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Energy efficiency is imperative to enable the deployment of ad hoc networks. Conventional power management focuses indepen-
dently on the physical or MAC layer and approaches differ depending on the abstraction level. At the physical layer, the fundamen-
tal tradeoff between transmission rate and energy is exploited, which leads to transmit as slow as possible. At MAC level, power
reduction techniques aim to transmit as fast as possible to maximize the radios power-off interval. The two approaches seem
conflicting and it is not obvious which one is the most appropriate. We propose a transmission strategy that optimally mixes both
techniques in a multiuser context. We present a cross-layer solution considering the transceiver power characteristics, the varying
system load, and the dynamic channel constraints. Based on this, we derive a low-complexity online scheduling algorithm. Re-
sults considering anM-ary quadrature amplitude modulation radio show that for a range of scenarios a large power reduction is
achieved, compared to the case where only scaling or shutdown is considered.
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1. INTRODUCTION

Ad hoc wireless networks consist of a group of autonomous
mobile nodes configuring themselves to form a network that
is adapted to the environment and the current needs. A broad
range of applications is possible, going from low-rate sensor
monitoring applications [1] to high-rate multimedia appli-
cations [2]. Both monitoring and multimedia applications
are delay sensitive and an appropriate QoS architecture is
needed to take care of this in dynamic environments.

On the other hand, ad hoc networks are severely con-
strained in terms of energy. Wireless communication allows
untethered operation, which implies the need for battery-
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powered devices. Due to the slow advances in battery tech-
nology compared to the growth in system power require-
ments [3], the use of ad hoc networks is limited by short
battery lifetimes. It has already been shown in several design
cases [4, 5] that the most critical energy consumers in a wire-
less node are the radio electronics. Reducing the radio power
dissipation is hence crucial to enable the deployment of ad
hoc networks with satisfactory lifetime.

Currently, energy-efficient radio communication is tack-
led differently depending on the level of abstraction. At the
physical layer, one tends to exploit the fundamental tradeoff
that exists between transmission rate and energy [6, 7]. The
information theory has shown that the capacity of the wire-
less channel increases monotonically with the signal-to-noise
ratio [8]. Hence, downscaling the transmission rate—that is,
reducing the required channel capacity—allows decreasing
the signal-to-noise ratio and therefore the signal power. This
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leads to the “lazy scheduling” approach [7], which consists of
transmitting with the lowest power over the longest feasible
duration.

From a network point of view, the “lazy scheduling” re-
sults in a selfish behavior of the individual nodes. A sched-
ule, energy-optimal for one user—that is, which maximizes
its timeshare of the wireless channel—might be heavily sub-
optimal for the network, since other nodes contending for
the channel will have to delay their transmission or speed it
up if they have to meet a deadline. Moreover, “lazy schedul-
ing” only optimizes the transmit power. More specifically,
it minimizes only the contribution of the electronics whose
power consumption is a function of the transmit power. Yet,
in low- and middle-range radios, as mostly considered in ad
hoc networks, an important part of the power dissipation—
that is, the contribution of the frequency synthesizer, the up-
conversion mixers, and the filters—is not proportional to the
transmit power [9]. This motivates the approaches based on
radio shutdown that tend to minimize the duty cycle of the
radio circuitry, and therefore transmit as fast as possible. As a
result, they give other nodes the maximum timeshare of the
channel, showing inherently altruistic behavior. Approaches
exist that jointly consider the medium access and routing
[10, 11, 12] but neglect the physical layer aspects.

At first sight, the “lazy scheduling” and the shutdown ap-
proaches seem conflicting. In this paper, we show that they
actually correspond to two extreme cases and that the opti-
mal transmission strategy in a multiuser scenario consists of
a cross-layer combination of both approaches. Our contri-
bution in this paper is a solution to determine a transmis-
sion strategy with a small and bounded deviation from the
global optimum, to be applied to ad hoc wireless networks
where individual nodes cooperate. As practical radio imple-
mentations only allow a discrete set of transmission schemes,
the discrete nature of the problem is taken into account in
the system model and solution. We assume the channel is
only divided in time, hence no spatial reuse or interference is
considered. The core of the scheduling algorithm consists of
computing per user a set of transmit opportunities that rep-
resent optimally the tradeoff between the transmission time
and energy consumption. Then, these are combined across
users to determine the schedule with the minimal network
energy consumption. The proposed algorithm is adaptive:
depending on the traffic constraints and on the current chan-
nel states of the users, more transmission scaling or shut-
down is considered. This is illustrated using discrete-event
simulations under varying traffic loads and node mobility.

Obtaining cooperation in a distributed and multiuser
context is not trivial. Approaches based on gaming theory
exist to achieve energy efficiency and fairness between ratio-
nal users [13]. However, the control overhead can be signif-
icant to achieve those equilibriums. Scalability and energy-
efficiency concerns suggest a hierarchical organization of ad
hoc networks. In those cluster-based approaches, a cluster
leader (CL) is present to be in charge of the clusters mainte-
nance and communication, and is able to enforce solidarity
between the users when needed. The CL can be periodically
elected not to overload one single node [14]. Therefore, for

the remainder of this paper, we focus on clustered ad hoc
networks. The CL is always on to collect the requirements of
the other nodes, and to distribute the optimal schedule. We
assume that each node in a cluster can overhear the other
nodes, hence 1-hop communication is applied within each
cluster. Only one cluster is considered in this work. A possi-
ble extension would be to employ a scheme similar to [15],
and also exploit diversity across clusters.

