on knotted sphere pairs, the methods more generally provide a method of producing a variety 

of knottings from any given codimension two pair of manifolds. 
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Introduction 

In this paper certain generalizations of the idea of spun knots are considered. 

Section 1 describes the first of these generalizations. In Section 2 of this paper we 

show that many of these knots are different from previously known knots. Section 

3 describes a very general construction of spinning a knot about a projection of a 

knot, and Section 4 defines the notion of n-regular homotopy, a notion which can 

be used to analyze our construction and show equivalences of some of the knots 

we define. 

Our constructions are quite general and will work in any of the well known 

categories such as differentiable, piece-wise linear or locally flat topological knot- 

tings. We note that, in the differentiable category, where higher codimension knot- 

tings of spheres is possible, these constructions could be clearly extended to these 

codimensions; we do not explore that possibility here. 

1. Spinning a knot about a submanifold 

We will write Sn+k+2 = a( Dntk+’ x 02) = ( S”+k x D2) + ( Dntk+’ x S’) and consider 

the standard Sn+k E Snik+2 to be the set corresponding to Sntk x (0) G Sntk x 0’. 

Suppose Nntk G Sntk where Nn-tk = Mk x D”, Mk is a compact k-manifold without 
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boundary. If cr is a knotted n-disk in Dnt2, we may define a new embedding, 4, 

of Nntk in Sntkt2 such that +laN”+k = id, and $J( Nnik) n (Sntk - Nnhk) = 0 as 

follows: we require that 4 0 i, = i: 0 (Y for all x E Mk, where ix : D” + Mk x D” and 

ii: D n+2+ Mk x D” x D2,= Mk x Dn+2 are injections into the second factor. Now 

(S 
n+k 

- N”+k) + 4( Nn+k) is a new embedding of Sntk in S”+k+2 which we will call 

the spinning of LY about Mk and denote by Mk 63 a. This is not an entirely adequate 

notation, since it refers to Mk rather than Nn+k, but it does correspond more closely 

to other notations in the literature [4]. 

These knots are generalizations of previous notions of spinning. If M’ is the 

standard circle in S2 and N2 the standard tubular neighborhood, then S’@a is the 

spinning of (Y [2]. If Sk is the standard k-sphere in Sn+k, N the standard trivialization 

of the tubular neighborhood of Sk in Sn+k, then Sk@ CY is the k-spinning, or 

k-superspinning of (Y [4,5,1]. Furthermore, it is not hard to see that if Sp x SkPP 

is standardly embedded in S”+k with Nntk being the standard trivialization of the 

tubular neighborhood of Sp x SkPP in Sntk, then (S”XS~-~)@Q=S~O(S~~~@LY); 

that is, (S” x Sk-P)Oa is the knot obtained by p-spinning the spun knot Sk-POa. 

The knot Mk@a depends on the trivialization of the tubular neighborhood of 

Mk in S”. For example, if M’ is the unknotted circle in S’ and we choose the 

non-standard trivialization of the tubular neighborhood that corresponds to p twists 

as we go around M’ in S3, then if we spin (Y about M’ using this trivialization, it 

is not hard to see that M’Ocx is the p-twist spinning of (Y (see [ll]). 

If (Y : (P, dP) + (Q, d(l) is an embedding of a manifold P into Q with tubular 

neighborhood T then Camp(a) will denote Q - T, the closed complement of a. 

We will first examine the closed complement, K, of the unknotted Sri+++ in Sntk+‘. 

Let D:,,G D2 be the disk of radius 4. Write 

S n+k+2=~(Dn+k+rXD2),(Sn+kXD2)+(Dn+k+rXSr). 

Then 

K zz (S”+k x D2 - Of,,) + ( Dntk+’ x S’) 

z (Sri+++ x (D’ x S’)) + ( Dntk+’ x S’) 

where in this last formulation the identification of the two summands is S”+k x { 1) x 
S’ = a(D”+k+’ ) x S’. It will be useful to introduce the following notation: if X G Sn+k, 

v(X) =Xx D2- D;,2 where this set is viewed as a subset of the first summand of 

K above; thus K = v(S”+~) + ( Dnfk+’ x S’). If Nn+k = Mk x D” E S”+k, where Mk 

is a closed k-manifold then V(M) = Nn+k x(D~-D:,~)=(M~xD~)x(D~xS~). 

To obtain Comp( Mk@a), we do the following: for each x E Mk, we remove 

{x} x D” x D’ x Sk (the closed complement of an unknotted D” in Dn+2) and replace 

it by Comp(Lu), thus replacing v(M) by Mk x Camp(a). Let Q = Sntk - Nn+k. Now 

we may write: Comp(Mk@3~)=[(Mk~Compa)+v(Q)]+[Dntkt’xSL]. 

