Batched bin packing

Gregory Gutin*, Tommy Jensen, Anders Yeo

Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK

Received 9 February 2004; received in revised form 19 November 2004; accepted 23 November 2004

Abstract

We introduce and study the batched bin packing problem (BBPP), a bin packing problem in which items become available for packing incrementally, one batch at a time. A batched algorithm must pack a batch before the next batch becomes known. A batch may contain several items; the special case when each batch consists of merely one item is the well-studied on-line bin packing problem. We obtain lower bounds for the asymptotic competitive ratio of any algorithm for the BBPP with two batches. We believe that our main lower bound is optimal and provide some support to this conjecture. We suggest studying BBPP and other batched problems.

© 2005 Elsevier B.V. All rights reserved.

Keywords: On-line algorithm; Lower bounds; Bin packing; Competitive ratio

1. Introduction, terminology and notation

In this paper, we study a variation of the classical bin packing problem (BPP). In BPP, we are given a set B of items a_1, a_2, \ldots, a_n and a sequence of their sizes (s_1, s_2, \ldots, s_n) (each size $s_i \in (0, 1]$) and are required to pack the items into a minimum number of unit-capacity bins. In other words, we need to partition B into a minimum number m of subsets B_1, B_2, \ldots, B_m such that $\sum_{a_i \in B_j} s_i \leq 1$ for each $j = 1, 2, \ldots, m$. For recent surveys of BPP, see [3–5].
We introduce the batched bin packing problem (BBPP), a bin packing problem in which items become available for packing incrementally, one batch at a time. A batched algorithm must pack a batch before the next batch becomes known. A batch may contain several items; the special case when each batch consists of merely one item is the well-studied on-line bin packing problem. In BBPP, an input sequence L is a batched sequence, namely, $L = (B_1, B_2, \ldots, B_k)$, where every B_j is a set of items and $B_i \cap B_j = \emptyset$ whenever $1 \leq i < j \leq k$.

BBPP may be of interest when, for example, items are delivered to a packing site by trucks, each truck containing several items. To the best of our knowledge, despite being a very natural generalization of BPP, BBPP has not been studied before. Somewhat similar yet different problems were studied under the collective name of semi-on-line problems (see, e.g., [3,4]). In particular, Galambos and Woeginger [8] considered a version of the on-line bounded-space BPP where repacking of items within some active bins is allowed. For this problem, the lower bound ℓ_{LL} of Lee and Lee [13] ($\ell_{LL} \approx 1.69103$) for the competitive ratios of bounded-space approximation algorithms still applies. Galambos and Woeginger presented an algorithm that reaches the best possible competitive ratio matching ℓ_{LL} while using only three active bins. Algorithms with much more freedom to rearrange items were developed by Ivković and Lloyd [11,12]. Grove [9] considered a k-bounded lookahead algorithm, which delays packing an item till $k - 1$ next items has arrived, or the restricted capacity (of a warehouse) has been exceeded. Grove’s algorithms achieves the optimal competitive ratio of ℓ_{LL} when the warehouse capacity is sufficiently large.

The on-line bin batching problem considered in a short note [17] is different from BBPP as it is an extension of the bin covering problem.

All batched sequences with exactly k batches (some of which may be empty) comprise a set, which we denote by $\mathcal{B}(k)$. For a given batched sequence L and batched algorithm A, let $A(L)$ be the number of bins required for L by algorithm A; let $\text{OPT}(L)$ be the minimum number of bins needed to pack the items of L when they are all available at once (as in BPP). The asymptotic competitive ratio $R^{\infty}_{A,k}$ of A on $\mathcal{B}(k)$ is

$$\limsup_{N \to \infty} \max_{L \in \mathcal{B}(k), \text{OPT}(L) = N} \frac{A(L)}{\text{OPT}(L)}.$$

The asymptotic competitive ratio of a batched algorithm is defined similarly to the asymptotic competitive ratio of an on-line algorithm.