The remainder of the paper is organized as follows. In
Section 2, a detailed overview of work related to the con-
tributions and specific focus of this work is given. Section 3
elaborates on the energy and performance radio model and
on the data link control protocol. Taking into account all
practical overheads, we present in Section 4 the tradeoff be-
tween rate scaling and shutdown. An algorithm is proposed
in Section 5 to determine a close-to-optimal time allocation
across all users and give results for a multiuser scenario. Fi-
nally, conclusions are drawn in Section 6.

2. RELATEDWORK

The battery constraints of wireless ad hoc networks have al-
ready triggered a lot of research ranging from low-power cir-
cuits for analog front end [16], power-aware digital circuitry
and embedded software [17] to energy-efficient protocols for
medium access control [11, 18]. These works propose solu-
tions that may differ significantly depending on the consid-
ered level of abstraction.

At the physical layer, one tries to exploit the fundamental
tradeoff that exists between the transmission rate and signal-
to-noise ratio [8]. This leads to the so-called “lazy schedul-
ing” approach of Uysal-Biyikoglu et al. [7]. The approach has
been extended in [6] to encounter first the discrete nature
of the radio settings and second the nonproportionality of
the radio circuitry consumption with the transmitted power.
Discrete rate scaling is achieved by adapting the constella-
tion size of the modulation, leading to dynamic modulation
scaling (DMS), or by changing the code rate (dynamic code
scaling, DCS).

From a network point of view, the “lazy scheduling” con-
cept translates in trading off bandwidth (in terms of trans-
mission time) to power. To that extent, it is not trivial to gen-
eralize it to the multiuser context. Uysal-Biyikoglu et al. have
proposed a generalized version of their algorithm (right-
flow) for a broadcast channel and to the multiaccess channel
assuming a centralized medium access control protocol [19].
In [20], a practical multiuser lazy scheduling scheme called
L-CSMA/CA is proposed. This scheme relies on a CSMA/CA
distributed medium access control and considers a finite dis-
crete set of possible transmission rates. For applications with
periodic traffic and stringent instantaneous delay require-
ments, real-time energy-aware packet scheduling is proposed
in [21]. In this work, a share of the channel is allocated
to each flow depending on its deadline and worst-case data
requirements. Depending on its current data requirements,
each node makes optimal use of its timeshare, and scales
down the transmission rate if possible. Although significant
energy gains are achieved, this does not necessarily result in
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Figure 1: (a) The tx and (b) the rx path considered.

the most energy-efficient schedule from network point of
view, as it is not exploiting multiuser channel or traffic di-
versity.

To reduce the part of the energy consumption that is
fixed and not related to the transmitted power, the sole op-
tion is to minimize the radio duty cycle, shutting down
the circuitry as much as possible (sleep mode). However, a
node cannot receive data when turned off, hence effective
use of the sleep mode requires a significant degree of coor-
dination between nodes. To take care of this coordination
at the medium access level, both contention- and schedule-
based solutions have been proposed. PAMAS [18] is one
of the earliest contention-based energy-efficient protocols
that avoids overhearing among neighboring nodes by using
out-of-band paging to coordinate the shutdown. TRAMA
is a time-slotted, schedule-based MAC that allows nodes to
switch to a low power mode when they are not transmitting
or receiving [22]. It uses a distributed election scheme based
on information about the traffic at each node to determine
which node can transmit at a particular timeslot.

To our knowledge, the joint optimization of the a priori
contradictory “lazy scheduling” and shutdown approaches
has not been studied yet in the dynamic multiaccess context.
Although, in [6], a general framework is provided to derive
the operating regions when a transceiver should sleep or use
transmission scaling, a solution to optimize both in a sce-
nario with multiuser channel or traffic diversity is not pro-
posed. In [9, 23], a transmission strategy, combining trans-
mission rate scaling and sleep duration optimization is stud-
ied with and without coding. An offline optimization algo-
rithm is proposed but the scope is limited to a single-user
link or a multiuser link with a fixed timeshare for each user.
As a result, no solidarity exists between the users in achiev-
ing global energy gains in a dynamic environment. In [24],
it is shown that the fixed circuit power consumption has
a large impact when optimizing the energy consumption
across both physical and MAC layers in IEEE 802.11 DCF
wireless LANs. However, no shutdown is taken into account
in the optimization.

3. SYSTEMMODEL

Prior to analyzing the problem stated above, appropriate en-
ergy and performance models have to be defined. We carry
out the analysis for modulation scaling. We assume M-ary
quadrature amplitude modulation (MQAM), as it is a com-
mon case for benchmarking [6, 9]. By varying the modu-
lation order M, the transmission rate can be scaled down.

Other physical layers can be used too, without impact on our
algorithm as shown in previous work [25, 26]. The proposed
algorithm is general and flexibly adapts to the run time load
and physical layer details. In this section, we detail the en-
ergy consumption and performance models of the MQAM
physical layer. More specifically, we derive the relation that
gives the data rate (R), the packet error probability (Pe), and
the transmit and receive energies per packet (Ept and Epr) as
functions of the transmit power (Ptx), the discrete scaling pa-
rameter (M) and the transmitter characteristics.

