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In this paper we study mathematically and computationally optimal control problems for
stochastic elliptic partial differential equations. The control objective is to minimize the
expectation of a tracking cost functional, and the control is of the deterministic, distributed
type. The main analytical tool is the Wiener–Itô chaos or the Karhunen–Loève expansion.
Mathematically, we prove the existence of an optimal solution; we establish the validity
of the Lagrange multiplier rule and obtain a stochastic optimality system of equations; we
represent the input data in their Wiener–Itô chaos expansions and deduce the deterministic
optimality system of equations. Computationally, we approximate the optimality system
through the discretizations of the probability space and the spatial space by the finite
element method; we also derive error estimates in terms of both types of discretizations.
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1. Introduction

Many physical and engineering models involve uncertain data or uncertain parameters; i.e., many realistic models are
stochastic partial differential equations (SPDEs). In fact, deterministic elliptic partial differential equations (PDEs) have been
reformulated into stochastic elliptic PDEs based on the Karhunen–Loève (K-L) expansion and there has been progress in both
the analysis and the finite element approximations for stochastic elliptic PDEs in the last decade; see e.g., [9,2,3,24,4,5,11].
Also, it is well known that this elliptic SPDE is used to model fluid flows in porous media that is used in many areas of
applied science and engineering (e.g., transport of pollutants in groundwater and oil recovery processes).

In this paper we consider the stochastic optimal control problems constrained by stochastic elliptic PDEs based on the
Wiener–Itô (W-I) chaos expansion. In stochastic optimal control problems, we derive the optimality system of equations
and solve that system to find the optimal solution for minimization problems. Usually, the optimality system of equations
arising from an optimal control problem are coupled, which is the main difficulty in solving the optimization problems.
Here, in order to solve stochastic optimal control problems, we apply the theory of Brezzi–Rappaz–Raviart (B-R-R), which
plays an important role in uncoupling the optimality system of equations. For an abstract framework by using B-R-R theory
in deterministic optimal control problems, we refer the reader to [17] and for applications [15,16,19].

The plan of the paper is as follows. In Section 2, we shall first mention the existence and uniqueness of stochastic elliptic
PDEs and then show that there is an optimal solution for a stochastic optimal control problem constrained by stochastic
elliptic PDEs. In Section 3, we are going to show the existence of a Lagrange multiplier to derive the optimality system of
equations. In Section 4, we shall talk about the W-I chaos expansions and K-L expansions for our input data and compare
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them. Then in Section 5, we shall estimate the error for the finite element solution of stochastic elliptic PDEs with a
stochastic input data and a deterministic input data under slightly weaker regularity requirements in the spatial domain
compared to similar results in the literature. In Section 6, we use the B-R-R theory to derive discrete error estimates for the
finite element approximations of the optimality system of equations.

2. Optimization of functionals involving stochastic functions

2.1. The model problem and stochastic functional

Let (Ω, F , P ) be a complete probability space, where Ω is a set of outcomes, F is a σ -algebra of events, and P : F →
[0,1] is a probability measure.

We consider the following stochastic elliptic PDE with the Dirichlet boundary condition: find a stochastic function u : D ×
Ω → R such that the following equation holds for almost every ω ∈ Ω:

−div
[
a(x,ω)∇u(x,ω)

] = f (x) in D,

u(x,ω) = 0 on ∂ D, (2.1)

where D ⊂ R
d is a convex bounded polygonal domain, a : D ×Ω → R is a stochastic function with a continuous and bounded

covariance function, and f ∈ L2(D) that will be used as a distributed deterministic control. Note that in the paper, ∇ means
differentiation with respect to x ∈ D only. For the existence and uniqueness of the solution of our SPDE, we assume that
there are positive m and M such that

m � a(x,ω) � M a.e. (x,ω) ∈ D × Ω. (2.2)

We now introduce a functional that involves stochastic functions. For a target solution U : D × Ω → R, we consider

Jβ(u, f ) = E

(
1

2

∫
D

|u − U |2 dx + β

2

∫
D

| f |2 dx

)

= 1

2

∫
Ω

∫
D

|u − U |2 dx dP + β

2

∫
Ω

∫
D

| f |2 dx dP , (2.3)

where β is a positive constant.
As you might see, we are using the cost functional whose notation is the same as that in [20] or in most papers of

optimal control problems. However, we point out that the functional in the paper has the expectation.
We are going to minimize the stochastic functional (2.3) with suitable deterministic function f subject to the stochastic

PDE (2.1) by solving the optimality system of stochastic equations.

2.2. Function spaces and notation

Throughout this paper, we use standard notations (e.g., see [1]) for the Sobolev spaces Hr(D) for all real numbers r with
norms ‖ · ‖Hr(D) . We use Hr

0(D) as the subspace of Hr(D) whose function value is zero on the boundary of D with the
norm ‖u‖2

H1
0(D)

= ∫
D |∇u|2 dx as usual. For a Hilbert space Hr , (·,·)Hr denotes the Hr inner product.

We define stochastic Sobolev spaces:

L2(Ω; Hr(D)
) = {

v : D × Ω → R
∣∣ ‖v‖L2(Ω;Hr(D)) < ∞}

,

where

‖v‖2
L2(Ω;Hr(D))

=
∫
Ω

‖v‖2
Hr(D) dP = E‖v‖2

Hr(D).

Note that the stochastic Sobolev space L2(Ω; Hr(D)) is a Hilbert space. For simplicity, we put Hr(D) = L2(Ω; Hr(D))

and L2(D) = L2(Ω; L2(D)).
We also introduce notation:

b[u, v] = E

∫
D

a∇u · ∇v dx and [u, v] = E

∫
D

uv dx.
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2.3. The existence of an optimal solution

We have a weak formulation of (2.1) as follows: seek u ∈ H1
0(D) such that

b[u, v] = [ f , v] ∀v ∈ H1
0(D). (2.4)

From assumption (2.2) and the Lax–Milgram lemma (cf. [6]), we have the unique existence of the solution for (2.4).
We now examine the existence of an optimal solution that minimizes Jβ(·,·). Let

Uad = {
(u, f ) ∈ H1

0 × L2 such that (2.4) satisfied and Jβ(u, f ) < ∞}
(2.5)

be the admissibility set.
We say that (û, f̂ ) ∈ Uad is an optimal solution of Jβ(u, f ) if for all (u, f ) ∈ Uad satisfying that ‖u − û‖H1

0(D) + ‖ f −
f̂ ‖L2(D) � ε for some ε > 0,

Jβ(û, f̂ ) � Jβ(u, f ). (2.6)

We then prove the existence of an optimal solution.

Theorem 1. There is an optimal solution (û, f̂ ) ∈ Uad of Jβ(u, f ).