Remark. Our construction can be done more generally. For example, we point out 

the following three situations. First, suppose we have an orientable manifold En+k 
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in S nfk+2. Then [lo] En+k has trivial normal bundle. Suppose we have Nntk c E’“+k 

where Nntk = Mk x D”, and we are given a knotted n-disk in D”+‘. Then we could 

re-embed Nn+k as above and use this together with the original embedding of 

1 ntk _ Nn+k to obtain a new embedding of Zntk. Secondly, we could consider 

compact manifolds, E, with &EnAk #+I In this case we would require Mk to be a 

proper submanifold of Entk with trivial tubular neighborhood Nn+k. Lastly, we 

note that we can easily generalize to the case where M is a submanifold of 2 with 

trivial normal bundle where the components of M have possibly different 

dimensions. For a component of dimension ki we could take a knotted (dim E - 

k,)-dimensional disk in a (dim t; - ki =2)-dimensional disk and perform our con- 

struction on each component. 

2. Fibering of knots spun about manifolds 

A knotted S” in S”+’ will be called a fibered knot if its closed complement fibers 

over a circle: it is called standardly fibered if the restriction of the fibration to the 

boundary yields the product fibration S” x S’ + S’ (if n # 2,3, then a fibered knot 

will be standardly fibered [4]). We will show the following lemma. 

Lemma 1. If CY is a standardly fibered knot, then so is M k @ CL 

Proof. We begin by examining, in detail, the case when CY is the trivial knot (and 

thus Mk @ a is trivial). Note that in K we may view {m} x D” x D’ x S’ as a fibration 

over S’ of the complement of the unknotted ball pair (Dnt2, D”), where m E M”. 

This gives rise to a (product) fibration of V(M) with fiber TX = Mk x D” x D’ x {x}. 

We can extend this to a (product) fibration of v(S”+~) where the fiber is (TX) + 

[(Q x D’) x {x}]. This then furth er extends to the (product) fibration Bn+kt’ x S’ of 

K where Bntktr x {x} is written: (TX) + [(Q x D’) x {x}] + [ Dntktl x {x}]. 

Now suppose (Y is a fibered knot with fiber F(a); then we may obtain a fibering, 

over S’ of Mk x Camp(a) with fiber F, = M” x F(a), where x E S’. If a is standardly 

fibered, we may extend this to a fibration of Comp(Mk@a) with fiber (FX) + 

[(Qx D’)x{x}]+[D”+~+’ x {x}]. We may describe this fibration as follows: for each 

x E S’, we replace the standard fiber TX of the trivial knot by F,. We will examine 

the fiber of Comp( Mk@a) in more detail. To see how the first two summands are 

put together, we note that 

dF, = aiC, = d[Mk x D” x D’ x {x}] 

=[M”xaD”xD’x{x}]+[Mk~D2~dD’~{~}] 

= [aN”+” xD’x{x}]+[NxaD’x{x}], 

and 

d[(QxD’)x{x}]=[dQxD’x{x}]+[QxdD’x{x}]. 
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The identifications of F, and (Q x D’) x {x} are those identifying 8N”+k x D’ x {x} 

with aQ x D’ x {x}. Finally, D”+k+’ x {x} fits onto F, + [(Q x D’) x {x}] by identify- 

ing ;JD”‘k+l x(x} with the (n+k)-sphere [N”+k~{l}~{~}]+[Q~{l}~{~}]. 0 

Next we will consider some particular examples of knotted 3-spheres. If N is a 

compact oriented 2-manifold in S3 we will say it is standardly embedded if the 

components of S3 - N are homeomorphic. Some standard embeddings are illustrated 

in Fig. 1; these embeddings all have product neighborhoods with fiber dimension 

1, thus we may spin knotted arcs about these submanifolds. 

Fig. 1 

Proposition 2. If cr is the trefoil knot, M, the standardly embedded 

of genus i, then the knots M,@LY, i = 0, 1,2, . . . are all distinct. 

2-manifold in S3 

Proof. Since (Y is a fibered knot (see [ll]) it follows from the above lemma that all 

the knots M,@a are fibered. If any two of these knots had homeomorphic comple- 

ments, the corresponding infinite cyclic covers would have homeomorphic total 

spaces. But the total spaces of those infinite cyclic covers have the homotopy types 

of the fibers, and the following calculation shows that the homotopy types of the 

fibers of the knots M, 0 (Y are all distinct. We wish to calculate the second homology 

group (with integer coefficients) of the fiber of the knot M, @a. We first simplify 

our calculation by noting that, in the fiber, we may deform [Q x D’] X {x} to 

([X?xD’lu[Qxll)x{~~ f or each x E S’. Thus the fiber of M, 0 LY can be written, 

up to homotopy type, as [M, x F(a)] + Dntktl. The Meyer-Vietoris sequence of 

the fiber then becomes: 

