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Abstract

In this paper, we consider the Fourier coefficients of meromorphic Jacobi forms of
negative index. This extends recent work of Creutzig and the first two authors for the
special case of Kac–Wakimoto characters which occur naturally in Lie theory and yields,
as easy corollaries, many important PDEs arising in combinatorics such as the famous
rank–crank PDE of Atkin and Garvan. Moreover, we discuss the relation of our results to
partial theta functions and quantummodular forms as introduced by Zagier, which
together with previous work on positive index meromorphic Jacobi forms illuminates
the general structure of the Fourier coefficients of meromorphic Jacobi forms.

1 Introduction and statement of results
The general framework of Jacobi forms was laid down by Eichler and Zagier in [14]. This
theory has played an important role in many areas of number theory, including the theory
of Siegelmodular forms [24], the study of centralL-values andderivatives of twisted elliptic
curves [16], and in the theory of umbral moonshine [10], just to name a few. Roughly
speaking, a Jacobi form is a function φ : C × H → C, where H := {τ ∈ C : Im(τ ) > 0},
which satisfies two transformations similar to the transformations of elliptic functions
and of modular forms (see Sect. 2.1). We refer to the variable in C (denoted by z) as
the elliptic variable and to the variable in H (denoted by τ ) as the modular variable. As
any Jacobi form φ is one-periodic as a function of z, it is natural to consider its Fourier
expansion in terms of ζ := e(z), where e(x) := e2π ix. In the classical case of holomorphic
Jacobi forms, the Fourier coefficients give rise to a vector-valued modular form via the
theta decomposition of the Jacobi form (see Sect. 2.1).
If φ has poles in the elliptic variable, the story becomes much more interesting and

difficult. In this case, the Fourier coefficients depend on the choice of range of z and are
notmodular. Such coefficients played a key role in the study of themock theta functions of
Ramanujan in [28], where theywere studied in relation tomockmodular forms and certain
Appell–Lerch sums. Subsequent extensions and applications to quantumblack holes were
given in [12] (see also [19] for the appearance of mock modular forms in the context of
quantum gravity partition functions andAdS3/CFT2, as well as [18] for a relation between
multicentered black holes andmock Siegel–Narain theta functions). Meromorphic Jacobi
forms also played a key role in the study of Kac and Wakimoto characters (see [17]), as
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studied in [5,15,23]. Collectively, these works completed the picture in the case when the
meromorphic Jacobi form has positive index.
In [4], Creutzig and the first two authors considered the first cases of negative index

Jacobi forms, finishing the question of Kac and Wakimoto for their characters. In par-
ticular, using the classical Jacobi theta function ϑ(z; τ ) as defined in (2.2), the (M,N )th
Kac–Wakimoto character is, forM,N ∈ N0 and after a change of variables, the function

φM,N (z) = φM,N (z; τ ) := ϑ
(
z + 1

2 ; τ
)M

ϑ(z; τ )N
.

As an example of their importance, these functions contain information about certain
affine vertex algebras and their associated affine Lie algebras as studied by Kac andWaki-
moto [17], who asked for the general modularity properties of such functions.
Furthermore, for various choices of M,N , the functions φM,N are of combinatorial

interest. In particular, the functionφ0,1 is essentially the famousAndrews–Dyson–Garvan
crank generating function, which was used by Andrews and Garvan [1] to provide a
combinatorial explanation for the Ramanujan congruences for the partition function, as
postulated by Dyson [13]. Hence, an explicit understanding of the Fourier coefficients of
φ0,N gives relations between powers of the crank generating function and certain Appell–
Lerch series, giving a family of PDEs generalizing the “rank–crank PDE” of Atkin and
Garvan [2] (see Corollary 1.3), and generalizing families of PDEs studied by Chan et al.
in [9] and by the third author in [29]. The beautiful identity of Atkin and Garvan gives
a surprising connection between the rank and crank generating functions which can be
used to show various congruences relating ranks and cranks, as well as useful relations
between the rank and crank moments [2].
Further examples of negative index Jacobi forms may also be found in the theory of

vertex operator algebras. For example, they arise in the context of certain chiral two-point
functions associated with lattice theories whose trace is restricted to a simple module of
a Heisenberg vertex operator algebra. The interested reader is referred to [21] Corollary
3.15 for details, and more details can also be found in [20,22].
In this paper, we generalize the work of [4], offering a completely general picture for

negative index Jacobi forms.Todescribe our results, we letm ∈ − 1
2N, τ ∈ H, and ε ∈ {0, 1}

and consider meromorphic functions φ : C → C that satisfy the elliptic transformation
law (2.1). For example, ifφM,N is a Kac–Wakimoto character, then it transforms according
to (2.1) with ε = ε(N ) andm = M−N