In this paper, we study lower bounds of $R^{\infty}_{A,2}$ for any batched algorithm A with inputs from $\mathcal{B}(2)$. We note that any additional assumptions, such as polynomiality, are not made about the algorithms that we study. In Section 2, we prove such a bound r in Theorem 1. We conjecture that the bound r is optimal. To formally support this conjecture we prove in Section 4 that the bound r is optimal for a wide family of batched sequences. In Section 3 we obtain lower bounds of $R^{\infty}_{A,2}$ for the restriction of $\mathcal{B}(2)$ to instances in which the number of item sizes is bounded (a natural constraint). Section 5 is devoted to open problems and suggestions for further research.

Yao [16] was the first to study lower bounds for the asymptotic competitive ratio of an on-line algorithm for BPP. He showed that such a bound is not smaller than 1.5. Brown [1] and Liang [14] independently improved Yao’s result to 1.53635. This was further improved

Zhang et al. [18] observed that, in many real-world situations, most scheduling problems occur neither as complete off-line nor as complete on-line models. They investigated the makespan \(m \) identical parallel machine problem when the jobs arrive in two batches (2-BPMP). They proved that 1.5 is a lower bound for the competitive ratio of a 2-BPMP batched algorithm, showed that 1.5 is sharp in two special cases, and conjectured that 1.5 is sharp in the general case.

We believe that batched generalizations of various on-line problems are of definite interest. Being extensions of the corresponding on-line problems, batched problems may prove to be very difficult to investigate in their general setting. One way around this is to fix the number of batches in possible inputs; an assumption that may be not too restrictive for some batched problems.

2. Lower bounds

Let 2-BBPP denote the restriction of BBPP to inputs with two batches, i.e., sequences from \(\mathcal{B}(2) \).

Define \(\sigma \) as the solution in the interval \((\frac{3}{2}, 2) \) to \(2\sigma - 3 = \ln \sigma \), with \(\sigma = 1.7915 \ldots \), and let \(r = 2\sigma / (2\sigma - 1) = 1.3871 \ldots \). In other words, \(r \) is a solution to \(r/(r - 1) - 3 = \ln r / (2r - 2) \).

Theorem 1. If \(A \) is a batched algorithm for 2-BBPP, then \(R_{\infty}^{A, 2} \geq r \).

Proof. Consider instances \(L = (B_1, B_2) \) of 2-BBPP, the first batch \(B_1 \) consisting of \(n \) items all of size equal to \(s \), where \(0 < s < 1 \). Let \(t = \lceil 1/2s \rceil \); then \(t \) is the maximal number of items from \(B_1 \) which can be packed into one bin.

The second batch \(B_2 \) will be either equal to the empty batch \(B^0 \), or to \(B^j \) consisting of \(n/j \) items each of size \(1 - js \), with \(j = 1, 2, \ldots, m := \lceil 1/2s \rceil - 1 \). (We assume throughout, without loss of generality, that \(n \) is divisible by every integer \(1, 2, \ldots, m \) and also by \(t \).) Hence no two items from \(B^j \) fit into one bin together, and an item from \(B^j \) leaves room for \(j \) items from \(B_1 \), and no more (\(1 \leq j \leq m \)). Since this bin packing problem is easy to analyze for the range \(s \geq \frac{1}{4} \), we further assume \(s < \frac{1}{4} \), and hence \(m \geq 1 \).

Assume that an algorithm \(A \) for 2-BBPP packs the items of \(B_1 \) so that the number of bins containing exactly \(i \) items is \(y_i = nx_i \), for each \(i = 1, 2, \ldots, t \). Hence \(y_1 + 2y_2 + \cdots + ty_t = n \) and

\[
\sum_{i=1}^{t} ix_i = 1
\] (1)

Assume that the number of bins used by \(A \) when packing any two consecutive batches never exceeds a factor of \(z \) times the optimum number of bins that may be used in packing (off-line) the items contained in the union of the same two batches. Applying this assumption
to $B_2 = B^0$, it follows that

$$\sum_{i=1}^{t} x_i \leq \frac{1}{t} z,$$

(2)

since the items from B_1 can be packed into n/t bins.