: H,(M,) 5 H,(MixF(~))OH~(D”+k+l) -+ 

Now using the Kunneth formula we can see that 
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we note that the middle term is zero since H,(F(a)) = 0 and also note that (Y maps 

H2( M,) isomorphically onto Hz( M’) 0 HO( F( LY)). Similarly we see that 

where 6 maps H, (M,) isomorphically onto H, ( Mi) 0 H,( F( a )). Using this informa- 

tion, we may obtain the following exact sequence from the Meyer-Vietoris sequence 

above: 

o+ H,(M,)OH,(F(a))+ H,(F(M;Ocu))+O 

and thus H,(F(M,@a))-H,(M,)OH’(F(a)). Now H,(F(a))=Z@Z and 

H’(M,) is isomorphic to the direct sum of 2i copies of Z; thus H2( F(M, 0 a)) is 

isomorphic to 4i copies of Z. Therefore the fibers of the knots M,O (Y all have 

distinct homotopy types and thus the knots are all distinct. q 

In particular, we note that the above result shows that spinning about a manifold 

will give different knots than the ordinary kinds of spinning. The knot MoOa is 

the 2-super-spinning of a; M,@a is the knotted 3-sphere obtained by spinning the 

spinning of cr. 

We note that, in the above formula for Comp( MkOa), we may write v(Q) + 

[D 
n+k+l x slj 5 Dn+k+l 

x S’ by viewing v(Q) as Q x S’ x [i, l] which we attach to 

a(D ntkt’ x S’) along Q x S’ x (1). We can then write: 

Comp(MkOcr)-[MkxCompa]+[D”+k+‘~S’], 

if X is the intersection of these two pieces then X corresponds to the subset of 

a(Mk x Comp LY) = Mk x ?JD”+’ x S’, 

corresponding to 

and X also corresponds to the subset of a( Dntkf’ x S’) = Sntk x S’ which we can 

write Mk x D” x S’. Now by deforming Dn+k+’ x S’ to Dkt’ x S’, we can write 

Comp( M”O a), up to homotopy, as [ Mk x Comp a] + [ Dkt’ x S’] where the inter- 

section is homeomorphic to M’ x S’. We may now analyze the homology of 

Comp( MkOa) via the Meyer-Vietoris sequence as in [7, Section 41 and obtain 

results such as the following; here n = r,(Comp a); F(rr, a) is as defined in 

[7, Theorem 2.31. 

Theorem 3. If M k is a homology sphere then as Z[ T] modules 

2sisk, 

H,(Comp MkOa) = i=k+l, 

a)@ H,_k(Comp a), i>k+2. 
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3. Spinning a knot about a projection 

We will next define a generalization of spinning a knot about a submanifold. We 

will first need several preliminary definitions. 

A multiple fibering of D” is a sequence of homeomorphisms, f; : Dkl x DnPkl + D” 

which send coordinate lines to coordinate lines with possibly reversed orientation; 

that is, if rj : Dkl x Dndk I+ D’ is projection on the jth coordinate, j = 1, . _ . , n, then 

for each j there is a unique j’ such that V: ofl= C$ 0 3 where 4 : D’+ D’ is either 

the identity map or the map C$ ( t) = -t. The map f; is called the ith fibering; we will 

refer to A( Dk, x (0)) as the base of the ith fibering, and call J;({x} x Dnekc) the ith 

fiber over x. 

Next we will define a multiple knotting corresponding to a multiple fibering. 

Suppose {f;}fC’=l is a multiple fibering of D”, and we consider D” c_ D”** = D” x D*. 

Suppose Ki is a collection of codimension two knotted (n - k,)-disks with trivializa- 

tions of tubular neighborhood given by maps 

Ki: D”-k, x D*+ D”-kj x D2 with KilaDnmk, x D* = id, 

The knotted disk pair corresponding to Ki is then 

ai = (DnPkr x D2, K,(D”-k~ x (0))). 

For each i = 1, . . . , p, we define a map 

vi : Dkx x D-k’ x D*+ Dk’ x D-k’ x D* 

by vi = (id x Ki) 0 (f; x id). We may describe Vi as follows: choose a k,-dimensional 

coordinate plane for a base and choose a direction for the fiber, then, over each 

point in the base knot the fiber according to Ki. A multiple knotting of D” in Dn+‘, 

with respect to {J;}TC’=l, by {Ki}Tc,, will be the map v = vP 0 . . .o v2 0 v,. 
We will illustrate this construction by considering a double fibering of D* where 

the knots (Ye and (Ye are both the trefoil knot. We will take K, = K,: D’ x D2 -+ D’ x D* 

to be a trivialization of the tubular neighborhood of the knot such that if p : D’ x D2 + 