Proof. Note that Uad is not empty. Let {(u(n), f (n))} be a minimizing sequence in Uad , that is,

lim
n→∞ Jβ

(
u(n), f (n)

) = inf
(u, f )∈Uad

Jβ(u, f ). (2.7)

Then, we have that ‖ f (n)‖L2(D) � C for some C > 0. That is, the sequence { f (n)} is uniformly bounded in L2(D). Note that
for some C > 0, we have ‖u(n)‖H1

0(D) � C‖ f (n)‖L2(D) . Thus, {u(n)} is a uniformly bounded sequence in H1
0(D). As a result,

there is a convergent subsequence {(u(ni), f (ni))} such that

u(ni) ⇀ û weakly in H1
0(D) and f (ni) ⇀ f̂ weakly in L2(D) (2.8)

for some (û, f̂ ) ∈ H1
0(D) × L2(D).

Note that ‖ f (n)‖L2(D) � C . Hence, we also see that

f (ni) ⇀ f̂ weakly in L2(D). (2.9)

This implies that[
f (ni), v

] → [ f̂ , v] ∀v ∈ L2(D). (2.10)

Because ‖∇u(n)‖L2(D) � ‖u(n)‖H1
0(D) � C , we have

∇u(ni) ⇀ ∇û weakly in L2(D).

This yields[∇u(ni), w
] → [∇û, w] ∀w ∈ L2(D).

The fact that ∇v ∈ L2(D) for v ∈ H1
0(D) lead us to[∇u(ni),∇v

] → [∇û,∇v] ∀v ∈ H1
0(D).

Thus, we obtain

b
[
u(ni), v

] → b[û, v] ∀v ∈ H1
0(D) (2.11)

because a∇v ∈ L2(D) for v ∈ H1
0(D).

With the help of (2.10) and (2.11), we can show that

b[û, v] = lim
ni→∞ b

[
u(ni), v

] = lim
ni→∞

[
f (ni), v

] = [ f̂ , v] ∀v ∈ H1
0(D). (2.12)

That is, (û, f̂ ) satisfies (2.4) and hence (û, f̂ ) ∈ Uad . Using the weak convergence (2.8) and the weak lower continuity of the
functional Jβ(·,·) we arrive at

Jβ(û, f̂ ) � lim
ni→∞ inf Jβ

(
u(ni), f (ni)

) = inf
(u, f )∈Uad

Jβ(u, f ). (2.13)

Therefore, (û, f̂ ) is an optimal solution. �
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3. The optimality system of stochastic equations

We will derive an optimality system of stochastic equations by using the Lagrange multiplier rule for the constrained
minimization problem:

min
(u, f )∈Uad

Jβ(u, f ) subject to (2.4). (3.1)

For the deterministic case, we know that there exists a Lagrange multiplier; see e.g., [10]. Thus, without proving the
existence of a Lagrange multiplier, we could derive an optimality system of the minimization problem in the deterministic
problem; e.g., [20]. In the stochastic case, however, we first need to show that there is a Lagrange multiplier before using
the Lagrange multiplier rule to derive an optimality system of stochastic equations. To show the existence of a Lagrange
multiplier, we follow the method given in [17].

3.1. The abstract minimization problem

We begin with the definition of the abstract class of minimization problems. Let G , X , and Y be reflexive Banach spaces
whose norms are denoted by ‖ · ‖G , ‖ · ‖X , and ‖ · ‖Y and whose dual spaces are denoted by G∗ , X∗ , and Y ∗ , respectively.
Let Θ be the control set that is a closed convex subset of G .

We assume that the functional to be minimized takes the form

J (v, z) = λF (v) + λE (z) ∀(v, z) ∈ X × Θ, (3.2)

where F is a functional on X , E is a functional on Θ , and λ is a given parameter that is assumed to belong to a compact
interval Λ ⊂ R+ .

We define the function M : X × Θ → X for the constraint equation M(v, z) = 0 as follows:

M(v, z) = v + λT N(v) + λT K (z) ∀(v, z) ∈ X × Θ, (3.3)

where N : X → Y is a differentiable map, K :Θ → Y is a bounded linear operator, T : Y → X is a bounded linear operator,
and λ ∈ Λ.

With these definitions, we now consider the following constrained minimization problem:

min
(v,z)∈X×Θ

J (v, z) subject to M(v, z) = 0. (3.4)

3.2. Hypotheses concerning the abstract minimization problem

The set of hypotheses needed to justify the use of the Lagrange multiplier rule and to derive an optimality system can
be determined is given by

(HE1) for each z ∈ Θ , v 
→ J (v, z) and v 
→ M(v, z) are Fréchet differentiable;
(HE2) z 
→ E (z) is convex;
(HE3) for v ∈ X , N ′(v) maps from X into Z ↪→↪→ Y , where N ′ denotes the Fréchet derivative of N .

3.3. Results concerning the existence of Lagrange multipliers

In this section we give the following useful theorems (proofs can be found in [17]) about the abstract Lagrange multiplier
rule.

Theorem 2. Let λ ∈ Λ be given. Assume that there exists an optimal solution (u, f ) of (3.4) in X × Θ and that (HE1)–(HE3) hold.
Then there exists a k ∈ R and a μ ∈ X∗ that are not both equal to zero such that

k
〈

Ju(u, f ), w
〉 − 〈

μ, Mu(u, f ) · w
〉 = 0 ∀w ∈ X and

min
z∈Θ

L(u, z,μ,k) = L(u, f ,μ,k).

Theorem 3. Let λ ∈ Λ be given. Assume that there exists an optimal solution (u, f ) of (3.4) in X × G, that (HE1)–(HE3) hold, and
that the mapping z 
→ E (z) is Fréchet differentiable on G. Then there exists a k ∈ R and a μ ∈ X∗ , not both equal to zero, such that

k
〈

Ju(u, f ), w
〉 − 〈

μ,
(

I + λT N ′(u)
) · w

〉 = 0 ∀w ∈ X and

k
〈

E ′( f ), z
〉 − 〈μ, T K z〉 = 0 ∀z ∈ G.

Remark 1. For two Theorems 2 and 3, if 1/λ is not in σ(−T N ′(u)), we may choose k = 1; see [17].



L.S. Hou et al. / J. Math. Anal. Appl. 384 (2011) 87–103 91
3.4. The existence of Lagrange multipliers and the optimality system of stochastic equations

We are now ready to prove the existence of a Lagrange multiplier for our minimization problem (3.1). The Lagrange
multiplier rule may be used to convert the constrained minimization problem into an unconstrained one. Then we find the
optimality system of stochastic equations.

Note that since our stochastic elliptic PDE has a unique solution regardless of the choice of λ, a parameter in the abstract
setting, we take λ = 1.