For $B_2 = B^m$ there exists a packing of $B_1 \cup B_2$ into n/m bins, whereas A uses at least $n \sum_{i=m+1}^{t} x_i$ bins each of which contains no items from B_2 (as this many bins are already packed too full), together with an additional n/m bins each of which contains precisely one item from B_2. We then have

$$\sum_{i=m+1}^{t} x_i + \frac{1}{m} \leq \frac{1}{m} z.$$

(3)

Similarly, for $B_2 = B^j$, $1 \leq j \leq m - 1$,

$$\sum_{i=j+1}^{t} x_i + \frac{1}{j} \leq \frac{1}{j} z.$$

(4)

Let $\ell \in \{1, 2, \ldots, m\}$. We consider the sum of (4) over the values $j = \ell, \ell + 1, \ldots, m - 1$:

$$\sum_{j=\ell}^{m-1} \sum_{i=j+1}^{t} x_i \leq \lambda_m(\ell) z,$$

(5)

where

$$\lambda_m(\ell) := \sum_{j=\ell}^{m-1} \frac{1}{j}.$$

Noting, by reordering of sums, that

$$\sum_{j=\ell}^{m-1} \sum_{i=j+1}^{t} x_i = \sum_{i=\ell+1}^{m} (i - \ell) x_i + \sum_{i=m+1}^{t} (m - \ell) x_i,$$

we get by adding ℓ times (2) to $t - m$ times (3) to (5),

$$\ell \sum_{i=1}^{t} x_i + (t - m) \sum_{i=m+1}^{t} x_i + \frac{t - m}{m} \lambda_m(\ell) \leq \left(\frac{\ell}{t} + \frac{t - m}{m} + \lambda_m(\ell) \right) z.$$

(6)
Collecting first in (6) the terms involving x_i, $1 \leq i \leq t$, and finally applying (1) yields

$$\ell \sum_{i=1}^{t} x_i + (t - m) \sum_{i=m+1}^{t} x_i + \sum_{i=\ell+1}^{t} (i - \ell)x_i + \sum_{i=m+1}^{t} (m - \ell)x_i$$

$$= \sum_{i=1}^{\ell} x_i + \sum_{i=\ell+1}^{m} x_i + \sum_{i=m+1}^{t} tx_i \geq \sum_{i=1}^{t} x_i = 1.$$

We conclude by (6) that

$$\frac{t}{m} + \lambda_m(\ell) \leq \left(\frac{\ell}{t} + \frac{t}{m} - 1 + \lambda_m(\ell) \right) z,$$

and therefore

$$z \geq \frac{t/m + \lambda_m(\ell)}{t/m + \lambda_m(\ell) - 1 + \ell/t} = 1 + \left(\frac{t/m + \lambda_m(\ell)}{1 - \ell/t} - 1 \right)^{-1}. \quad (7)$$

We will now assume that ℓ and m satisfy $m \geq \ell > 1$ and $(m - 1)/(\ell - 1) \leq \sigma \leq m/(\ell - 1)$. (For any $\ell > 1$, it is clearly possible to achieve this by choosing an appropriate value of s.) It follows that

$$\lambda_m(\ell) = \sum_{j=\ell}^{m-1} \frac{1}{j} \leq \int_{\ell - 1}^{m - 1} \frac{1}{y} \, dy = \ln \frac{m - 1}{\ell - 1} \leq \ln \sigma = 2\sigma - 3.$$

Moreover, from $\sigma \leq m/(\ell - 1)$, we have

$$\frac{\ell}{t} \leq \frac{1}{t} \left(\frac{m}{\sigma} + 1 \right) = \frac{m}{\sigma t} + \frac{1}{t}.$$

It follows from (7) that

$$z \geq 1 + \left(\frac{t/m + 2\sigma - 3}{1 - m/\sigma t - 1/t} - 1 \right)^{-1},$$

which, using that t/m converges to 2, approaches the value $2\sigma/(2\sigma - 1)$ as t grows to infinity. Hence, the lower bound

$$z \geq 2\sigma/(2\sigma - 1) = r$$

is proved. □

We believe that the bound r in the above theorem is optimal:

Conjecture 1. There exists an algorithm A for 2-BBPP with $R_{A,2}^\infty = r$.