D’ x D’ is projection along the last coordinate and p' : D’ x D2+ D x D is projection 

along the middle coordinate, then pKi = Kip’, see Fig. 2. In order to depict the 

resulting multiply knotted 2-disk in D4, we will look at the projection of this knotted 

disk in D2 x D; that is, we will look at v(D*) where rr : D* x D2-+ D2 x D is 

projection along the last coordinate. Supposef, andf, are as indicated in Fig. 3(a), 

in order to most clearly see the projection of v it will be convenient to alter f2 

slightly to a map f 4 so that f 4 is as pictured in Fig. 3(b) (it is not hard to see that 

this change will not alter the ambient isotopy class of v( D2) in D4). Fig. 4(a) shows 

the projection of v,(D’x (0)) and Fig. 4(b) shows the projection of v,(D*x D*). 
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Fig. 2 

fl 

Fig. 3 

The reason for altering f2 to f; may now be seen: TTTv, f2( D' x (0)) has self-intersec- 

tions, see Fig. 5(a); whereas, rvf i( D’ x (0)) does not, see Fig. 5(b). The set mv(D2) 

can now be seen to be as shown in Fig. 6. 

Now suppose Mk is a compact closed k-manifold embedded in 1” x D’ where 

3” is an n-manifold. Let 1” x D’+ S” be projection on the first factor. Suppose 

further nlMk is an immersion with trivial tubular neighborhood such that this 

immersion has normal crossings. (In [lo] we show that if k = n -2, Mk orientable, 

and 2” = S”, then after an isotopy of Mk, these conditions will be automatically 

satisfied.) Let M” = rr( Mk), then by compactness of M* and normality of the 

crossings, M” will have a neighborhood Q in S” such that we may write Q as the 

union of finitely many n-balls, Qj, j = 1,. . , q, such that for each j, the pair 
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Fig. 4 

Fig. 5 
(b) 

(Qj, Qj n M*) is homeomorphic to a collection of coordinate hyperplanes (perhaps 

only one) in an n-ball, furthermore these hyperplanes will correspond to the bases 

of multiple fiberings of Q, with orthogonal hyperplanes corresponding to fibers; we 

describe this multiple fibering in more detail in the next paragraph. 

Let T be a tubular neighborhood of M” in 2”; that is, T is a total space of a 

trivial disk bundle over A4 together with an immersion 6: T + 2” which extends 

the immersion 4’. We will choose closed coordinate neighborhoods of the bundle 

so as to be compatible with C$ and the structure of Q as follows. We will write T 

as the union of n-balls, Tj where &IT{ maps Tj homeomorphically onto Q, and 
Tj = M{ X Dn-r(i.j) where Mj as an r( i, j)-dimensional subdisk of an r( i,j)- 

dimensional component of M and for each x E M{, {x} x II”-’ is a fiber of T Let 

x E nj 4’( M{), we will let xi = (4’))‘(x) n Mj, where i = 1, . , . , ij. We will choose 

the index i so that if i < i’ if and only if h(xi) < h(q) where h: 2” x RI+ R’ is 

projection; connectedness of MI and the continuity of h will imply that this is a 

well defined subscripting of M<. More briefly, we could say that if i < i’, then @( Mj) 

lies below 4(Mj,) with respect to T. We will also want to have any two T,i’s to 
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Fig. 6 

meet, if at all, in a nice (n - 1)-ball in the boundary of each as follows: for each i, 

j we will choose a homeomorphism (coordinate map) I,+! : Dr(‘,.‘) x Dnprci*‘) + T: 

such that I/& Dka x {0}) = M{ and such that if T{ and T$ are distinct with non-empty 

intersection then it follows that r(i, j) = r( i’, j’), and (${))I( Tj n T$) is a face of 

D di,/) x Dn-di,i) corresponding to a set Jr’““-’ x Dn-r(iz’) (where Jr-(rX’)P’ is a face 

of Dr(r,J)), and (&:))‘( T{ n T$) is a face of D”“3”’ x Dnprci’,“) corresponding to a 
set Jlr(l’,j’)-i x D+r(i’,i’). (Jlr(l’,l’)-r is a face of Dr”‘,j’).) The map (${:)Pr o 4; is to be 

a linear map of the form hf:;J’ x gj:;“, where hi:;J’ is a linear map from JrCizi’-’ to 

J rr(i’,j’)-l and $:;J’ is a linear map from Dnercizj) to itself. We may view the functions 

gi:;l’ as elements of the transformation group of the fiber of the Dn-r(i,‘) bundle 

corresponding to the component of T to which TI and T{: belong. Since T is 

assumed to be a trivial bundle, we may assume that all the gi:;” are identity maps. 