Recall the stochastic optimal control problem:

min Jβ(u, f ) subject to M(u, f ) = 0 ∀v ∈ H1
0(D), (3.5)

where M(u, f ) = b[u, v] − [ f , v].
We define X = H1

0(D), Y = H−1(D), G = L2(D), and Z = {0}. Then clearly we have Z ↪→↪→ Y . For the time being, we
assume that the admissible set Θ for the control f is a closed, convex subset of G . We define the continuous linear operator
T ∈ L(Y ; X) as follows. For g ∈ Y , T g = u ∈ X is the unique solution of

b[u, v] = [g, v] ∀v ∈ X . (3.6)

We define the (differentiable) mapping N : X → Y by〈
N(u), v

〉 = 0 ∀v ∈ X (3.7)

and define K : G → Y by

〈K f , η〉 = −〈 f , η〉 ∀η ∈ X . (3.8)

Then the constraint equation (2.4) can be expressed by u + T K f = 0. We note that

F (u) = E

(
1

2

∫
D

|u − U |2 dx

)
and E ( f ) = E

(
β

2

∫
D

| f |2 dx

)
. (3.9)

Next, we verify the hypotheses for the existence of Lagrange multipliers. First, notice that (HE1) is obvious. Second,
(HE2) holds because f 
→ E ( f ) = β

2 ‖ f ‖2
L2(D)

is convex. Third, because for ∀u ∈ X , N ′(u) · v = 0 ∈ Z ↪→↪→ Y for ∀v ∈ X ,

(HE3) holds.
The Lagrangian is given by

L(u, f , ξ,k) = kJ (u, f ) − b[u, ξ ] + [ f , ξ ]
for ∀(u, f , ξ,k) ∈ X × G × X × R.

By Theorem 2, there exists ξ = T ∗μ ∈ X such that

ξ − kT ∗F ′(u) = 0, (3.10)

L(u, f , ξ,k) � L(u, z, ξ,k) ∀z ∈ Θ. (3.11)

With k = 1, (3.10) becomes

b[ξ, ζ ] = [u − U , ζ ] ∀ζ ∈ X (3.12)

and (3.11) implies that

β

2
[z, z] + [z, ξ ] − β

2
[ f , f ] + [ f , ξ ] � 0 ∀z ∈ Θ ⊆ G. (3.13)

For each ε ∈ (0,1) and each t ∈ Θ , set z = εt + (1 − ε) f ∈ Θ . Then from (3.13), we have

βε

2
[t − f , t − f ] + β[t − f , f ] + [t − f , ξ ] � 0 ∀t ∈ Θ. (3.14)

By letting ε → 0+ in the above inequality, we have

[t − f , β f + ξ ] � 0 ∀t ∈ Θ. (3.15)

We now consider the case Θ = G . Note that the mapping z 
→ E (z) is Fréchet differentiable on G . Hence, by Theorem 3,
(3.15) becomes an equality and by letting z = t − f we obtain

[β f + ξ, z] = 0 ∀z ∈ G. (3.16)

The system formed by Eqs. (2.4), (3.12), and (3.16), which are necessary conditions for an optimum, is called an optimality
system. We now conclude this section with the following theorem.

Theorem 4. Let (u, f ) ∈ H1
0(D) × L2(D) be an optimal solution of (3.1). Then there exists ξ ∈ H1

0(D) such that (3.12) and (3.16)
hold.
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4. Representation of stochastic functions

In this section, we represent stochastic functions by a countable set of deterministic functions and random variables.
We first construct the Wiener–Itô (W-I) chaos expansions of stochastic functions. We then define the Karhunen–Loève (K-L)
expansion of stochastic functions. Finally, we compare these two expansions.

4.1. Wiener–Itô chaos expansions

We first discuss the classical W-I chaos expansions of elements of the space of square-integrable functions defined on
the space of tempered distributions in terms of stochastic Hermite polynomials; see [18]. Then we represent stochastic
functions by a countably infinite sum of the products of a deterministic function and a random variable.

Let d be a fixed positive number. Consider a space of rapidly decreasing smooth real valued functions on R
d , which

we denote by S(Rd). We consider the dual space S∗(Rd), which is called the space of tempered distributions. We let
Ω := S∗(Rd) and denote the Borel σ -algebra over Ω by F . Then there is a unique probability measure P over F such that

Eei〈ω,φ〉 :=
∫
Ω

ei〈ω,φ〉 dP (ω) = exp

(
−1

2
‖φ‖2

L2(Rd)

)
∀φ ∈ S

(
R

d), (4.1)

where 〈ω,φ〉 = ω(φ) is the action of ω ∈ Ω on φ ∈ S(Rd). Here, P is called the white noise measure or the Gaussian
measure on S(Rd).

Recall that the Hermite polynomials hn(x) are defined by

hn(x) = (−1)nex2/2 dn

dxn

(
e−x2/2); n = 0,1,2, . . . (4.2)

and note that an hn(x) is a polynomial of degree n.
Define the Hermite functions ξn(x) as follows:

ξn(x) = π−1/4((n − 1)!)−1/2
e−x2/2hn−1(x); n = 1,2,3, . . . . (4.3)

Observe that the Hermite functions are orthogonal with the weight e−x2/2 and in S(R) for all n. Note that {ξn}∞n=1
constitutes an orthonormal basis for L2(R).

Let δ j = (δ
j
1, δ

j
2, . . . , δ

j
d), where δ

j
i ∈ N, and define the tensor products ξδ j := ξ

δ
j
1
⊗ ξ

δ
j
2
⊗ · · · ⊗ ξ

δ
j

d
, where

i < j ⇒ δi
1 + δi

2 + · · · + δi
d � δ

j
1 + δ

j
2 + · · · + δ

j
d. (4.4)

It follows that the family of tensor products {ξδ j }∞j=1 forms an orthonormal basis for L2(Rd).
Let us define

I = {
α = (α1,α2, . . .)

∣∣ ai ∈ N ∪ {0} and there are only finitely many αi �= 0
}
. (4.5)

Note that the index set I is countable.
We define stochastic Hermite polynomials {Hα}α∈I by

Hα(ω) =
∞∏

i=1

hαi

(〈ω,ξδi 〉); ω ∈ Ω. (4.6)

It follows that {Hα}α∈I forms an orthogonal basis for L2(Ω).
The norm ‖Hα‖L2(Ω) satisfies ‖Hα‖2

L2(Ω)
= α! = α1!α2! · · · . Now we redefine Hα by 1√

α! Hα . Then {Hα}α∈I forms an

orthonormal basis for L2(Ω). Hence every f (ω) ∈ L2(Ω) has a unique expansion

f (ω) =
∑
α∈I

cα Hα(ω),

where

cα = E
(

f (ω)Hα(ω)
) =

∫
Ω

f (ω)Hα(ω)dP (ω). (4.7)

We call this expansion the W-I chaos expansion of a function f ∈ L2(Ω) in terms of stochastic Hermite polynomials.
From the above argument, for a stochastic function f (x,ω), we have

f (x,ω) =
∑

cα(x)Hα(ω), (4.8)

α∈I
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where

cα(x) = E
(

f (x,ω)Hα(ω)
)
.