2 , where ε(N ) ∈ {0, 1} is such that ε(N ) ≡ N (mod 2).
Note that a Jacobi form also satisfies a modular transformation law (in the suppressed
variable τ ), but for our main result, only assuming (2.1) suffices.
We now defineDx := 1

2π i
∂
∂x for a general variable x and consider the level 2M Appell–

Lerch sum given forM ∈ 1
2N by

FM,ε(z, u) = FM,ε(z, u; τ ) :=
(
ζw−1)M ∑

n∈Z

(−1)nεw−2MnqMn(n+1)

1 − qnζw−1 , (1.1)

where q := e(τ ), w := e(u). The following is then our main result, where, as is further
explained in Sect. 2.1,Dj,v = Dj,v(τ ) is the−jth Laurent coefficient of φ around z = v, sz0 ,τ
gives the locations of a set of representatives of the poles of φ, and Pz0 is a fundamental
parallelogram for the latticeZτ +Z. Further note that in the following theorem, although
the dependence on τ is suppressed, both sides of (1.2) depend on τ .
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Theorem 1.1 Let m ∈ − 1
2N and ε ∈ {0, 1}, and suppose that z0 is chosen so that φ has no

poles on ∂Pz0 . If φ is a meromorphic function satisfying (2.1) with this particular choice of
ε, then

φ(z) = −
∑

u∈sz0 ,τ

∑

n∈N

Dn,u
(n − 1)!

Dn−1
v (F−m,ε(z, v))

∣∣
v=u. (1.2)

Remark As φ is a meromorphic function, there are only finitely many nonzero terms in
the sum over n in the right-hand side of (1.2).

Remark This theorem complements work in [6]. Namely, the authors of [6] show that
general H-harmonic Maass–Jacobi forms of indexm < 0 may be decomposed as

∑

	 (mod 2m)
h	(τ )μ̂m,	(z; τ ) + ψ(z; τ ),

where the h	 are the components of a vector-valued modular form, the μ̂m,	 are dis-
tinguished functions depending only on m and 	, and ψ is a meromorphic Jacobi form
of index m (the interested reader is also referred to [25] for important extensions of this
work). Hence, Theorem 1.1 allows one to further decompose the piecesψ in these decom-
positions, which yields explicit decompositions of H-harmonic Maass–Jacobi forms.

As a corollary, applying this result to the Kac–Wakimoto characters φM,N yields the
following, which extends Theorem 1.3 in [4] to the case of general Kac–Wakimoto char-
acters. Note that the only pole of these functions occurs at z = 0 (independent of τ ) and
is of order precisely N .

Corollary 1.2 For M ∈ N0 and N ∈ N with M < N, we have the decomposition

φM,N (z) = −
N∑

n=1

Dn,0
(n − 1)!

Dn−1
v

(
FN−M

2 , ε(N )(z, v)
) ∣

∣∣∣
v=0

.

As discussed in [4], Corollary 1.2 has applications to interesting differential equations of
combinatorial generating functions and in particular recovers important identities which
were previously observed. In particular, Theorem 1.1 immediately implies the rank–crank
PDEofAtkin andGarvan.To state it,wefirst recall the rankandcrankgenerating functions
(whose combinatorial definitions are not needed in this paper), which arise in many
contexts and in particular give combinatorial explanations of Ramanujan’s congruences
(for example see [1,3,13]). Specifically, the generating functionsR and C for the rank and
crank, respectively, may be shown to possess the following representations [1,3], where
for n ∈ N0 ∪ {∞}, we set (a; q)n = (a)n := ∏n−1

j=0
(
1 − aqj

)
:

R(ζ ; q) :=
∑

n≥0

qn2

(ζq)n
(
ζ−1q

)
n
, and C(ζ ; q) := (q)∞

(ζq)∞(ζ−1q)∞
.