If aA # 0 and 8T denotes the restriction of the tubular neighborhood T to dM, we 

will further require (${)-‘[ T{ n d T] to correspond to a face of DrciXi) x Dnpr-(i3i) if 

Tj n dT # 0. We next use $1 T{ to identify Q, with D”. Let p,: Q, + I” be defined 

by CX~($<)~‘~(C$(T{)~’ where (Y: D’x D”-‘+ D” is the canonical map. We can 

now define for each j, j = 1,. . . , q, a multiple fibering {f:})=, by f: = pj 0 6 0 I){. 

Note that f{ = CY, all j. 

We next wish to show that these multiple fiberings agree, in the sense that if Q, 

and Q,, are distinct with Q, n Qj3# 0 then the multiple fiberings agree on the 

intersection. We first point out a certain notational difficulty pertaining to the index 

i. Let us consider the case where M* is a 2-manifold immersed in S3 and Q, and 

Qj’ are two distinct non-disjoint cubes; let (M{), = qb’( Mj). We will be concerned 
with the two possible situations illustrated in Fig. 7. In the first, Fig. 7(a), we will 

wish to say that the fiberingsfl agree with the fiberingsfi’ for i = 1,2; in the second, 

Fig. 7(b), we will wish to say that f; agrees with f{’ and f: agrees with f :‘. This 

problem accounts for our introduction of the index i(j,j’) below. For each pair 
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(j,j’) with j Zj’, Q, n Q,,# 0, let H$“= (I,/I{)~‘(Q~ n Q,,); then H’I.” will be the face 
of Dr(Ci) X Dn-r(i,i) corresponding to Q, n Qjr via (cr{. We will say that H+.” is of class 
I if H&j’ = Jr(i.i)~l X Dn-r(i,i) where Jr(iJPl is a face of Dr(1.l) C Dr(i,i) X Dn-r(;,i). 

will siy that H+j’ is of class 11 if HP’ = DrciJ) x Jnprci,j)-’ 
, we 

where J n~r(i.i)-I is a face 

n-r(i,j) OfD . Now if j =j’, Q, A Q,, # (4 then i, and ijs differ by at most one; that is, 

if (Qj, Q, n M”) looks like 4 intersecting hyperplanes in an n-cube, then (Q,., Q,,n 

M*) looks like either i, - 1, i,, or 4 + 1 intersecting hyperplanes in an n-cube. Thus 

for each ordered pair (j, j’) with j Zj’, Q, n Qj, # P, there is at most one index, call 

it i(j, j’) such that H$&ljt, is of class II. In Fig. 7(a), i(j’, j) = 3; in Fig. 7(b), i(j’, j) = 1. 

Now define ff” =f{l HP’ if i(j, j’) does not exist; and, if i(j,j’) does exist, define 

if i < i( j, j’), 
if i> i(j,j,). 

Now it is easy to check that the multiple fiberings agree on Qj n Q,, by verifying 

that for all i, j, j’ that_/-/‘,’ - .’ -ff’ 0 ($ i 0 ((I, $‘). Also we note that, in the case dM # 0, 

that if TjndT # 0 we obtain a multiple fibering of I”-’ by restriction {f{>>=, to 

the face of D” corresponding to (+:))‘( Tj n 3T) and that if T$n dT f 0, j #j’, 

( T{ n Tj:) n d T # 0, then the two such multiple fiberings agree on (Qj n Q,,) n XX. 

We are now ready to define our knot. Suppose we have an embedding 4 : M + 

E” x D’ with Q,, f ;’ as described above. Let the components of M be denoted by 

M,, p = 1,. . . , P and suppose p also denotes a function such that Mj E M,,ci,.j, ; let 

k, = dim M,,. Suppose we are given embeddings KP : Dnpklx x D2+ Dnwkp x D2, p = 

1 . . 9 P, and let (Y,, denote the corresponding knotted disk pairs. Let vj be the 

multiple knotting, with respect to f{ of D” in D”+’ by { KPCi,jJ})=, . Now we define 

an embedding, F, of 1” in 2” x I2 as follows: FIX” -Up=, Qj) =id; and for 

j=l,... , q we require that F 0 (6 0 Cc, ‘,) = [(r 0 I+!I{) x id,21 0 vi ; more briefly, we use 

the multiple knotting V, to re-embed each Qj. We will refer to F as the spinning of 
_ 

{a,,}~=, by 4. We will be particularly interested in examining the above construction 

for 2” = S”. We may then obtain various knotted n-spheres in S”+* by knotting S” 

in S” x D* as above and then embedding S” x D* into St2 in the standard way. 