We remark that (7) does not contradict this conjecture. The following lemma, which will be used in the proof of Theorem 2 shows that the value of the right-hand side of (7) is indeed bounded from above by r.
Lemma 1. Let $0<s<\frac{1}{2}$, $t=[1/s]$, $m=[1/2s]-1$, $1\leq\ell\leq m$, and $\hat{\lambda}_m(\ell) = \sum_{j=\ell}^{m-1} 1/j$. Then

$$1 + \left(\frac{t/m + \hat{\lambda}_m(\ell)}{1 - \ell/t} - 1 \right)^{-1} \leq r.$$

Proof. The estimate

$$\hat{\lambda}_m(\ell) \geq \int_{\ell}^{m} \frac{1}{y} \, dy = \ln \frac{m}{\ell}$$

implies

$$1 + \left(\frac{t/m + \hat{\lambda}_m(\ell)}{1 - \ell/t} - 1 \right)^{-1} \leq 1 + \left(\frac{t/m - \ln(t/m) - \ln(\ell/t)}{1 - \ell/t} - 1 \right)^{-1} \leq 1 + \left(\frac{2 - \ln 2 - \ln(\ell/t)}{1 - \ell/t} - 1 \right)^{-1},$$

where the last inequality follows from $t/m \geq 2$ and the fact that $x \mapsto x - \ln x$ defines an increasing function on $(1, \infty)$. Finally, it is straightforward to verify that the function defined for $0<s<1$ by

$$x \mapsto \frac{2 - \ln 2 - \ln x}{1 - x}$$

assumes a unique minimum value of 2σ at the point $x_0 = 1/(2\sigma)$. This proves the lemma, since $r = 1 + 1/(2\sigma - 1)$. □

Further formal and informal support to Conjecture 1 is provided in Section 4.

3. Lower bounds for a variation of 2-BBPP

Bound (7) may be thought of as derived from instances L of 2-BBPP in which the $m-\ell+2$ distinct values $s, 1-\ell s, 1-(\ell+1)s, \ldots, 1-ms$ are the only item sizes which can occur (as the batches $B^1, B^2, \ldots, B^{\ell-1}$ are not considered when deriving (5)).

Consider now only instances of 2-BBPP in which the number of different item sizes is at most $p(\geq 2)$. Suppose a batched algorithm is given the possible item sizes at the same time as it gets the first batch of an instance $L \in \mathcal{B}(2)$. Then the lower bound (7) applies to the competitive ratio of any such empowered algorithm, with $\ell = m - p + 2$ and for any suitable choice of s. For each p, we have chosen $m = \lfloor (\sigma(p-1) - 1)/(\sigma - 1) \rfloor$, $t = 2m$, and $s = 2/(2t + 1)$.

This provides the values of $r(p)$, a lower bound for the asymptotic competitive ratio of such an empowered algorithm, given in the following table. It is in general not clear whether these might be the best possible bounds $r(p)$. It seems that $r(2)$ is best possible (generalizing a result from [7] our recent paper [10] shows the existence of an algorithm for
on-line bin packing which reaches an asymptotic competitive ratio of 4/3 when only two item sizes are allowed and known in advance).