3.1. MQAM radiomodel

Energymodel
Assume that a node can be in one of four modes: (1) a trans-
mit mode, when the transmit part of the radio, including the
power amplifier that drives the antenna is on; (2) a receive
mode, when the complete receive path of the transceiver is
fueled; (3) an idle mode when the receiver is listening to the
channel; and (4) a sleep mode, when the complete radio, in-
cluding the frequency synthesizer is switched off. Let’s denote
Pon tx, Pon rx, Pidle, and Psl, the power consumption in each
mode, respectively. The sleepmode power Psl is typically very
small when CMOS technology is used [27], so that we neglect
it in our model: Psl ≈ 0. Also, the receiver energy consump-
tion being dominated by the analog part, we can assume that
Pidle ≈ Pon rx. Considering the transmit mode, Pon tx cor-
responds to the DC power of the circuitry (Figure 1), that
is, the digital signal processing to produce the baseband sig-
nal (Pdsp tx), the digital-to-analog converter (PDAC), the fre-
quency synthesizer to generate the carrier (Psyn), the mixers
(Pmix), and image rejection filters (Pfilt tx) to operate the fre-
quency upconversion, and finally the power amplifier (PPA)
that drives the current to the antenna. We consider a direct-
conversion architecture, so that only one frequency synthe-
sizer and two mixers are required. Hence, Pon tx is given by
the following sum:

Pon tx = Pdsp tx + 2PDAC + Psyn + 2Pmix + Pfilt tx + PPA. (1)

The five first terms of the sum do not vary with the trans-
mit power and the rate scaling parameter. For simplicity, we
will refer to this power as Pelec tx. The last term, PPA how-
ever depends on the transmit power Ptx. We can assume that
PPA is, at first order, proportional to the transmit power. We
define η as the PA power efficiency:

PPA = Ptx
η
. (2)
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Table 1: Parameter values used in our experiment.

Energy model Performance model MAC model

Ptx (dBm) [0 to 36] (step 0.5) A1 = −40 dB L = 1000B

M[1, 2, 4, 6] K = −4 TIFS=10 µs
W = 1MHz d = [10–50m] LACK = LPOLL = 36 B

Pelex tx = Pelex rx = 100mW kT = −174 dBm/Hz Lheader = LNULL = 20 B

Twake up= 100 µs Nf = 10 dB Lcontrol = 1 B

η = 0.3 ηIL = −5 dB PER = 10e-3

From (1) and (2), considering the definition of Pelec tx, we
can express Pon tx as

Pon tx = Pelec tx +
Ptx
η
. (3)

Similarly, the receiver DC power can be expressed as a
function of the powers of the low-noise amplifier (PLNA),
the frequency synthesizer, the downconversionmixers (Pmix),
the image rejection filters (Pfilt rx), the analog-to-digital con-
verter (PADC), and the digital signal processing (Pdsp rx):

Pon rx=PLNA +Psyn +2Pmix +2Pfilt rx +2PADC +Pdsp rx. (4)

We summarize the notation by introducing

Pon rx = Pelec rx. (5)

From the knowledge of the expression of Pon tx, Pon rx and
neglecting Psl, we can compute the energy needed to transmit
and receive a packet of L bits:

Etx
(
M,Ptx

) = Pon txTon,

Erx
(
M,Ptx

) = Pon rxTon.
(6)

Ton is the time the transmitter or the receiver has to be
switched on to, respectively, send or receive the packet. It
depends on the modulation scaling parameter M and the
packet size L. Assuming a constant bandwidth W (Hz), the
symbol rate (or baud rate) for an MQAM modulation is
limited to Rs = W (baud). For a constellation size of M,
b = log2M bits are transmitted per symbol. Hence, Ton is
given by

Ton(M) = L

W log2M
. (7)

Finally, from (3), (5), (6), and (7), we obtain the expres-
sion of Etx and Erx (parameters are listed in Table 1):

Etx
(
M,Ptx

) = (Pelec tx +
Ptx
η

)
× L

W log2M
,

Erx
(
M,Ptx

) = Pelec rx × L

W log2M
.

(8)

Performancemodel

Next to the energy model, it is mandatory to derive a per-
formance model that relates the transmit power Ptx and the
scaling parameter M to the packet error probability. Indeed,
to achieve reliable transmission, a corrupted packet has to be
retransmitted, which obviously affects the radio energy con-
sumption.

First, the signal-to-noise ratio per symbol (Es/N0) at the
receiver has to be related to the transmitted power. This re-
quires taking assumptions on the channel. We assume a nar-
rowband flat fading channel is encountered. Also, consider-
ing a slowly varying network topology, we can assume that
the channel attenuation (due to the path loss and the fading)
is constant during a scheduling cycle. The received power is
typically expressed as a function of the distance d by (10),
where A1 is the path loss for a distance of 1m, K is the
path loss exponent, α is the random short time fading gain,
and ηIL represents the implementation loss. Es/N0 is given by
(10), where k is the Boltzmann constant, T the temperature,
and Nf the receiver noise figure:

Pr = αA1d
KηILPtx, (9)

Es
N0

= Pr
Pn
= αA1dKηILPtx

WkTN f
. (10)

With MQAM signaling, assuming an Additive White
Gaussian Noise (AWGN) channel, the symbol error proba-
bility is bounded by [28]

PM
(
M,Ptx

) ≤ 2. erfc

(√
3

2(M − 1)
× Es

N0

)
. (11)

On an AWGN channel, without coding, the symbols er-
rors are noncorrelated, so the packet error probability per
transmission can be directly derived from the symbol error
probability:

Pe
(
M,Ptx

) = 1− (1− PM
(
M,Ptx

))L/b
. (12)

Power ratio

The energy saving potential of transmission scaling com-
pared to shutdown depends largely on the relative impact of
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the fixed circuit energy consumption to the scalable trans-
mitter power consumption. Given (9) and (10), this ratio (C)
can be written as

C(d) = Pelec tx × η × αA1dKηIL
Es/N0 ×WkTN f

= Cim × dK . (13)

For a given transceiver, it depends on the distance d and
on the target performance through the signal-to-noise ra-
tio per symbol (Es/N0). Let’s fix Es/N0 to the value needed
to achieve a target packet error rate (PER) of 10e-3 with
M = 6.1 Then, we see that C depends on a transceiver-
dependent constant Cim and the distance only.