With a fixed embedding of M in S” x D’ there are two choices to make. The first 

is the choice of trivialization of the tubular neighborhood, T, of M”, denoted by 6 

Fig. I 
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above. The second is the choice of embedding of S” x D2 into Snt2. Suppose we 

choose the natural embedding of S” x D’ into SntZ via inclusions and standard 

identifications S” x D2 c S” X D2 u D”+’ x S’ = S”+‘. To define knotted n-spheres in 

S n+2 in this manner we need only choose r: Mk x Dnmk x D2-+ S” x D2 such that 

r]Mk x Dnpk x (0) = 6 and T( Mk x (0) x D*) = 4(M) x D’. We will call such a map 

a spin trivialization. Given a knotted (n - k)-disk, LY, and a trivialization, K, of the 

tubular neighborhood of LY in Dn-k+2 described by a map K : Dnmk x D2+ Dn--h+2, 

we may use our construction to define a knotted n-sphere in Snt2 which we will 

denote by 4(M)O,K. If M is not a connected manifold and has components {M,,}, 

p=l,..., P, and we wish to spin a collection of knots, with trivializations {K,,}, 

then we will denote the spun knot by {4( M,,)}O T{ K,,}. For simplicity we will mostly 

discuss the.case where M is connected. 

Next suppose that T’ corresponds to another choice of spin-trivialization, that is, 

7’ is a map 7’: ML x D”-“ x D* + S’ x D2 such that for each x E M k, T’( { x} x DITmk x 

(0)) = T({x} x D”-” x (0)) and ~‘({x} x (0) x D2) = 7((x) x (0) x D2) such that 

rrr$]{x} x D”-” x D2 corresponds to a linear automorphism of Dnpk x D2. We may 

consider this to be an element of the product of special orthogonal groups SO(n - 

k) x SO(2); thus r’ gives rise to a map of Mk into SO(n -k) x SO(2). It is easily 

seen that the knot we obtain depends only on the homotopy class of this map. Let 

[M, SO(n - k) x SO(2)] denote the homotopy classes of such maps. If T’ gives rise 

to an element y E [Mk, SO(n - k) x SO(2)] we will denote the knot obtained by 

spinning LY using T' by 4(M)@,@; we will say that y is the twisting of r’ with 

respect to T. (In the case that M is not a connected manifold with components M,,, 

p=l 7 . . . 2 P, where the dimension of M,, is k,, we may wish to spin a collection of 

knots {LX,,} about M where OJ,, is a knotted (n - k,,)-disk which we spin along M,,. 

In this case we will denote the knot we obtain by {+( Mp)}@,,{~,,}.) 

In the case where M” = Sk and C$ : Sk + S” is the standard embedding we may 

view an element of [Sk, SO( n - k) x SO(~)] as an element of nk(SO( n - k) x SO(2)). 

If yE~~k(SO(n-k)Xs0(2)) then, since rk(SO(n-k)XSO(2))=rk(SO(n-k))@ 

rk(SO(2)) we may write y = -r,@ y,,. Here y, corresponds to the tangential twisting 

discussed by Hsaing and Sanderson in [g]. The term x describes the normal twisting. 

Now since n,(SO(2)) = Z and nk(SO(2)) = 0 if k> 1 then we will only have normal 

twisting if we spin about a circle and in this case the integer ‘y,, corresponds to 

Zeeman’s twisting operation [ 111. 

Now SO(2) has the homotopy type of a circle and, as is shown by obstruction 

theory, the first cohomology of a complex with integer coefficients is in one-to-one 

correspondence with homotopy classes of maps from that complex to the circle. 

Thus there can be no normal twisting about a manifold with zero first cohomology. 

Remark 1. This definition generalizes spinning about a submanifold as follows: 

given Mk x D”-” E S” and a knotted (n - k)-disk, CX, we can consider Mk x DnWk 

as M” x D”-k x (0)~ S” x I; then writing M as the union of k-balls, M, such that 

any two distinct Mj meet in a face of each, we can let Qi = M, x Dnek, identify T’, 
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with Q, (we will have i, = 1 for all j), define I,!J< appropriately and we will have 

M@a=M*@a. 

Remark 2. We note that the notation M*@{a,,}~=, is not entirely an adequate 

notation, for it makes no explicit mention of the maps {I,!-:} or the trivializations 

{K,,}, all of which are necessary for the construction of M” 0 {cup}; in those cases 

that explicit mention will be needed notationally, we will denote the knot by 

{M*O{aP], i&1, {T:], {$.:]1. 

Remark 3. In certain cases we can relax our requirement that T be a trivial bundle. 

If T is nontrivial, then the functions gi:;” will not all be identity maps. We will still 

be able to define knots M * 0 {a,} and obtain a knotted embedding of Z” in 2 ’ x D2 

if we insist that the CX,, are invariant under {gi:;“} in the following sense: we will 

require that for all i,j, i’,j’, 
., ., 

(d,?‘x idDZ)~pcr,,j = qci,id,;-’ . 

For example, if M2 is a nonorientable surface in S3 x D’ we would require that the 

knot be amphicheiral. 