<table>
<thead>
<tr>
<th>p</th>
<th>s</th>
<th>t</th>
<th>m</th>
<th>ℓ</th>
<th>$\lambda_m(\ell)$</th>
<th>$r(p)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2/5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1.3333...</td>
</tr>
<tr>
<td>3</td>
<td>2/17</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>1/3</td>
<td>1.3658...</td>
</tr>
<tr>
<td>4</td>
<td>2/25</td>
<td>12</td>
<td>6</td>
<td>4</td>
<td>9/20</td>
<td>1.3738...</td>
</tr>
<tr>
<td>5</td>
<td>2/33</td>
<td>16</td>
<td>8</td>
<td>5</td>
<td>107/210</td>
<td>1.3773...</td>
</tr>
<tr>
<td>6</td>
<td>2/45</td>
<td>22</td>
<td>11</td>
<td>7</td>
<td>1207/2520</td>
<td>1.3793...</td>
</tr>
</tbody>
</table>

4. Possible optimality of r

For every fixed $s < \frac{1}{t}$ we have exhibited a lower bound (7) for the asymptotic competitive ratio of any algorithm for the restriction of 2-BBPP to the special subclass of instances $L = (B_1, B_2)$ for which all items of the initial batch B_1 have the same size s. The bound is given as a function of $t = \lceil 1/s \rceil$ and $m = \lceil 1/(2s) \rceil - 1$, and choosing the value of ℓ suitably, $1 \leq \ell \leq m$.

Let \mathcal{B}' denote the set of instances $L = (B_1, B_2) \in \mathcal{B}(2)$ for which all items of the initial batch B_1 are of the same size $s = 1/t$ for some integer $t > 2$. We now confirm Conjecture 1 for this subclass \mathcal{B}' of $\mathcal{B}(2)$.

Theorem 2. There exists a batched algorithm A with the property

$$\limsup_{N \to \infty} \max \left\{ \frac{A(L)}{\text{OPT}(L)} : L \in \mathcal{B}', \text{OPT}(L) = N \right\} = r.$$

Proof. We will describe an algorithm A, such that for every $\varepsilon > 0$ the ratio $A(L)/\text{OPT}(L)$ exceeds the right-hand side of (7) by at most ε for all instances $L \in \mathcal{B}'$ for which $\text{OPT}(L)$ is sufficiently large. Using Lemma 1 this implies

$$\limsup_{N \to \infty} \max \left\{ \frac{A(L)}{\text{OPT}(L)} : L \in \mathcal{B}', \text{OPT}(L) = N \right\} \leq r.$$

By the proof of Theorem 1, r is also a lower bound, so the theorem follows.

Let $L = (B_1, B_2)$ be an instance in \mathcal{B}' having n items in B_1 all of size $s = 1/t$, where $t > 2$ is an integer, and let $m = \lceil 1/(2s) \rceil - 1 = \lceil t/2 \rceil - 1$. Choose as ℓ the smallest positive number satisfying $\lambda_m(\ell) \geq t/\ell - t/m - 1$ (this inequality holds for $\ell = m$, so the choice is indeed possible), and let

$$z = \frac{t/m + \lambda_m(\ell)}{t/m + \lambda_m(\ell) - 1 + \ell/t}.$$

We observe that \(z \geq 1 \) holds. Now define values \(w_1, w_2, \ldots, w_t, w_{t+1} \) by

\[
w_i = \begin{cases}
0 & \text{if } i = t + 1, \\
\frac{1}{m} (z - 1) & \text{if } m + 1 \leq i \leq t, \\
\frac{1}{i - 1} (z - 1) & \text{if } \ell + 1 \leq i \leq m, \\
\frac{1}{t} & \text{if } 1 \leq i \leq \ell.
\end{cases}
\]

The inequality \(w_\ell \geq w_{\ell+1} \) follows from the choice of \(\ell \), which implies

\[
\frac{z - 1}{z} = \frac{1 - \ell/t}{t/m + \lambda_m(\ell)} \leq 1 - \ell/t \leq \frac{\ell}{t},
\]

and hence \(w_\ell = (1/t)z \geq (1/\ell)(z - 1) = w_{\ell+1} \). This and the fact \(z \geq 1 \) imply \(w_1 \geq w_2 \geq \ldots \geq w_{t+1} \).