Atkin andGarvan [2] proved the following PDE, whereR∗ and C∗ are normalized versions
ofR andC (this PDEalso follows as special cases of themain results in [9,29]). As explained
in [4], the following follows directly from Theorem 1.1 when applied to the Jacobi form
φ0,3.

Corollary 1.3 The rank–crank PDE of Atkin and Garvan holds true. That is, we have

2η(τ )2C∗(ζ ; q)3 = (
6Dτ + D2

z
)R∗(ζ ; q). (1.3)
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Remark Theorem1.1 immediately implies other PDEs for combinatorial generating func-
tions. For example, the results in Section 3.2 of [8] in relation to the overpartition gener-
ating function immediately follow from Theorem 1.1 as applied to φ1,3.

As stated above, our main goal is to describe the Fourier coefficients of φ. We first
require partial theta functions defined for z ∈ C, τ ∈ H,M ∈ 1

2N, and 	 ∈ M + Z by

ϑ+
	,ε,M(z) = ϑ+

	,ε,M(z; τ ) :=
∑

n≥0
(−1)nεq

(2Mn−	)2
4M ζ 2Mn−	. (1.4)

Our second result is then the following, where h	,z0 (τ ) is the 	th Fourier coefficient of φ

with respect to z0 as defined in (2.4).

Theorem 1.4 Let m ∈ − 1
2N, τ ∈ H, and φ be a meromorphic function satisfying (2.1)

with ε ∈ {0, 1}. If z0 ∈ C is chosen so that φ has no poles on ∂Pz0 , then we have for any
	 ∈ m + Z that

h	,z0 (τ ) =
∑

u∈sz0 ,τ

∑

n∈N

Dn,u(τ )
(n − 1)!

Dn−1
z

(
ϑ+

	,ε,−m (z; τ )
) ∣

∣
z=u. (1.5)

In particular, Theorem 1.4 directly implies the following result, which is analogous to
Theorem 1.4 of [4] (where a different range for the Fourier coefficients is used).

Corollary 1.5 Let φ = φM,N with M ∈ N0, N ∈ N, and M < N. Then, for any 	 ∈
M−N

2 + Z, we have

h	,− 1
2− τ

2
(τ ) =

N∑

n=1

Dn,0(τ )
(n − 1)!

Dn−1
z

(
ϑ+

	,ε(N ), N−M
2

(z; τ )
) ∣

∣∣
z=0

.

Remark Following the proof of Theorem 1.5 of [4], one finds that the partial theta func-
tions ϑ+

	,ε−m are all quantummodular forms, so that Theorem 1.4 implies that the Fourier
coefficients of a general negative index Jacobi form are expressible as derivatives of quan-
tum modular forms times quasimodular forms. This is further explained in Sect. 2.2 (see
Theorem 2.2).

The paper is organized as follows. In Sect. 2.1, we review the basic theory of Jacobi
forms, theta decompositions, and the definition of Fourier coefficients of Jacobi forms. In
Sect. 2.2, we discuss the theory of quantum modular forms in the context of partial theta
functions. We complete the proofs of the main results in Sect. 3.

2 Preliminaries
2.1 Jacobi forms and Fourier coefficients

We begin by recalling the notion of a holomorphic Jacobi form, referring the interested
reader to [14] for the general theory. Roughly speaking, a holomorphic Jacobi form is a
holomorphic functionφ onC×Hwhich satisfies amodular transformation, together with
an elliptic transformation. We are mainly interested in the explicit elliptic transformation
property and consider functions which transform in the complex z-variable as

φ(z + λτ + μ) = (−1)2mμ+λεe−2π im(λ2τ+2λz)φ(z) (2.1)
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for all λ,μ ∈ Z, where m ∈ 1
2Z and ε ∈ {0, 1}. We refer to m as the index of the Jacobi

form. For example, in the motivating case of the Kac–Wakimoto characters, we require
the Jacobi ϑ function given by