Remark 4. We may view the above construction as a way of knotting 1 in the trivial 

I2 bundle, 2 x 12. Since this construction is local in nature, we may extend it to the 

case of knotting 2 in E where E is the total space of some 1’ bundle over E. In 

this case we will also need some special requirements for the knots {cr,}. We will 

need to have 

(gj,~"~fl:;")a,(,,~, = cxpci,jjgj:/‘, where f:,‘;i’: I*+ I2 

is the appropriate element in the transformation group of the I2 bundle over Z: An 

example of such a construction is found in [9] in obtaining knotted projective planes 

in S4. 

Remark 5. This construction may also be generalized to the situations such as 

discussed in the remark at the end of Section 1. For example, one could take the 

standard embedding of the torus, T, in S4 and take the projection of the link as 

shown in Fig. 8(a). If we spin a trefoil knot about this, using the “obvious” 

trivializations of normal bundles, we obtain the knot whose projection in R’ is 

shown in Fig. 8(b). This knotted torus has been examined by Asano [3]; it is not 

the connected sum of an unknotted torus and a knotted 2-sphere. 

Remark 6. If we take a knot with one crossing as in Fig. 9(a) and spin a trefoil 

about it, we may obtain a knotted sphere whose projection is shown in Fig. 9(b). 

By an isotopy we may obtain a slightly different projection of this knot as shown 

in Fig. 9(c). We note that we can now recognize this knot as that obtained by 

deform-spinning the “granny” knot, where the deformation is shown in Fig. 9(d). 
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bl 

Fig. 8 

Fig. 9 

Remark 7. Finally, we note that we may further generalize our construction by the 

following basic change. Instead of defining vi as we did, we might, for each i, replace 

vi by an embedding 

8, : ,!I’# x iTh~ x D2_, Dk’ x D”-k* x D2, 

which satisfies the following conditions for each XE Dnek,: 
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(a) 6i({xl x 101 x 101) = vi({X> x (01 x IO)), 
(b) 8,((x) x D”+ x 0’) = ZQ({X} x D”-+ x 0’) 

(c) &l?l(Dk x Dn-kr) x o2 = r#(Dkl x D+) x 02. 

By replacing the {vi} by {Si} in the construction we will obtain a more general class 

of knots which we will call knots obtained by deform-spinning a knot about the 

projection of a knot. The essential difference between this deform-spinning and the 

spinning previously defined is that Y, knots {x} x Dnpkx x LIZ in {x} x Dnpkg x D2 in 

the same way for each x E Dk, whereas if y E Dneki then the embeddings L?~{x} x 

Dnpki x O2 and 6,](y) x Dnmkl x O2 are only required to be isotopic embeddings. 

4. n-regular homotopies 

We will later see that M*@{cx~} is not independent of the ambient isotopy class 

of A4 in E x I, however, it will be independent of the g-regular homotopy class of 

M in E x I, which we now will define. Suppose f. and f, are two embeddings of 

(M, c?M) into (2 x I, aE x I) such that n-f1 and 71-f2 are immersions where rr : TX x I + 1 

is projection. We will say that f. and f, are rr-regularly homotopic if there is an 

ambient isotopy, {H,}, of 2 x I such that { rr 0 H, 0 fo} is a regular homotopy of A4 

in 2 and H, 0 f. = f, . If {F,} is a regular homotopy of A4 in 2, we will say that an 

ambient isotopy, {H,} of M in E x I is a lifting of {F,} to a r-regular homotopy 

if, for all t in 1, 35-H, = F,. 

Suppose {H,} is a r-regular homotopy between two immersions, f. and f, , of Mk 

in 2, suppose r,, is a spin-trivialization of M in _S x 0’ corresponding to the 

immersion fo; we will consider 7” to be standard. Suppose also that 7;) is another 

spin-trivialization which corresponds to an element y,, E [ Mk, SO( n - k), SO(2)]. 

Then, by extending {H,} to a regular homotopy of a tubular neighborhood of fo, 
we may obtain spin-trivializations T and T’ of the immersion H’ where H’: M x I + 

E x I and is defined by H’(x, t) = (H,f,(x), t), such that 7 and T’ are level preserving 

extensions of TV and T&. By level preserving, we mean that T and 7' are embeddings 

of (M x I) x DnPk x D2 into 2 x Z such that if TV and T: denote the restrictions of 

T and T', respectively, to (M x {t}) x DnPk x D2, then each embeds (M x {t}) x DnPk x 

D2 into 2 x {t}. Furthermore, y will be the twisting of T: with respect to 7<. We may 

next define an isotopy {F,} of E in 2 x D2 by F, = H,fo( m)O,a. Using the isotopy 

extension theorem we get a corresponding ambient isotopy. Thus we may obtain 

the following lemma. 