We will consider differences of the form \([nw_i] - [nw_{i+1}]\) for \(i = 1, 2, \ldots, t \). These are non-negative integers having the property

\[
\sum_{i=1}^{t} i([nw_i] - [nw_{i+1}]) = \sum_{i=1}^{t} [nw_i].
\]

Using the equality

\[
\sum_{i=1}^{t} nw_i = n \left((t - m) \frac{1}{m} (z - 1) + \sum_{i=\ell+1}^{m} \frac{1}{i - 1} (z - 1) + \frac{\ell}{t} \right) = n \left(\left(\frac{t - m}{m} - 1 + \lambda_m(\ell) + \frac{\ell}{t} \right) (z - 1) + \frac{\ell}{t} \right) = n,
\]

we deduce that

\[
0 \leq n - \sum_{i=1}^{t} i([nw_i] - [nw_{i+1}]) \leq t.
\]

We will let \(A \) pack \(B_1 \) by first distributing a subset of the items in such a way that the number of bins containing \(i \) items is precisely \([nw_i] - [nw_{i+1}]\), followed by packing any remaining items into one additional bin (if needed), which is possible by the preceding inequality. When receiving \(B_2 \), the existing packing of the items from \(B_1 \) is completed in an optimal way by \(A \) to a final packing of \(B_1 \cup B_2 \). Again we remark that the running time efficiency of \(A \) is not an issue.

Let \(y_i \) denote the number of bins which contain \(i \) items when \(A \) has finished the packing of \(B_1 \), for \(i = 1, 2, \ldots, t \). Then with \(i' = n - \sum_{i=1}^{t} i([nw_i] - [nw_{i+1}]) \) we have

\[
y_i = \begin{cases}
[nw_i] - [nw_{i+1}] + 1 & \text{if } i = i', \\
[nw_i] - [nw_{i+1}] & \text{otherwise}.
\end{cases}
\]
Let \(\varepsilon > 0 \). To prove the theorem it is sufficient to show, that there exists a number \(N(\varepsilon) \) such that \(\text{OPT}(L) \geq N(\varepsilon) \) implies
\[
\frac{A(L)}{\text{OPT}(L)} \leq z + \varepsilon.
\]
Indeed we will show that this holds with \(N(\varepsilon) = 1/\varepsilon \).

Let \(B_2 \) consist of \(k \) items of sizes \((s_1, s_2, \ldots, s_k) \). We begin by making a few simplifying assumptions.

(A1) In any optimal solution to \(L \) each bin contains at most one item from \(B_2 \).

Otherwise, if the items of sizes \(s_1, s_2 \), say, are placed in the same bin in some optimal solution, then we consider \(L' = (B_1, B_2') \) where \(B_2' \) contains \(k - 1 \) items of sizes \((s_1 + s_2, s_3, \ldots, s_k) \). Then \(\text{OPT}(L') = \text{OPT}(L) \) and \(A(L') \geq A(L) \) are satisfied. We may now replace \(L \) by \(L' \), since \(A(L)/\text{OPT}(L) \leq z + \varepsilon \) would follow from \(A(L')/\text{OPT}(L') \leq z + \varepsilon \).

(A2) \(s_j/s \) is an integer for every \(j = 1, 2, \ldots, k \).

Indeed, if we replace \(B_2 \) by \(B_2' \) having item sizes \((\lceil s_1/s \rceil s, \lceil s_2/s \rceil s, \ldots, \lceil s_k/s \rceil s) \) and let \(L' = (B_1, B_2') \), then \(\text{OPT}(L') = \text{OPT}(L) \) follows from (A1) and the integrality of \(1/s \). As before, \(A(L') \geq A(L) \) holds.

(A3) Any pair of items in \(B_2 \) have combined size strictly greater than 1.

Otherwise, say if \(s_1 + s_2 \leq 1 \), we consider the two bins of an optimal packing of \(L \) that contain the items of sizes \(s_1 \) and \(s_2 \). Using (A2) and the integrality of \(1/s \), we may rearrange the items between these two bins to obtain a new packing using equally many bins, but having the items of sizes \(s_1, s_2 \) in the same bin. This packing would contradict (A1).