Depending on the value of C, the fixed or the variable
part of the power consumption will be dominant. Consider
an ad hoc networking scenario where the mobile users are
moving around. Clusters are formed dynamically by the hi-
erarchical routing protocol, and the cluster ranges and node
density can vary drastically depending on the current node
distribution. As such, the underlying scheduling scheme
should track at run time the instantaneous C (depending on
a node-specific Cim and varying distance) of each node, in
order to determine the most energy-efficient schedule. Also,
the mobility of the different users can be uncorrelated, lead-
ing to multiuser diversity that should be exploited to achieve
the best possible energy savings.

We carry out the analysis for different ratios to cover dif-
ferent cluster topologies. Using discrete-event simulations,
we show results for scenarios where the nodes move around,
or have fixed positions. In the next subsection, we show how
the node information exchange is implemented and what is
the resulting protocol overhead. Next, we show how the op-
timal schedule can efficiently be determined at run time.

3.2. Data link control protocol

Next to the performance and energy consumption behavior
of the radio, the medium access protocol has to be character-
ized. We consider a centrally controlled protocol as depicted
in Figure 2. Periodically, a cluster leader (CL) is elected to
be responsible for the cluster scheduling. This CL commu-
nicates with the other mobile users (MUs) every scheduling
period. Tominimize the cost of waking up the radio, all com-
munications of a single MU should be grouped together in
the scheduling period. Also, the total time needed for each
communication should be known in advance, such that all
other MUs can be put asleep during that time. Hence, be-
fore each communication round, the schedule has to be de-
termined that allocates to each MU a transmit opportunity
TXOP (when to start transmitting and for how long). This
optimal timeslot, however, varies with the current data re-
quirements, distance and Cim of each MU.

Indeed, the distance and traffic requirements vary and
cannot be predicted. To cope with unpredictable traffic

1As such, depending on the actual M used for the transmission, the ac-
tual power ratio will not be smaller than C.

CL

MU

MU

MU

MU

Data
TXOP

Figure 2: Centrally controlled LAN topology illustrating uplink
and peer-to-peer communication.

arrivals, it is possible to introduce a look-ahead buffer, dur-
ing which traffic to be scheduled in the future is captured.
This is also proposed in [7, 20]. However, the solution pro-
posed in [20] requires a communication step after each look-
ahead period to communicate the data requirements of each
user and determine the schedule, prior to the actual data
exchanges. It is obvious that, when considering shutdown
too, this approach is not optimal as it requires users to wake
up more often than needed for the data exchanges alone.
It would however be much more practical, for a clustered
topology where all traffic is received or overheard by the CL
taking the scheduling decision, to piggyback the control in-
formation on the periodic data exchanges.

The piggybacking mechanism that enables optimal scal-
ing and shutdown is illustrated in Figure 3. The CL col-
lects the data requirements Xi, which denotes the number
of L-sized packets to send, for each MUi during the period
[D, 2D]. The scheduling decision is taken at time 2D. Next,
during [2D, 3D], the CL will piggyback the resulting sched-
ule on the data and acknowledgements transmitted during
that scheduling period. Finally, during [3D, 4D], each node
can send the data it buffered during the initial period [ε,
D+ε]. We note that ε is different and varying for each node,
depending on the TXOP allocation for that node. It can be
seen that the packet delay is bounded to [4D-ε] with this
scheme.

It should be clear that this delay look-ahead buffer solves
the problem of the unpredictable traffic arrivals, without
introducing significant communication and wake up costs.
Considering the distance MU-CL, introducing this look-
ahead delay will result in constraints on the maximum speed
of the users. Consider a maximum delay of 4D = 100 mil-
liseconds, an MU at a speed of 5 km/h will have traveled
0.14m during that period, which we will show to be negli-
gible.

We want to determine the total energy and time needed
to send a packet with a given packet error rate (PER). The
protocol overhead introduced by this piggybacking mecha-
nism in addition to the protocol overhead of a centralized
and reliable MAC protocol as depicted in Figure 4 is very
small. Using the MAC scheme discussed above, for uplink
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Figure 3: The three phases of the delay look-ahead mechanism to obtain optimized transmission rate scaling and shutdown for multiple
users: (1) collect data requirements of all users, (2) inform users of schedule, and (3) receive data. All control information is piggybacked on
the periodic data transfer to minimize control communication overhead.

Uplink

(POLL)Downlink

Start TXOP
IFS

Total time 1 packet transmission

Packet 1 IFS IFS

ACK
Packet 2

Uplink

(POLL)Downlink

IFS Packet Packet 1
ACKTime out

Figure 4: Timing of successful and failed uplink packet transmission under a MAC polling scheme.

communication, we can suppress the POLLmessage in most
cases. Only in the case no data or ACK between CL and MU
are scheduled in a given scheduling period, an additional
POLL (LPOLL) or NULL packet with size (LNULL) is needed.
In the most efficient case, to implement the control informa-
tion exchange, it is only needed to foresee an additional 8 bits
(Lcontrol) for this case study. This is sufficient to communi-
cate a maximum distance of 50m between CL and MU (see
later) and a maximum buffer size of 31 packets. For the exact
protocol overheads, we refer to Table 1. This overhead is sent
using the same configuration as the data. If there is no data
to send (e.g., NULL packet), the basic settings M = 1 and
max Ptx are used. Next, using the buffer scheme of Figure 3,
the communication is scheduled so that each node is only
awake, that is, only consumes energy, when communicat-
ing. The wake up energy cost is paid once each scheduling
period, and is hence not considered in the per-packet anal-
ysis. This leads to the following expressions for the energy
for a successful or failed uplink packet transmission, taking
into account the overhead of header (Lheader), messages and

interframe spaces (TIFS) (Table 1, Figure 4):

Egood towardsCL
(
M,Ptx

)
= Etx

(
M,Ptx

)× L + LHeader
L

+
((

2× Tifs + Ton(M)× LACK
L

)
Pon rx

)
,

= Ebad CL
(
M,Ptx

)
,

Tgood CL(M)=Ton(M)× L + LHeader + LACK
L

+
(
2× Tifs

)
= Tbad CL(M).