This expansion is called the W-I chaos expansion of a stochastic function f (x,ω).
Note that if f (x,ω) is known, then we know exactly what cα(x)’s are. Because our index set I is countable, for n ∈ N,

we may rewrite f (x,ω) as

f (x,ω) =
∑
n�1

cn(x)Hn(ω), (4.9)

where

cn(x) = E
(

f (x,ω)Hn(ω)
)
.

4.2. Karhunen–Loève expansions

In this section, we introduce the K-L expansions, which is well known as a theoretical tool for approximating stochastic
functions; see [13,9,2–5,11,23]. If a(x,ω) is a stochastic function that has a continuous and bounded covariance function, it
can be represented by

a(x,ω) = ā(x) +
∑
n�0

√
λnφn(x)Xn(ω), (4.10)

where ā(x) = Ea(x,ω), E Xn(ω) = 0, E(Xn(ω)Xm(ω)) = δnm , and (λn, φn(x)) are solutions to the eigenvalue problem:∫
D

C(x1, x2)φn(x1)dx1 = λnφn(x2), (4.11)

where C(x1, x2) = E(a(x1,ω)a(x2,ω)) − Ea(x1,ω)Ea(x2,ω). We call this expansion the K-L expansion of a(x,ω).

4.3. Wiener–Itô chaos expansion versus Karhunen–Loève expansions

From the orthogonality relations for Hermite polynomials with respect to the Gaussian measure, for Hα ’s, we see that

E(Hα Hβ) = δαβ

for any multi-indices α and β; see [18].

Also, by using the property of an even function e− 1
2 x2

with respect to the Gaussian measure, we have

E Hα = 0

for any multi-index α.
Thus, the variance of Hα equals 1 and the covariance between Hα and Hβ is equal to zero; i.e., for any α �= β, we obtain

E(Hα Hβ) = E Hα E Hβ .

If we choose the orthonormal eigenfunctions in the K-L expansion as a basis for L2(D) and assume that cn(x) ∈ L2(D)

in (4.9), then cn(x) can be represented by the infinite sum of orthonormal basis functions for L2(D). Thus, from the definition
of the K-L expansion, we can think of the W-I chaos expansion of a stochastic function as a special case of the K-L expansion
of it in terms of their random variables.

In the paper, we focus on our problems with the W-I chaos expansion consisting of known random variables and stochas-
tic Hermite polynomials. Note that although we only study our stochastic control problem with SPDE constraint equations
based on the W-I chaos expansion, problems with the K-L expansions can be treated similarly and analysis of that can be
obtained directly from our results.

5. The high-dimensional elliptic PDEs

In this chapter we make some assumptions on our stochastic problem and then we change our SPDE into deterministic
high-dimensional PDE so that we can use traditional finite element method to solve stochastic PDEs and stochastic control
problems eventually.
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5.1. Finite dimensional information and notation

In this section, we talk about (2.1) and also talk about the following problem

−div
[
a(x,ω)∇u(x,ω)

] = g(x,ω) in D,

u(x,ω) = 0 on ∂ D, (5.1)

where g : D × Ω → R is a stochastic function. Note that we have a unique weak solution for (5.1) by the Lax–Milgram
theorem and that the error estimates for the solutions for (2.1) and (5.1) will be similar and both will be used later for
error estimates of the solution of the stochastic optimal control problem.

In realistic models, the source of randomness can be expressed by a finite number of random variables that are mutually
independent. For that reason, in the paper, we assume that

a(x,ω) =
N∑

n=1

cn(x)Hn(ω) (5.2)

and

g(x,ω) = g
(
x, H1(ω), H2(ω), . . . , HN(ω)

)
. (5.3)

To have the existence of the solution for stochastic elliptic PDEs with finite dimensional information, it is necessary that∑N
n=1 cn(x)Hn(ω) satisfy a similar condition to (2.2); i.e., there exist m, M > 0 such that

m �
N∑

n=1

cn(x)Hn(ω) � M a.e. (x,ω) ∈ D × Ω. (5.4)

Remark 2. Some comments are in order concerning the finite dimensional assumption (5.2) and the ellipticity assump-
tion (5.4). As was discussed in [4], assumption (5.2) may be valid in its own right in practical applications; also, similar to
the convergence analysis of [4] for the truncated problem, we may prove the convergence of the truncated control prob-
lem based on Mercer’s theorem. We refer the readers to [12] for a discussion of the ellipticity condition for a(x,ω), where
log a(x,ω) is a Gaussian field.

We also assume that each Hn(Ω) ≡ Γn ⊂ R is a bounded interval for n = 1,2, . . . , N and that each Hn has a den-
sity function ρn :Γn → R

+ . We use the joint density ρ(y) for any y ∈ Γ ≡ ∏N
n=1 Γn ⊂ R

N of (H1, H2, . . . , HN). Under
these assumptions, the solution of (2.4) can be expressed by the finite number of random variables; i.e., u(x,ω) =
u(x, H1(ω), H2(ω), . . . , HN (ω)); see e.g., [9,2,4].

Remark 3. Notice that H := (H1, H2, . . . , HN ) is a Γ -valued random variable. Thus, for u ∈ H1
0(D), we have

E

∫
D

u dx =
∫
Ω

∫
D

u(x,ω)dx dP (ω) =
∫
Γ

ρ(y)

∫
D

u(x, y)dx dy.

Under the above assumptions, we also have the following high-dimensional deterministic equivalent variational formu-
lation of (2.4) with the finite dimensional information:∫

Γ

ρ(y)

∫
D

a(x, y)∇u(x, y) · ∇v(x, y)dx dy =
∫
Γ

ρ(y)

∫
D

f (x)v(x, y)dx dy. (5.5)

The strong formulation of this is

−div
[
a(x, y)∇u(x, y)

] = f (x) ∀(x, y) ∈ D × Γ,

u(x, y) = 0 ∀(x, y) ∈ ∂ D × Γ. (5.6)

Remark 4. First, from (2.2), we know that a is bounded and hence, we have well-posedness of (5.6). Second, the solution of
a SPDE can be found by solving a deterministic PDE. Third, the finite element method can be used for stochastic problems.
Finally, with g(x,ω) and g(x, y) instead of f (x), we obtain the same result.

For the high-dimensional elliptic PDE, we recall Sobolev spaces as follows:

L2(Γ ; Hr(D)
) = {

v : D × Γ → R
∣∣ ‖v‖L2(Γ ;Hr(D)) < ∞}

,
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where

‖v‖2
L2(Γ ;Hr(D))

=
∫
Γ

ρ‖v‖2
Hr(D) dy = E‖v‖2

Hr(D).

We now give the Banach spaces that will be used as solution spaces for the solution of the optimality system of stochastic
equations.

For r = −1,0,1, define

S p,r(D) = C p(
Γ ; Hr(D)

)
,

with the norm ‖u‖S p,r(D) = ‖u‖S0,r(D) + ∑N
j=1

∑p j

k=1 ‖∂k
y j

u‖S0,r (D) , where

‖u‖S0,r(D) = sup
y∈Γ

∥∥u(·, y)
∥∥

Hr(D)
.