ϑ(z) = ϑ(z; τ ) := −iζ− 1
2 q

1
8 (q)∞(ζ )∞

(
ζ−1q

)
∞ . (2.2)

It is well known that ϑ(z; τ ) is a holomorphic Jacobi form with multiplier of weight 1
2 and

index 1
2 . In particular, it satisfies (2.1) with ε = 1 andm = 1

2 , namely

ϑ(z + λτ + μ) = (−1)λ+μe−π i(λ2τ+2λz)ϑ(z) (2.3)

for all λ,μ ∈ Z.
One of the most useful properties of holomorphic Jacobi forms, which in particular

makes the study of their Fourier coefficients in ζ easy, is their theta decomposition.
Namely, directly from the holomorphicity of φ and the elliptic transformation property,
one finds that any holomorphic Jacobi form φ of indexm ∈ N with ε = 0 decomposes as

φ(z; τ ) =
∑

	 (mod 2m)
h	(τ )ϑm,	(z; τ ),

where

ϑm,	(z; τ ) :=
∑

n∈Z
n≡	 (mod 2m)

q
n2
4m ζ n,

and

h	(τ ) := q− 	2
4m

∫ 1

0
φ(z; τ )e−2π i	zdz.

Moreover, the modularity of φ implies that the coefficients h	 (0 ≤ 	 ≤ 2m− 1) comprise
a vector-valued modular form of weight k − 1/2, where k is the weight of the Jacobi form
(see Chapter 2, Section 5 of [14]).
When φ has poles, the situation is more complicated. Firstly, the Fourier coefficients

depend on the imaginary part of z and on the choice of path of integration. To this end,
following [12], we define for z0 ∈ C and φ a function satisfying the transformation in (2.1)
withm ∈ 1

2Z and ε ∈ {0, 1}, the (slightly modified) Fourier coefficients by

h	(τ ) = h	,z0 (τ ) := q− 	2
4m

∫ z0+1

z0
φ(z; τ )e−2π i	zdz, (2.4)

where 	 ∈ m+Z. Here, the path of integration is the straight line connecting z0 and z0+1
if there are no poles on this line. If there is a pole on the line which is not an endpoint,
then we define the path to be the average of the paths deformed to pass above and below
the pole. Finally, if there is a pole at an endpoint, note that the integral (2.4) only depends
on the imaginary part of z0. Then we replace the path [z0, z0 + 1] with [z0 − δ, z0 + 1− δ]
for small δ so that there is not a pole at an endpoint, and then define the integral as above
when there is a pole in the interior of the line.
To facilitate our study of meromorphic Jacobi forms, we require some notation. Firstly,

for z0 ∈ C, we let Pz0 := z0 + [0, 1)τ + [0, 1) and we denote by sz0 ,τ the complete set of
poles of φ in Pz0 . Finally, we denote the Laurent coefficients of φ around u by

φ(z) =:
Dn,u

(2π i(z − u))n
+ · · · + D1,u

2π i(z − u)
+ O(1). (2.5)
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We note in passing that the Laurent coefficients are well known to be quasimodular in
the suppressed variable τ if φ is a Jacobi form. Roughly speaking, a quasimodular form is
simply the constant term in 1/v of an almost holomorphicmodular form, where an almost
holomorphic modular form is a function of τ ∈ H which transforms as a modular form
and which is a polynomial in 1/v with holomorphic coefficients, where τ = u + iv with
u, v ∈ R.

2.2 Partial theta functions and quantummodular forms

In this section, we recall some basic facts concerning quantum modular forms. We begin
with the following definition, where |k is the usual Petersson slash operator (see [26] for
more background on quantum modular forms).

Definition 2.1 For any cofinite set Q ⊆ Q, we say a function f : Q → C is a quantum
modular form of weight k ∈ 1

2Z on a congruence subgroup � if for all γ ∈ �, the cocycle

rγ (τ ) := f |k (1 − γ )(τ )

extends to an open subset of R and is analytically “nice.” Here, “nice” could mean contin-
uous, smooth, real-analytic, etc.