(14)

For peer-to-peer communication, the energy consumed
by the receiving node is of interest too. The overhead of the
POLL or control message to inform the peers of the sched-
ule is not included in the per packet values, and should be
added once per scheduling period. This leads to the following
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P

Psl

PPA

Pelec tx
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TXOP
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Figure 5: Expected Energy consumption and TXOP as a function of variable and fixed energy consumption and the number of retransmis-
sions. (a) A single retransmission is foreseen, and the energy cost is scaled with the probability that this retransmission should happen (as
the node could shut down otherwise). (b) No retransmissions are foreseen, as the target PER can be guaranteed by a sufficiently large output
power Ptx.

expressions for 1 packet, with an increased fixed energy
consumption compared to the scenario where data is for-
warded to the CL:

Ebad peer
(
M,Ptx

)
= Ebad CL

(
M,Ptx

)
+ Tbad peer(M)× Pon rx,

Egood peer
(
M,Ptx

)
= Ebad peer

(
M,Ptx

)
+
LACK
L

Etx
(
M,Ptx

)
,

Tgood peer(M)

= Tbad peer(M) = Tgood CL(M).

(15)

The expressions for transmission from CL to MU are
straightforward. In the remainder of this section, we omit the
scenario indices.

When targeting a certain degree of reliability, that is, PER,
potential packet retransmissions must be considered in the
timeslot. This will allow to determine the total timeslot and
expected energy for transmitting a packet with given PER un-
der the given scenario constraints (e.g., distance). The result-
ing PER when sending a packet with error rate Pe and maxi-
mumm retransmissions is

P
(
m,M,Ptx

) = Pe
(
M,Ptx

)m+1
. (16)

Knowing the target degree of reliability by the deadline,
the transmit opportunity (TXOP) to be allocated to an MU
to send a unit of data L is determined for the worst-case num-
ber of retransmissions m needed (17). This might result in
channel idle time considering the possibility that a retrans-
mission is not needed. However, we want to determine in
advance a schedule that guarantees for each packet the target
PER. As a result, the potential allocation of unneeded trans-
mission time to an MU cannot be avoided. Indeed, if prob-
abilistic events would cause the schedule to vary, it would
be impossible to determine an optimal schedule in advance
and put the nodes to sleep2 the time they are not allocated

2It is possible to share retransmission time for packets of the same cluster
head. This additional optimization is not considered in this paper.

transmit time (Figure 5):

TXOP
(
m,M,Ptx

) = Tgood
(
M,Ptx

)
+m×Tbad

(
M,Ptx

)
. (17)

Considering that the MU is only awake to transmit or
retransmit a packet, and sleeps immediately after successful
transmission of all queued packets, we can calculate the ex-
pected energy consumption for one packet. We consider the
expected values, as the number of retransmissions that will
be needed is an average variable. Equation (18) scales the en-
ergy due to retransmissions with the probability they should
happen, that is, the probability that the previous ( j − 1)th
transmission failed (Figure 5):

E
(
m,M,Ptx

) = (1− P
(
m,M,Ptx

))× Egood
(
M,Ptx

)
+ Ebad

(
M,Ptx

)× (m + 1)× P
(
m,M,Ptx

)
+ Ebad

(
M,Ptx

)× (1− Pe
(
M,Ptx

))

×
m∑
j=1

P
(
j − 1,M,Ptx

)
j.

(18)

4. SYSTEM ENERGY VERSUS TRANSMIT
OPPORTUNITY TRADEOFF

In the previous section, expressions are given for the ex-
pected energy E(m,M,Ptx) and timeslot TXOP(m,M,Ptx) to
communicate a unit of data L, and the resulting error rate
P(m,M,Ptx). They can be determined for each configuration
of the output power Ptx and scaling parameter M, and each
number of retransmissions m, for a given Cim and d. In this
section, we want to obtain the set of useful points, to be con-
sidered by the run-time scheduling algorithm, for each given
Cim and d.

When determining the expected Energy and TXOP for
each configuration (m,M,Ptx), a cloud of discrete points in
the Energy-TXOP plane is obtained (Figure 6). However, the
only useful points are those that represent the optimal trade-
off between Energy and TXOP for a given target error rate
P, that is, the points that are closest to the origin (lowest en-
ergy and timeslot). Indeed, for each timeshare of the chan-
nel allocated to a user, we are interested in the configura-
tion point that achieves the lowest possible energy within this
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Figure 6: Optimal energy versus TXOP to send a unit L of data
for different transceiver ratios for distance = 35m, compared to all
points in the energy-TXOP plane that are obtained by varying the
different scaling parameters (Ptx and M) or the number of retrans-
missionsm,which satisfy the target PER constraint.

timeshare. Consider configuration A on Figure 6. This con-
figuration should never been allocated, as for each timeshare
it fits in, there exists another configuration that also fits the
timeshare and achieves a lower average energy consumption
(configuration B in this case).