Also define

S p,1
0 (D) = C p(

Γ ; H1
0(D)

)
.

Let us recall some notation:

b[u, v] =
∫
Γ

ρ

∫
D

a∇u · ∇v dx dy and [u, v] =
∫
Γ

ρ

∫
D

uv dx dy.

5.2. Finite element spaces

Let us first consider finite element spaces on D ⊂ R
d . Let Xh and Gh be families of finite element approximation

subspaces of H1
0(D) and L2(D) that consist of piecewise linear continuous functions defined over a family of regular trian-

gulations of D with a maximum grid size parameter h > 0. We assume that Xh and Gh satisfy the following approximation
properties:

(i) for all φ ∈ Hα+1(D) ∩ H1
0(D), there exists C > 0 and an integer l such that

inf
φh∈Xh

∥∥φ − φh
∥∥

H1
0(D)

� Chα‖φ‖Hα+1(D), 0 � α � l, (5.7)

where l � 1 is usually determined by the order of the piecewise polynomials used to define Xh;
(ii) for all φ ∈ H1

0(D), there exists C > 0 such that

inf
φh∈Gh

∥∥φ − φh
∥∥

L2(D)
� Ch‖φ‖H1

0(D). (5.8)

Next, we consider finite element spaces on Γ ⊂ R
N . We partition Γ into a finite number of disjoint R

N boxes BN
i , that

is, for a finite index set I , we have

Γ =
⋃
i∈I

BN
i =

⋃
i∈I

N∏
j=1

(
a j

i ,b j
i

)
,

where BN
k ∩ BN

l = ∅ for k �= l ∈ I and (a j
i ,b j

i ) ⊂ Γ j .

A maximum grid size parameter 0 < δ < 1 is denoted by

δ = max
{∣∣b j

i − a j
i

∣∣/2: 1 � j � N and i ∈ I
}
.

Let Y δ ⊂ L2(Γ ) be the finite element approximation space of piecewise polynomials with degree at most p j on each

direction y j . Thus if ψδ ∈ Y δ , then ψδ |BN
i

∈ span(
∏N

j=1 y
n j

j : n j ∈ N and n j � p j). Letting p = (p1, p2, . . . , pN ), we have (cf.

see [6]) the following property: for all ψ ∈ C p+1
y (Γ ),

inf
ψδ∈Y δ

∥∥ψ − ψδ
∥∥

C0(Γ )
� δγ

N∑
j=1

‖∂ p j+1
y j

ψ‖C0(Γ )

(p j + 1)! , (5.9)

where γ = min1� j�N {p j + 1}.
We now think of finite element spaces on D × Γ , say V hδ . Here, if vhδ ∈ V hδ , vhδ ∈ span(φhψδ: φh(x) ∈ Xh and

ψδ(y) ∈ Y δ).
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We denote by Rh the H1(D)-projection from H1
0(D) onto Xh and P δ the L2(Γ )-projection from L2(Γ ) onto Y δ . Namely

for each φ ∈ H1
0(D),(

Rhφ,φh)
H1

0(D)
= (

φ,φh)
H1

0(D)
∀φh ∈ Xh;

for each ψ ∈ L2(Γ ),(
P δψ,ψδ

)
L2(Γ )

= (
ψ,ψδ

)
L2(Γ )

∀ψδ ∈ Y δ.

It follows from (5.7) that for all φ ∈ H1
0(D) ∩ Hα+1 and for some C > 0, we have∥∥φ − Rhφ

∥∥
H1

0(D)
� Chα‖φ‖Hα+1(D), 0 � α � l (5.10)

and from (5.9), for all ψ ∈ C p+1
y (Γ ), we obtain

∥∥ψ − P δψ
∥∥

C0(Γ )
� δγ

N∑
j=1

‖∂ p j+1
y j

ψ‖C0(Γ )

(p j + 1)! . (5.11)

By using the last two inequalities, we have the following property; see [4]: for all u ∈ C p+1(Γ ; Hα+1(D) ∩ H1
0(D)),

0 � α � l, there exists C > 0, which is independent of h, δ, N , and p, such that

inf
uhδ∈V hδ

∥∥u − uhδ
∥∥

S0,1
0 (D)

� C

(
hα‖u‖S0,α+1(D) + δγ

N∑
j=1

‖∂ p j+1
y j

u‖S0,1
0 (D)

(p j + 1)!

)
. (5.12)

Note that from the definition of the space S p,r(D) and its norm in Section 5.1, we may assume that 0 < ‖∂k
y j

‖op < 1 for

all 1 � j � N and 1 � k � p j + 1. Also we know that for the solution u of (5.6), each ∂k
y j

u is continuous on the bounded

domain Γ j and, hence, ∂k
y j

u is bounded. We now assume further that for each ∂k
y j

there is a constant c̃ > 0 such that

0 < ‖∂k
y j

‖op � c̃ < 1. With the help of (5.12), we state the approximation property for the solution:

inf
uhδ∈V hδ

∥∥u − uhδ
∥∥

S p+1,1
0 (D)

� C

(
hα‖u‖S0,α+1(D) + δγ

N∑
j=1

‖∂ p j+1
y j

u‖S0,1
0 (D)

(p j + 1)!

)
. (5.13)

Remark 5. Because a(x, y) = ∑N
j=1 c j(x)y j ∈ C p+1(D × Γ ), it is well known that the solution u of (5.6) satisfies u ∈

C p+1(Γ ; H2(D) ∩ H1
0(D)); see e.g., Lemma 4.1 in [21] and Remark 5.1 in [5]. Also if we assume that g(x, y) ∈ S p+1,0(D)

to carry out the analysis of the finite element method, then the solution u of the following problem also satisfies
u ∈ C p+1(Γ ; H2(D) ∩ H1

0(D)):

−div
[
a(x, y)∇u(x, y)

] = g(x, y) ∀(x, y) ∈ D × Γ,

u(x, y) = 0 ∀(x, y) ∈ ∂ D × Γ. (5.14)

Hence, under our assumptions, (5.13) makes sense for some α.

5.3. Error estimates for high-dimensional elliptic PDEs

Recall that our goal is to solve (5.6). The stochastic weak formulation of (5.6) is as follows: seek u ∈ S p+1,1
0 (D) such that

for all v ∈ S p+1,1
0 (D),

b[u, v] = [ f , v]. (5.15)

Then we have the finite element weak formulation: find uhδ ∈ V hδ such that for all vhδ ∈ V hδ ,

b
[
uhδ, vhδ

] = [
f , vhδ

]
. (5.16)

We want error estimate of solutions for (5.15) and (5.16) in S p+1,1
0 (D). Also we do the same thing with a finite data

g(x, y) instead of f (x). For these, using Remark 5, we have the following lemmas.