From these assumptions it follows that any bin can contain at most one item from \(B_2 \). Thus the solution \(A(L) \) is given by a largest matching between the items from \(B_2 \) and the partially packed bins containing the items from \(B_1 \). Here an item may be matched to a bin, only if its size is no larger than the space which remains in the bin. We will apply the theorem of König on maximum matchings in bipartite graphs (e.g. see [6, Theorem 2.1.1]): the maximal size of a matching in a bipartite graph equals the minimal number of vertices which cover all edges (where a vertex is said to ‘cover’ its incident edges). For simplicity assume \(s_1 \leq s_2 \leq \cdots \leq s_k \), and let \(b_1, b_2, \ldots, b_{n'} \) with \(0 < b_1 \leq b_2 \leq \cdots \leq b_{n'} \) denote the contents of the bins which have been partially packed by \(A \) with items from \(B_1 \). Applying König’s theorem, the largest size of a matching between items and bins is equal to
\[
M = \min \{ i_0 + j_0 | b_i + s_j \leq 1 \Rightarrow i \leq i_0 \lor j \leq j_0 \},
\]
where the minimum is taken over all \(i_0, j_0 \) with \(0 \leq i_0 \leq n' \) and \(0 \leq j_0 \leq k \). Suppose that the minimum is achieved as \(M = i_0 + j_0 \), so that \(b_i + s_j \leq 1 \Rightarrow i \leq i_0 \lor j \leq j_0 \). Then \(A(L) = n' + k - i_0 - j_0 \) follows. Let \(k' = k - j_0 \). If \(k' = 0 \), then we let \(B_2' \) be empty. Otherwise we let \(B_2' \) be a batch consisting of \(k' \) items each of size \(s_{j_0+1} \). Applying König’s theorem now for \(L' = (B_1, B_2') \), and noting that \(b_i + s_{j_0+1} \leq 1 \Rightarrow i \leq i_0 \), it follows that \(A(L') \geq n' + k' - i_0 = A(L) \). Moreover, \(\text{OPT}(L') \leq \text{OPT}(L) \) is trivial. If strict inequality
OPT(L') < OPT(L) holds, then we consider \(L'' = (B_1, B''_2) \) instead, with \(B''_2 \) obtained from \(B'_2 \) by adding more items of size \(s_{j_0+1} \) until \(OPT(L'') = OPT(L) \) is satisfied. So we may assume that all items of \(B_2 \) have the same size.

For each \(j = 0, 1, \ldots, m \) let \(B(j, k) \) be a batch of \(k \) items all of size \(1 - js \), and let \(L(j, k) \) denote the instance \((B_1, B_2) = (B_1, B(j, k)) \) of \(\mathcal{B}' \). Then by the above argument, using (A2), (A3), and the integrality of \(1/s \), we may assume the following.

(A4) \(L = L(j, k) \) for some \(j = 0, 1, \ldots, m \).

This simplification allows us to directly calculate the values of \(A(L) \) and \(OPT(L) \). The value for \(OPT(L) \) is easily deduced.

\[
OPT(L) = \begin{cases}
 k & \text{if } n < jk, \\
 k + \left\lfloor \frac{n - jk}{t} \right\rfloor & \text{if } n \geq jk.
\end{cases}
\]

So in any case the bound \(OPT(L) \geq k + (n - jk)/t \) follows.

For \(A(L) \) the precise value is depending on whether all items from \(B_2 \) can be accommodated by the already partially packed bins. For each that cannot, \(A \) must open an additional bin. Thus we have

\[
A(L) = \begin{cases}
 \sum_{i=1}^{j} y_i & \text{if } k < \sum_{i=1}^{j} y_i, \\
 \sum_{i=j+1}^{t} y_i + k & \text{if } k \geq \sum_{i=1}^{j} y_i.
\end{cases}
\]

Case 1: \(k < \sum_{i=1}^{j} y_i \). Then \(A(L) \leq \lfloor nz/t \rfloor + 1 \leq nz/t + 1 \), hence,

\[
\frac{A(L)}{OPT(L)} \leq \frac{nz/t}{k + (n - jk)/t} + \frac{1}{OPT(L)} = \frac{z}{1 + k(t - j)/n} + \frac{1}{OPT(L)} \leq \frac{z + 1}{OPT(L)},
\]

which concludes this case.