We approximate this complete set of useful points with
the piecewise linear interpolation of the convex minorant of
the point cloud. The considered tradeoff is then that part
of the minorant that is monotonically decreasing (Figure 6).
This pruned piecewise linear interpolation of the convex mi-
norant will be called the Energy-TXOP tradeoff curve in the
remainder of this paper. Only the discrete points can be al-
located in practical transceivers. In fact, this discrete set of
optimal configuration points can be determined at the de-
sign time (or during a calibration step) of the transceiver. Al-
though the models used in this paper enable an analytical
computation of the optimal curves, real system implementa-
tions incur lots of complex interactions between both analog
and digital components, making the exact tradeoff analyti-
cally intractable. As will be shown later, this tradeoff curve
captures all information needed to determine efficiently and
dynamically the optimal schedule across nodes.

The optimal points should be determined for a range of
power ratios, as the value that is of interest depends on the
run time operating conditions due to topology variations.
Targeting a practical implementation of the algorithm, we
only consider a discrete set of calibration curves. Consider-
ing a fixed Cim per node, a discrete set of distances should be
determined to do the calibration. Determining the optimal
discrete set of distances for which the calibration step should
be performed clearly involves a tradeoff. The larger the set of
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Figure 7: Optimal energy versus TXOP for different distances de-
termined according to (19). Based on these curves, we will derive
the scheduling algorithm.

curves, the more calibration time will be needed, and more
memory to store the databases. Moreover, the overhead to
communicate the current distance will increase with finer
granularity. On the other hand, a more accurate adaptation
to the actual distance will result in more precise adaptation
of the output power to the current distance (for the target
PER and delay constraint). Also, as the optimal combination
of shutdown and scaling depends on the power ratio C, it is
also affected by this discretization.

Considering a maximum MU-CL distance of, for exam-
ple, 50m, we want to determine the set of discrete distances
{di} that guarantee a bounded suboptimal power consump-
tion at each moment in time. For each actual distance, we
use the precomputed curve for a distance that is “just larger”
than the actual distance. Allocating a transmit power for a
larger distance than the actual one will result in an excessive
power allocation, which we want to bound by x. Following
this strategy, we determine the optimal set of distances {di}
as:

d0 = 50m,

(
di+1

)−K =
(
1− xC

(
di
))

(1 + x)
× (di)−K , (19)

where x is a positive value smaller than 1 denoting the
power loss that can be tolerated between two discrete opti-
mal curves. Enough curves are determined when xC(di) > 1,
that is, the fixed part of the power consumption is dominant
so it is not needed to consider smaller distances. In Figure 7,
the curves for a maximum distance of 50m and x = 0.15 are
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plotted. Only 8 different calibration curves are needed, re-
sulting in only 3 bits required to communicate the distance.

It can be seen that, for smaller d, the Energy-TXOP trade-
off curve spans a much smaller range in energy—that is,
downscaling is not beneficial. Indeed, it has been shown that
the gains that can be achieved by scaling down the transmis-
sion power are small [9]. On the other hand, when the trans-
mit power dominates, a large gain in energy can be achieved
when scaling down.

Using this information, we target a TXOP allocation that
adapts optimally to the varying distance and data require-
ments typically encountered in wireless ad hoc networks.
Each node is only awake to serve its own data requirements,
wasting no energy in overhearing traffic of the other nodes.
In the next section, it is shown how the optimal cluster trans-
mission strategy is determined.

5. NETWORKOPTIMAL TRANSMISSION ALLOCATION

Based on the Energy-TXOP tradeoff for eachMU, we want to
determine the set of transmit opportunities that minimizes
the total network energy consumption for the current aggre-
gate data requirement X , which denotes the number of L-
sized packets to be transmitted during the next scheduling
period D. In the first subsection, we derive an algorithm to
compute, based on per packet tradeoff curves of the differ-
ent MUs, a solution that deviates by a small and bounded
offset from the global optimal solution. Second, results are
illustrated for a range of scenarios implemented in a discrete-
event simulator.

5.1. Cluster TXOP allocation

To determine the optimal transmission strategy for the clus-
ter, we build the aggregate Energy-TXOP tradeoff curve for
the whole cluster, based on the aggregate traffic load X and
the Energy-TXOP tradeoff curve for each MU. To empha-
size the difference between the cluster and per-node trade-
off we call the former Energycluster-TXOPcluster and the latter
Energyi-TXOPi tradeoff curve, for a network consisting of N
mobile users MUi, 1 ≤ i ≤ N . Each MUi has data require-
ment Xi, the aggregate requirement is X =∑N

i=1 Xi.
Each MUi considers, depending on its current dis-

tance, its tradeoff curve representing a set of j points,
(Ei, j , TXOPi, j), 0 ≤ j ≤ Q. Each curve is a set of maximal
Q (minimal 0) segments with a negative slope:

si, j =
∣∣∆Ei, j /∆TXOPi, j∣∣,

∆Ei, j = Ei, j − Ei, j−1,

∆TXOPi, j = TXOPi, j − TXOPi, j−1.

(20)

Within a tradeoff curve, the segments are ordered accord-
ing to increasing TXOP or decreasing Energy. Because of the
convexity of the curve, the segments are as such ordered ac-
cording to decreasing negative slope, that is, the energy that
can be gained when increasing the allocated timeslot with a
time unit decreases. For each curve, the starting point of the
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Figure 8: Aggregate Energy-TXOP for identical cluster heads, data
requirement X from 1 to 7 and scheduling period D = 10 millisec-
onds. Starting from the curve for one packet for a single MU net-
work (lowest curve), the aggregate curves are plotted to send up to 7
packets for that MU within the scheduling period D or equivalently
to send 1 packet for 7 MUs with the same per-packet curve (same
Cim and distance).

first segment TXOPi,0 corresponds to the smallest timeslot
allocation with the largest energy consumption.