Lemma 5. Let 0 � ε � 1 and f (x) ∈ H−1+ε(D). Then for any y ∈ Γ , u(·, y) ∈ H1+ε(D) and there exists C > 0 such that∥∥u(·, y)
∥∥

H1+ε(D)
� C‖ f ‖H−1+ε(D).
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Proof. This follows from the interpolation theorem (see [22]). �
Remark 6. For problems with g(·, y) ∈ H−1+ε(D), we have∥∥u(·, y)

∥∥
H1+ε(D)

� C
∥∥g(·, y)

∥∥
H−1+ε(D)

.

Lemma 6. Let 0 � ε � 1, f (x) ∈ H−1+ε(D), u ∈ S p+1,1
0 (D), and c j(x) ∈ L∞(D). Then for all j = 1,2, . . . , N and for any y ∈ Γ , there

exists C > 0 such that

‖∂ p j+1
y j

u(·, y)‖H1
0(D)

(p j + 1)! � C‖c j‖p j+1
L∞(D)‖ f ‖H−1+ε(D).

Proof. This can be proved using the mathematical induction. �
Remark 7. For problems with g(x, y) ∈ C p+1(Γ ; H−1+ε(D)), we have

‖∂ p j+1
y j

u(·, y)‖H1
0(D)

(p j + 1)! � C

p j+1∑
k=0

1

k! ‖c j‖p j+1−k
L∞(D)

∥∥∂k
y j

g(·, y)
∥∥

H−1+ε(D)
.

As a consequence of (5.13), Lemma 5, and Lemma 6, we have the following theorem.

Theorem 7. Let 0 � ε � 1, f (x) ∈ H−1+ε(D), u be the solution of (5.15), and uhδ be the finite element solution of (5.16). Then there
exists C > 0 such that

∥∥u − uhδ
∥∥

S p+1,1
0 (D)

� C
(
hε + δγ

) N∑
j=1

max
{

1,‖c j‖p j+1
L∞(D)

}‖ f ‖H−1+ε(D).

Similarly, (5.13), Remark 6, and Remark 7 give the following remark.

Remark 8. For problems with g(x, y) ∈ S p+1,−1+ε(D), we have

∥∥u − uhδ
∥∥

S p+1,1
0 (D)

� C
(
hε + δγ

) N∑
j=1

max
0�k�p j+1

{
1,

1

k! ‖c j‖p j+1−k
L∞(D)

}(p j+1∑
k=0

∥∥∂k
y j

g
∥∥

S0,−1+ε(D)

)
.

6. Discrete approximation of the optimality system

In this chapter, we solve stochastic optimal control problems using results from previous chapter and the Brezzi–Rappaz–
Raviart theory. For this, we first introduce the theory.

6.1. Description of the Brezzi–Rappaz–Raviart theory

The B-R-R theory implies that the error of approximation of solutions of certain nonlinear problems under certain hy-
potheses is basically the same as the error of approximation of solutions of related linear problems; see [7,8,14]. Here for
the sake of completeness, we will state the relevant results, specialized to our needs.

Consider the following type of nonlinear problems: seek ψ ∈ X such that

ψ + T G(ψ) = 0, (6.1)

where T ∈ L(Y; X ), G is a C2 mapping from X into Y , and X and Y are Banach spaces. We say that ψ is a regular
solution of (6.1) if (6.1) holds and ψ + T Gψ(ψ) is an isomorphism from X into X . Here Gψ denotes the Fréchet derivative
of G with respect to ψ . We assume that there exists another Banach space Z , contained in Y , with continuous imbedding,
such that

Gψ(ψ) ∈ L(X ; Z) ∀ψ ∈ X . (6.2)

Approximations are defined by introducing a subspace X h ⊂ X and an approximating operator T h ∈ L(Y; X h). We seek
ψh ∈ X h such that

ψh + T h G
(
ψh) = 0. (6.3)
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Concerning the operator T h , we assume the approximation properties

lim
h→0

∥∥(
T h − T

)
ω

∥∥
X = 0 ∀ω ∈ Y (6.4)

and

lim
h→0

∥∥T h − T
∥∥

L(Z;X )
= 0. (6.5)

Note that whenever the imbedding Z ⊂ Y is compact, (6.5) follows from (6.4) and, moreover, (6.2) implies that the
operator T Gψ(ψ) ∈ L(X ; X ) is compact.

We now state the result of [7] that will be used in the sequel. In the statement of the theorem, D2 G represents any and
all second Fréchet derivatives of G .

Theorem 8. Let X and Y be Banach spaces. Assume that G is a C2 mapping from X to Y and that D2 G is bounded on all bounded sets
of X . Assume that (6.2), (6.4), and (6.5) hold and that ψ is a regular solution of (6.1). Then there exists a neighborhood O of the origin
in X and, for h � h0 small enough, a unique ψh ∈ X h such that ψh is a regular solution of (6.3). Moreover, there exists a constant
C > 0, independent of h, such that∥∥ψh − ψ

∥∥
X � C

∥∥(
T h − T

)
G(ψ)

∥∥
X . (6.6)

6.2. Recasting the optimality system and its discrete approximation into the B-R-R framework

We first fit our optimality system and its discrete approximation into the B-R-R framework to derive error estimates for
the discrete approximation of the optimality system. Then we obtain the desired error estimates by verifying assumptions
in the B-R-R theory.

We set X = S p+1,1
0 (D) × L2(D) × S p+1,1

0 (D) and Y = H−1(D) × S p+1,−1(D). We define the linear operator T ∈ L(Y; X )

as follows:

(ũ, f̃ , ξ̃ ) = T (r̃, τ̃ )

if and only if

b[ũ, v] = [r̃, v] ∀v ∈ S p+1,1
0 (D), (6.7)

b[ξ̃ , ζ ] = [τ̃ , ζ ] ∀ζ ∈ S p+1,1
0 (D), (6.8)

and

[β f̃ + ξ̃ , z] = 0 ∀z ∈ L2(D). (6.9)

We define G : X → Y by

G(ũ, f̃ , ξ̃ ) = (− f̃ ,−ũ + U ).

Then it is clear that the optimality system (2.4), (3.12), and (3.16) can be written as

(u, f , ξ) + T
(

G(u, f , ξ)
) = 0. (6.10)

Hence, the optimality system is recast into the form of (6.1).
We now set X hδ = V hδ × Gh × V hδ , where V hδ and Gh are from Section 5.2.
We define the discrete operator T hδ ∈ L(Y; X hδ) as follows:(

ũhδ, f̃ h, ξ̃hδ
) = T hδ(r̃, τ̃ )

if and only if

b
[
ũhδ, vhδ

] = [
r̃, vhδ

] ∀vhδ ∈ V hδ, (6.11)

b
[
ξ̃hδ, ζ hδ

] = [
τ̃ , ζ hδ

] ∀ζ hδ ∈ V hδ, (6.12)

and [
β f̃ h + ξ̃hδ, zh] = 0 ∀zh ∈ Gh. (6.13)

Then it is clear that the discrete optimality system,

b
[
uhδ, vhδ

] = [
f h, vhδ

] ∀vhδ ∈ V hδ, (6.14)

b
[
ξhδ, ζ hδ

] = [
uhδ − U , ζ hδ

] ∀ζ hδ ∈ V hδ, (6.15)
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and [
β f h + ξhδ, zh] = 0 ∀zh ∈ Gh, (6.16)

can be written as(
uhδ, f h, ξhδ

) + T hδ
(

G
(
uhδ, f , ξhδ

)) = 0.