Case 2: \(k \geq \sum_{i=1}^{j} y_i \). It follows in particular that

\[
A(L) \leq \lfloor n w_{j+1} \rfloor + k + 1 = \begin{cases}
 \lfloor n(z - 1)/j \rfloor + k + 1 & \text{if } \ell \leq j \leq m, \\
 \lfloor nz/t \rfloor + k + 1 & \text{if } 0 \leq j < \ell.
\end{cases}
\]

We distinguish two subcases.

Case 2.1: \(j < \ell \). The choice of \(\ell \) yields

\[
\lambda_m(\ell) = \lambda_m(\ell - 1) - \frac{1}{\ell - 1} \leq \frac{t - 1}{\ell - 1} - \frac{t}{m} - 1,
\]

and therefore

\[
\frac{z - 1}{z} = \frac{1 - \ell/t}{t/m + \lambda_m(\ell)} > \frac{1 - \ell/t}{(t - 1)/(\ell - 1) - 1} = \frac{\ell - 1}{t} \geq \frac{j}{t}.
\]
Now we obtain
\[
\frac{A(L)}{OPT(L)} \leq \frac{nz/t+k}{k+n/t-jk/t} + \frac{1}{OPT(L)} \leq \frac{nz/t+k}{k+n/t-k(z-1)/z} + \frac{1}{OPT(L)} = z + \frac{1}{OPT(L)}.
\]
achieving the desired bound.

Case 2.2: \(j \geq \ell \). Then we first observe that
\[
OPT(L) \geq k + \frac{n-jk}{t} = k + (n-jk) \frac{w_j}{z} \geq k + (n-jk) \frac{w_{j+1}}{z} = k + \left(\frac{n}{j} - k \right) \frac{z-1}{z}.
\]
Hence, with \(A(L) \leq \lfloor n(z-1)/j \rfloor + k + 1 \),
\[
\frac{A(L)}{OPT(L)} \leq \frac{n(z-1)/j + k}{k + (n/j-k)(z-1)/z} + \frac{1}{OPT(L)} = z + \frac{1}{OPT(L)}.
\]
This finishes the final case of the proof. \(\square \)

We remark that the assumption of integrality of \(1/s \), which has been used throughout this section, can be relaxed at the cost of increasing the upper bound on asymptotic competitive ratio by a factor of at most \(1 + 1/t \), where \(t = \lfloor 1/s \rfloor \). This can be seen by considering an algorithm behaving like \(A \), except that it treats the items from the batch \(B_1 \) as if they were all of size \(1/t \) instead of \(s \).

Considering again briefly the general version of 2-BBPP, in which the initial batch may contain items of different sizes, it seems that the competitive ratio increases as the item sizes within the initial batch decrease (cf. the table in Section 3). However, if more than one item size occurs in the initial batch, and all item sizes are small, then it is intuitively reasonable to attempt to achieve a good competitive ratio by approximating all sizes by a single size, say, by their average. Thus altogether we feel that we have reasonable support for Conjecture 1.

5. Further research

The introduction of BBPP raises several natural problems. It would be very interesting to obtain algorithms for 2-BBPP whose asymptotic competitive ratios are lower than those of on-line algorithms. This problem can be extended to \(k \)-BBPP, BBPP restricted to sequences with exactly \(k \) batches, for fixed \(k \geq 2 \).

It would also be interesting to obtain lower bounds for the asymptotic competitive ratio of algorithms for \(k \)-BBPP for fixed \(k \geq 3 \) and prove (or disprove) the optimality of our lower bound \(r \).

We believe that batched generalizations of other on-line problems are of definite interest and deserve investigation.

References