Based on the Energyi-TXOPi tradeoff curves and data
requirements Xi, we determine the cluster Energycluster-
TXOPcluster tradeoff consisting of a set of points k, using the
following greedy algorithm (See Figure 8 for Xi = 1 to 7 and
a single MUi). First the start allocation for the network is de-
termined. This allocation gives to eachMU the minimal time
needed to satisfy its requirements,3 at maximal energy con-
sumption. In next rounds of the algorithm, energy will be
saved by repeatedly allocating more time to some users.

(1) Allocate each MUi its minimal required TXOPi, j , that
is, TXOPi,0. Multiply this timeslot with the total load for this
MUi, to obtain the total timeslot needed for that node in the
cluster: TXOPcluster,i,0 = Xi × TXOPi,0, where k = 0 refers to
the current (first) point added. This corresponds to an aver-
age energy consumption of Ecluster,i,0 = Xi×Ei,0 for that node.
Knowing the requirements for each node i, we can construct
the first point k = 0 of the cluster Energycluster-TXOPcluster
tradeoff: (Ecluster,k, TXOPcluster,k):

Ecluster,0 =
N∑
i=1

Ecluster,i,0,

TXOPcluster,0 =
N∑
i=1

TXOPcluster,i,0.

(21)

3We assume it is always possible to construct this first point. Hence, no
overload is taken into account.
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The first point is the sum of the per-node minimal resource
requirements, resulting in the maximum energy consump-
tion for the cluster. After determining the first point of the
curve, we will construct the whole cluster curve allowing for
optimal decrease of the energy consumption. We will add
points k to the Energycluster-TXOPcluster curve, using the seg-
ments si, j of the per MUi individual curves. MUi with no
segment si, j are not longer considered, as their only TXOP
(= TXOPi,0) has already been allocated. As the curve for each
MUi consists of different segments depending on their cur-
rent distance and Cim, the loop j across the segments will be
different for each MUi. Hence, from now, we denote j(i). Af-
ter this initialization, we set j(i) = 1 for each node i; k′ = 0
for the cluster, that is, k′ denotes the last added point to the
aggregate optimal curve.

(2) Search across the set of current segments si, j(i) those
with the largest negative slope S. As such, we are sure
that the best possible energy saving is obtained across the
cluster. For each MUi with current slope si, j(i) = S and
for each of its packets Xi,4 a new point is added to the
aggregate tradeoff curve, resulting in segments scluster,k =
|∆Ecluster,k/∆TXOPcluster,k|, where each increment can be un-
derstood as increasing the time allocated to one packet of one
MUi, hence ∆TXOPcluster,k = ∆TXOPi, j(i). This results in a
network energy decrease ∆Ecluster,k = ∆Ei, j(i). The result of
this step is a set of network allocation vectors with lower ag-
gregate expected energy but a larger time allocation:

(
Ecluster,k, TXOPcluster,k

)
, ∀k | k′ < k ≤

(
k′+

∑
i|si, j(i)=S

Xi

)
,

Ecluster,k = Ecluster,k−1 − ∆Ecluster,k,

TXOPcluster,k = TXOPcluster,k−1 +∆TXOPcluster,k,
(22)

where k′ denotes the number of points after the previous
step. The sum of the number of packets across the selected
MU′i s corresponds to the number of points added in this
step. After adding all points, the current set of segments is
updated. This means that for each MUi that was treated in
this step, the next segment of its tradeoff curve (if it exists)
is considered: j(i) ← ( j(i) + 1), for all i|(si, j(i)=S). Also the
aggregate curve counter is updated: k′ = k.

(3) Repeat step 2 until all segments si, j(i) for all MUi

are treated. A network tradeoff curve with maximum QXX
points is constructed, Q denoting the maximum number of
segments per Energyi-TXOPi curve for each MUi.

Knowing the cluster Energycluster-TXOPcluster curve, the
network allocation vector corresponds to the point with
the largest aggregate TXOPcluster,k that is smaller than the
scheduling period D, as illustrated in Figure 8 for D = 10
milliseconds. It is clear that for larger data requirements,
less downscaling is possible. The figure represents a set of

4The exact order to add extra time for each packet of different mobile
users should be random to achieve fairness.
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Figure 9: Normalized energy per bit for a topology of 5 nodes, D =
100 milliseconds, distance 33m, for a range of poisson loads.

aggregate Energycluster-TXOPcluster curves for a single MUi

with data requirement Xi ranging from 1 to 7 packets per
period. The complexity to construct the aggregate curve is
O(NQ log(N)).

It can be shown that solving this kind of discrete opti-
mization problems with a greedy approach (e.g., according
to steepest decreasing slope) based on the convex piecewise-
linear interpolation of the tradeoff results in a solution that
is bounded suboptimal. This can be understood intuitively,
as shown in Figure 8. As the solution relies on the convex
piecewise-linear interpolation of the tradeoff, each discrete
point of the aggregate curve corresponds to an optimal al-
location, but only for a scheduling period D that is exactly
equal to TXOPcluster,k of the selected point k. However, most
often, a point has to be taken with a value that is slightly
smaller than D. The greedy search based on pruned convex
tradeoff curves however does not guarantee that there does
not exist a solution with TXOPcluster, optimal that is larger than
TXOPcluster,k but smaller than D (and has a smaller energy
consumption Ecluster, optimal). However, due to convexity, this
point has to be above the piecewise linear tradeoff curve.
Consequently, it can be seen that the worst case difference
between Ecluster, optimal and Ecluster,k is bounded by the ∆Emax

across all segments of the curve, which is relatively small and
depends on the granularity of the system parameters consid-
ered.