Hence, the discrete optimality system is recast into the form of (6.3).

6.3. Error estimates for the approximation of solutions of the optimality system

In this section, we proceed to verify all assumptions in Theorem 8. We define first a space Z = L2(D) × S p+1,0(D). Then
clearly this space is continuously embedded into Y = H−1(D) × S p+1,−1(D).

Denote the Fréchet derivative of G(u, f , ξ) with respect to (u, f , ξ) by D G(u, f , ξ) or G(u, f ,ξ)(u, f , ξ). Then from
G(u, f , ξ), we obtain for (u, f , ξ) ∈ X ,

D G(u, f , ξ) · (ũ, f̃ , ξ̃ ) = (− f̃ ,−ũ) ∀(ũ, f̃ , ξ̃ ) ∈ X .

Proposition 1. D G(u, f , ξ) ∈ L(X ; Z) for all (u, f , ξ) ∈ X .

Proof. The result is followed from∥∥D G(u, f , ξ) · (ũ, f̃ , ξ̃ )
∥∥

Z = ‖ f̃ ‖L2(D) + ‖ũ‖S p+1,0(D) < ∞. �
Proposition 2. G is twice continuously differentiable and D2 G is bounded on all bounded sets of X .

Proof. For any (u, f , ξ) ∈ X ,

D2 G(u, f , ξ) · (ũ, f̃ , ξ̃ ) = (0,0) ∀(ũ, f̃ , ξ̃ ) ∈ X .

Thus, it is easy to show that D2 G is well defined, continuous, and bounded on all bounded sets of X . �
Before we show (6.4) and (6.5), we consider the following lemmas.

Lemma 9. Let f̃ ∈ L2(D) and ξ̃ ∈ S p+1,1
0 (D) in (6.9). Let f̃ h ∈ Gh and ξ̃ ∈ V hδ in (6.13). Then there exists C > 0 such that∥∥ f̃ − f̃ h

∥∥2
L2(D)

� C
(∥∥ξ̃ − ξ̃hδ

∥∥2
L2(D)

+ ∥∥ f̃ − gh
∥∥2

L2(D)

)
(6.17)

for all gh ∈ Gh.

Proof. From (6.9) and from (6.13), we see that[
β f̃ , zh] = −[

ξ̃ , zh] ∀zh ∈ Gh (6.18)

and [
β f̃ h, zh] = −[

ξ̃hδ, zh] ∀zh ∈ Gh. (6.19)

Subtracting (6.19) from (6.18) leads us to[
β
(

f̃ − f̃ h), zh] = −[
ξ̃ − ξ̃hδ, zh] ∀zh ∈ Gh. (6.20)

Thus, for any gh ∈ Gh , we find[
f̃ − f̃ h, f̃ − f̃ h] = [

f̃ − f̃ h, f̃ − gh] + [
f̃ − f̃ h, gh − f̃ h]

= [
f̃ − f̃ h, f̃ − gh] + 1

β

[
ξ̃ − ξ̃hδ, f̃ h − gh]. (6.21)

The Hölder inequality implies∥∥ f̃ − f̃ h
∥∥2

L2(D)
�

∥∥ f̃ − f̃ h
∥∥

L2(D)

∥∥ f̃ − gh
∥∥

L2(D)

+ 1 ∥∥ξ̃ − ξ̃hδ
∥∥

L2(D)

∥∥ f̃ h − f̃
∥∥

L2(D)
+ 1 ∥∥ξ̃ − ξ̃hδ

∥∥
L2(D)

∥∥ f̃ − gh
∥∥

L2(D)
. (6.22)
β β
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By Cauchy’s inequality with ε > 0, for some Cε that depends on ε , we have∥∥ f̃ − f̃ h
∥∥2

L2(D)
� ε

∥∥ f̃ − f̃ h
∥∥2

L2(D)
+ Cε

∥∥ f̃ − gh
∥∥2

L2(D)

+ Cε

β

∥∥ξ̃ − ξ̃hδ
∥∥2

L2(D)
+ ε

∥∥ f̃ h − f̃
∥∥2

L2(D)

+ 1

2β

∥∥ξ̃ − ξ̃hδ
∥∥2

L2(D)
+ 1

2

∥∥ f̃ − gh
∥∥2

L2(D)
. (6.23)

Now choose ε = 1
4 . Then there exists C > 0 such that∥∥ f̃ − f̃ h

∥∥2
L2(D)

� C
(∥∥ξ̃ − ξ̃hδ

∥∥2
L2(D)

+ ∥∥ f̃ − gh
∥∥2

L2(D)

)
(6.24)

for any gh ∈ Gh . �
Remark 9. ‖ f̃ − f̃ h‖L2(D) = ‖ f̃ − f̃ h‖L2(D) by the property of the density function ρ .

Lemma 10. Let r̃ ∈ H−1(D), ũ be the solution of

b[ũ, v] = [r̃, v] ∀v ∈ S p+1,1
0 (D), (6.25)

and ũhδ be the solution of

b
[
ũhδ, vhδ

] = [
r̃, vhδ

] ∀vhδ ∈ V hδ. (6.26)

Then we have∥∥ũ − ũhδ
∥∥

S p+1,1
0 (D)

→ 0 as h, δ → 0.

Proof. Let ε > 0 be given. Let r̃ ∈ H−1(D). Then there is a sequence of C∞-functions {r̃k} ⊂ L2(D) such that r̃k → r̃ in
H−1(D); i.e., there exists k0 such that

‖r̃ − r̃k0‖H−1(D) < ε. (6.27)

Now consider the following problems:

b[ũk0 , v] = [r̃k0 , v] ∀v ∈ S p+1,1
0 (D) (6.28)

and

b
[
ũhδ

k0
, vhδ

] = [
r̃k0 , vhδ

] ∀vhδ ∈ V hδ. (6.29)

Then from (6.25) and (6.28) and from (6.26) and (6.29), there exists C > 0 such that

‖ũ − ũk0‖S p+1,1
0 (D)

� C‖r̃ − r̃k0‖H−1(D) (6.30)

and ∥∥ũhδ − ũhδ
k0

∥∥
S p+1,1

0 (D)
� C‖r̃ − r̃k0‖H−1(D), (6.31)

respectively.
Hence, obviously,∥∥ũ − ũhδ

∥∥
S p+1,1

0 (D)
� ‖ũ − ũk0‖S p+1,1

0 (D)
+ ∥∥ũk0 − ũhδ

k0

∥∥
S p+1,1

0 (D)
+ ∥∥ũhδ

k0
− ũhδ

∥∥
S p+1,1

0 (D)