Lemma 4. If f. is r-regularly homotopic to fi, then fo(m)@,cY is ambiently isotopic 

fofi(m)Ova 

We next wish to show that, in a certain sense, multiple knotting is a commutative 

operation. Suppose we have an embedding, F, of (0”~ x DnPkl) u (Dk2 x Dnmk2) into 
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D” x I such that if Fj = FIDk! x Dnpkj, j = 1,2, then {fi} is a multiple fibering of D” 

where 4 = pFj and p : D” x I + D” is projection. Let @ : D” x I + D” x I be defined 

by @(x, t) = (x, 1 - t) and let F’ = @ 0 F, Fj = @ 0 I;;, f,! = p 0 FJ _ Let p be the function 

p(l) = 2, p(2) = 1, then the multiple fiberings {J;} and {fj} differ only in the order 

of the fibering; in other words, {J;} is the same as {f,&j,}. Now if we define +,, 

4, : Dkl + D” x I to be the restriction of Fj to Dkl x (0) and similarly define 4;) then 

{ c$~( Dk~)}@{Kj} can be identified with the multiple knotting of { K,} by {A}. Further- 

more, one can easily show that there is a r-regular homotopy, {H,} of Dkl u Dk2, 

ffl kma 
(1) (2) (3) 

•II Da 
(4) (5) 

GEI E!El 
(6) (7) 

(7) 

Fig. 10 
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such that H, 0 +j= $J;~~,. Thus we have {4J(DkJ)}O{Kj} is ambiently isotopic to 

{~~(Dk~)}@{Kj} and thus, as a disk pair, the multiple knotting of {K,} by {f;} and 

the multiple knotting of {K,,iJ by {fJ are the same. Figure 10 shows the projection 

of this ambient isotopy for the multiple knotting described in Figs. 2-6. Furthermore, 

we note that we can also find a r-regular homotopy {H:} such that H:(4,(Dkl)) n 

H;(&(Dk2)) =0; we can see this illustrated in Fig. lO(4). This is of interest since 

it then follows that the knot group of the multiple knotting is obtainable in a simple 

way from the knot groups of the knots +‘(D”l)O K, and ~‘(D”z)@ K2 by taking 

the free product of these groups and then identifying a “meridian” of each. If k, = k2 

and K, represents the knot ~yi from j = 1,2, then we may more simply say that the 

knot group of the multiple knotting is the same as the knot group of the connected 

sum a,#~~. 

More generally, we have: 

Lemma 5. If u is a multiple knotting of In in Int2 by {k,},P_, , then the fundamental 

group of this knotting is isomorphic to the free product of the fundamental groups of 

the associated knots {cYJ’}J=~, with meridians amalgamated. 

The above lemma is useful for computing the knot groups of the knots we construct. 

For example, the knot shown in Fig. 9(b) can be shown to have the same group as 

the two-twist spun trefoil. (We conjecture that this knot may in fact be the two-twist 

spun trefoil.) 

Consider the following situation. We wish to construct a knotted 3-sphere in 

5-space by taking an embedded surface in S’ and taking a knotted arc, and spinning 

the knot about this submanifold as discussed in Section 1. As long as the surface 

is not a two-sphere, there are a lot of embeddings of surfaces in S3. One might 

wonder whether an interesting knot might be produced by spinning a knot around 

a knotted torus in S3, rather than the standard one. However, this is not possible. 

The following lemma, together with the above discussion shows that any knot 

obtained by spinning a knot about a knotted manifold in S3 is isotopic to a knot 

obtained by spinning that knot about the standard embedding of that surface. 

Lemma 6. Zf F0 and F, are two submamfolds of S3 of the same genus, then considering 

them to be submanifolds of S3 x R’, F0 and F, are n-regularly homotopic. 

Proof. Consider first a particular example as shown in Fig. 1 l(a). Here our surface 

F, is a torus in S3 which is the boundary of the tubular neighborhood of a trefoil 

knot. Let B be the 3-ball as shown in Fig. 11(b) which intersects F, in two annuli 

A, and A2. Now consider S3 to be the subset S3 x (0) of S3 x [w’. Now we can find 

a smooth isotopy 4, of F, which “raises A2 up.” That is, an isotopy fixed outside 

a neighborhood of A2 which changes only the R’-coordinates of points so that 

$J,(AJ E B x (1) (and of course +,(A,) c B x (0)). We may then follow 4‘ by an 

isotopy $, which is fixed outside a neighborhood of A2 and such that $,IA, is an 
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Fig. 11 

isotopy of A2 inside the 3-ball B x { 1) as indicated in Fig. 1 l(c). The resulting 

embedding will have projection as shown in Fig. 11(b) and, as a set, this is a new 

embedding. Thus we have shown F, is r-regularly homotopic to F,. 

The proof in the general case uses this same technique. It is well known [6] that 

any surface in S3 may be thought of as a cube with knotted holes and knotted 

handles. Our argument shows that we can unknot the holes and handles by a 

n-regular isotopy. 0 
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