5.2. Results

To illustrate the strengths of the proposed scheme over a
range of load scenarios and node topologies, we have im-
plemented it in the discrete-event simulator ns-2 [29]. The
implementation reflects the full energy and performance
behavior of the MQAM radio as presented in Section 3.1.
Next, the delay look-ahead scheduling protocol presented
in Section 3.2 has been implemented on top of a centrally
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Figure 10: Normalized energy per bit for a topology of 5 nodes, D = 100 milliseconds (a) with Poisson load of 0.4Mbps for a range of
distance, (b) moving around randomly for a range of Poisson loads.
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Figure 11: Normalized energy per bit for a topology with a range
of nodes, with aggregate CBR load of 1.6Mbps, distance of 33m,
D = 100 milliseconds.

controlled reliable MAC scheme. The exact overhead consid-
ered for the MAC protocol is given in Table 1. When there
is no data available, a NULL packet is sent. The proposed
scheme is compared with energy management techniques
that use scaling or shutdown only. In the shutdown only pro-
tocol, we do adapt the output power to the given distance
(but do not scale down the transmission rate).

Simulations have been carried out for a range of mo-
bile users, with identical Cim, but with possible different and
varying CL-MU distances. The scheduling database has been

generated according to the parameters listed in Table 1 and
using (1)–(19). This results in a database for the distances
[22, 29, 33, 37, 40, 42, 45, 47]m. Using the broad range of
scenarios possible with this discrete-event simulation tool,
we mainly want to show that the proposed algorithm indeed
optimally adapts to the instantaneous scenario constraints,
exploiting more scaling or shutdown depending on the sce-
nario, to achieve maximum energy savings.

First, we show that depending on the current traffic load,
shutdown or scaling achieves larger energy savings. The pro-
posed algorithm, however, adapts and achieves for each load
instance the best possible gains. Figure 9 shows the energy
consumptions of the proposed scheme, compared to shut-
down or scaling only, for a Poisson load up to 0.8Mbps,
and a distance of 33m. It can be seen that when the load
is small, more shutdown should be used. However, when the
load increases, the use of transmission scaling becomes more
and more useful. The proposed scheme however adapts and
achieves at each moment a smaller energy consumption.

Next, we consider the effect of mobility on the en-
ergy consumption. As mentioned before in Section 3.1, a
larger distance corresponds to a more dominant transmis-
sion power. To that extent, the gains of shutdown compared
to scaling also vary with distance, as illustrated in Figure 10a
for a CBR load of 0.4Mbps over 5 users at varying (fixed)
distance. In Figure 10b, the energy is plotted over a range
of Poisson loads, for 5 users with mobility 2 km/h, walking
around in a square of 50m by 50m, with the CL in the ori-
gin. The mobility pattern has been generated using the set-
dest tool for ns-2. It can be seen that, when introducing mo-
bility and hence larger distances than the 33m of Figure 9,
the overall gains of scaling are larger, resulting in the cross-
ing of the “scaling” and “shutdown” curves for a lower load.
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The proposed scheme however adapts and exploits the pos-
sibilities to save energy for each distance and load optimally.

Finally, we investigate the effect of increasing the num-
ber of users (Figure 11). It can be seen, for an aggregate CBR
load of 1.6Mbps (or 37.5%) that the energy consumed when
using the “scaling” energy management technique increases
linearly with the number of nodes (for the same aggregate
network load). This is because the idle and receiver energy
will scale linearly with the number of nodes, irrespective of
the aggregate load.When adding the possibility to shutdown,
the energy increase with increasing number of nodes is much
slower. In this case, each node is asleep when the others trans-
mit. The energy increase is hence only due to increase wake
up cost, and the increased probability to send a NULL packet
when the queue is empty (as the per-node load decreases).
It should be noted that it depends on the network density to
decide whether the “shutdown” or “scaling” solution is the
most energy efficient. The proposed adaptive solution, how-
ever, takes advantage of both techniques in each situation.

6. CONCLUSIONS

In this paper, we propose a transmission strategy that com-
bines close-to-optimally “lazy scheduling” and shutdown,
two energy management techniques that seem contradictory.
The former exploits the fundamental tradeoff between the
time and energy needed to send a unit of data, and hence
maximizes the transmission duration to minimize the trans-
mit energy consumption. The latter minimizes the fixed cir-
cuit energy consumption, hence decreasing the transceiver
on time as much as possible. We show that the optimal trans-
mission strategy in a multiuser scenario is a combination of
both approaches. Moreover, the optimal combination differs
depending on the instantaneous scenario traffic and channel
constraints.

First, we derive a solution to determine a transmission
strategy with a worst-case deviation from the optimal strat-
egy that is bounded. As practical radio implementations only
allow a discrete set of transmission schemes, this discrete na-
ture of the problem is taken into account in the systemmodel
and solution. The proposed algorithm is adaptive: depend-
ing on the traffic constraints and on the relative impact of
the transmission power to the circuit energy consumption,
more transmission scaling or shutdown is considered. We
show that the algorithm indeed results in significant energy
savings for a range of traffic loads and transceiver charac-
teristics, using discrete-event simulation. It adaptively com-
bines and trades off the gains that can be achieved when
scaling or shutting down only, and hence significantly out-
performs those energy management techniques in each sce-
nario. Moreover, it optimally exploits multiuser diversity by
scaling down the rate of those users where the instantaneous
gains are the largest.
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