� C‖r̃ − r̃k0‖H−1(D) + ∥∥ũk0 − ũhδ
k0

∥∥
S p+1,1

0 (D)
+ C‖r̃ − r̃k0‖H−1(D). (6.32)

On the other hand, because r̃k0 ∈ L2(D), Theorem 7 yields

∥∥ũk0 − ũhδ
k0

∥∥
S p+1,1

0 (D)
� C

(
h + δγ

) N∑
j=1

max
{

1,‖c j‖p j+1
L∞(D)

}‖r̃k0‖L2(D). (6.33)

Thus, from the last inequality, by letting h, δ → 0, we obtain∥∥ũk0 − ũhδ
k

∥∥ p+1,1 < ε. (6.34)

0 S0 (D)
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Combining (6.27), (6.32) and (6.34),∥∥ũ − ũhδ
∥∥

S p+1,1
0 (D)

< (2C + 1)ε. (6.35)

Because ε is arbitrary, this complete the proof of Lemma 10. �
Remark 10. Likewise, ξ̃ in (6.8), ξ̃hδ in (6.12), and for τ̃ ∈ S p+1,−1(D), we have∥∥ξ̃ − ξ̃hδ

∥∥
S p+1,1

0 (D)
→ 0 as h, δ → 0.

Lemma 11. Let f̃ ∈ L2(D), gh ∈ Gh, and τ̃ ∈ S p+1,−1(D) in (6.8). Then there exists C > 0 such that∥∥ f̃ − gh
∥∥

L2(D)
� Ch‖τ̃‖H−1(D). (6.36)

Proof. From (6.9), we see that∫
D

β f̃ z dx = −
∫
D

(E ξ̃ )z dx.

The Hölder inequality implies that∫
D

|∇ f̃ |2 dx = 1

β2

∫
D

(E∇ ξ̃ )2 dx

� 1

β2

∫
D

E|∇ ξ̃ |2 dx = 1

β2
E

∫
D

|∇ ξ̃ |2 dx < ∞. (6.37)

On the other hand, choose gh = P̃ h f̃ , where P̃ h is an L2(D)-projection from L2(D) onto Gh . Because f̃ ∈ H1
0(D), by the

approximation property (5.8), there exists C > 0 such that∥∥ f̃ − gh
∥∥

L2(D)
= ∥∥ f̃ − P̃ h f̃

∥∥
L2(D)

� Ch‖ f̃ ‖H1
0(D). (6.38)

Thus, (6.36) follows by combining the last two inequalities and (6.8) because τ̃ ∈ S p+1,−1(D) ⊂ H−1(D). �
Proposition 3. For any (r̃, τ̃ ) ∈ Y , ‖(T − T hδ)(r̃, τ̃ )‖X → 0 as h, δ → 0.

Proof. By Lemma 9, we see that for any gh ∈ Gh , there exists C > 0 such that∥∥(
T − T hδ

)
(r̃, τ̃ )

∥∥
X = ∥∥(

ũ − ũhδ, f̃ − f̃ h, ξ̃ − ξ̃hδ
)∥∥

X

= ∥∥ũ − ũhδ
∥∥

S p+1,1
0 (D)

+ ∥∥ f̃ − f̃ h
∥∥

L2(D)
+ ∥∥ξ̃ − ξ̃hδ

∥∥
S p+1,1

0 (D)
(6.39)

�
∥∥ũ − ũhδ

∥∥
S p+1,1

0 (D)
+ C

(∥∥ξ̃ − ξ̃hδ
∥∥

S p+1,1
0 (D)

+ ∥∥ f̃ − gh
∥∥

L2(D)

)
.

Thus, by Lemma 10, Remark 10, and Lemma 11, we have∥∥(
T − T hδ

)
(r̃, τ̃ )

∥∥
X → 0 as h, δ → 0. �

Proposition 4. ‖T − T hδ‖L(Z,X ) → 0 as h, δ → 0.

Proof. Let τ̃ ∈ S p+1,0(D). From Remark 8 there exists C > 0 such that∥∥ξ̃ − ξ̃hδ
∥∥2

S p+1,1
0 (D)

� C
(
h2 + δ2γ

)
K‖τ̃‖2

S p+1,0(D)
, (6.40)

where K = max{1, 1
(k!)2 ‖c j‖2(p j+1−k)

L∞(D) : 1 � j � N, 0 � k � p j + 1}.

Theorem 7, Lemma 9, Lemma 11, and (6.40) yield∥∥(
T − T hδ

)
(r̃, τ̃ )

∥∥2
X � C

(
h2 + δ2γ

)
K

(‖r̃‖2
L2(D)

+ ‖τ̃‖2
S p+1,0(D)

)
� C

(
h2 + δ2γ

)
K

∥∥(r̃, τ̃ )
∥∥2

Z (6.41)

for some C > 0.
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Hence, we see that

∥∥T − T hδ
∥∥2

L(Z,X )
= sup

‖(r̃,τ̃ )‖Z �=0

‖(T − T hδ)(r̃, τ̃ )‖2
X

‖(r̃, τ̃ )‖2
Z

� sup
‖(r̃,τ̃ )‖Z �=0

C
(
h2 + δ2γ

)
K → 0 as h, δ → 0. � (6.42)

Proposition 5. A solution of (6.10) is regular.

Proof. A proof follows from the linearity and well-posedness of (6.11), (6.12), and (6.13). �
Through Propositions 1–5 we have verified all of the assumptions of Theorem 8. Thus, by that theorem, we obtain the

following results.

Theorem 12. Assume that U ∈ S p+1,1
0 (D). Let (u, f , ξ) ∈ S p+1,1

0 (D) × L2(D) × S p+1,1
0 (D) be the solution of the optimality sys-

tem (2.4), (3.12), and (3.16). Let (uhδ, f h, ξhδ) ∈ V hδ × Gh × V hδ be the solution of the discrete optimality system (6.14), (6.15),
and (6.16). Then we have∥∥u − uhδ

∥∥
S p+1,1

0 (D)
+ ∥∥ f − f h

∥∥
L2(D)

+ ∥∥ξ − ξhδ
∥∥

S p+1,1
0 (D)

→ 0 as h, δ → 0.

Moreover, there exists C > 0 such that∥∥u − uhδ
∥∥2

S p+1,1
0 (D)

+ ∥∥ f − f h
∥∥2

L2(D)
+ ∥∥ξ − ξhδ

∥∥2
S p+1,1

0 (D)
(6.43)

� C
(
h2 + δ2γ

)
K

(‖ f ‖2
L2(D)

+ ‖u − U‖2
S p+1,0(D)

)
, (6.44)

where K = max{1, 1
(k!)2 ‖c j‖2(p j+1−k)

L∞(D) : 1 � j � N, 0 � k � p j + 1}.
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