One of the most striking examples of a quantummodular form is Kontsevich’s function
F (q), as studied by Zagier in [27], which is given by

F (q) :=
∑

n≥0
(q)n. (2.6)

This function does not converge on any open subset ofC, but is a finite sum for q any root
of unity. Zagier’s study of F depends on the “sum of tails” identity

∑

n≥0

(
η(τ ) − q

1
24 (q)n

)
= η(τ )D (τ ) − 1

2
∑

n≥1
nχ12(n)q

n2−1
24 , (2.7)

where η(τ ) := q1/24(q)∞, D(τ ) := − 1
2 + ∑

n≥1
qn

1−qn , and χ12(·) :=
( 12

·
)
. The key obser-

vation of Zagier is that in (2.7), the values η(τ ) and η(τ )D(τ ) vanish to infinite order as
τ → h/k , so at a root of unity ξ , F (ξ ) is essentially the limiting value of the partial theta
function

∑
n≥1 nχ12(n)q

n2−1
24 , which he showed has quantum modular properties [27].

In the decomposition of Jacobi forms of negative index, we encounter the more gen-
eral partial theta functions ϑ+

	,M,ε(z; τ ) defined in (1.4). These functions turn out to yield
quantum modular forms.

Theorem 2.2 For any m ∈ − 1
2N, 	 ∈ m + Z, ε ∈ {0, 1}, and z ∈ Qτ + Q, the partial

theta function ϑ+
	,ε,−m(z; τ ) is (up to multiplication by a rational power of q) a quantum

modular form of weight 1/2 whose cocycles are real-analytic except at one point.

Proof Note that if z = λτ + μ with λ,μ ∈ Q, then, up to multiplication by a constant and
a multiple of q, and after rescaling τ �→ τ/m, we are led to study a partial theta series of
the form

∑

n≥0
(−1)nεq(n+ a

b )
2

(2.8)
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for some a/b ∈ Q. As explained in [7], (2.8) is a “holomorphic Eichler integral” of the
theta series

∑

n∈Z
(−1)nε

(
n + a

b

)
q(n+ a

b )
2
. (2.9)

As (2.9) is a cusp form of weight 3/2, Theorem 2.2 follows directly from Theorem 1.1 of
[7] (for a different perspective on these quantum modular forms, the reader is referred
also to [11]). �

3 Proofs of themain results
We begin by giving the key properties of FM,ε needed for the proof of Theorem 1.1, both
of which follow from direct calculations.

Lemma 3.1 LetM ∈ 1
2N and τ ∈ H. As a function of u, we have the elliptic transformation

property

FM,ε(z, u + λτ + μ) = (−1)2Mμ+λεe−2π iM(λ2τ+2λu)FM,ε(z, u),

for all λ,μ ∈ Z. Furthermore, as a function of u, FM,ε(z, u) is a meromorphic function
having only simple poles in z + Zτ + Z and residue 1

2π i in u = z.

We are now in a position to prove our main result, Theorem 1.1.

Proof of Theorem 1.1 Let z ∈ C be such that φ is holomorphic in z. Further let z0 ∈ C be
such that z ∈ Pz0 and that φ has no poles on the boundary of Pz0 . We consider the integral

∫

∂Pz0
φ(v)F−m,ε(z, v)dv,

whichwenowcompute in twodifferentways:On the onehand,wefind fromequation (2.1)
and Lemma 3.1 that the integrand is both one- and τ -periodic. Hence, we immediately
see that the integral vanishes. On the other hand, we can use the residue theorem to give
another evaluation of the integral. For this, we note that the poles of v �→ φ(v)F−m,ε(z, v)
in Pz0 are the poles of φ in Pz0 together with z. In v = z, the function has residue 1

2π iφ(z),
so we have

∫

∂Pz0
φ(v)F−m,ε(z, v)dv = φ(z) + 2π i

∑

u∈sz0 ,τ
Res
v=u

[
φ(v)F−m,ε(z, v)

]

and thus we get

φ(z) = −2π i
∑

u∈sz0 ,τ
Res
v=u

[
φ(v)F−m,ε(z, v)

]
.

Since the function v �→ φ(v)F−m,ε(z, v) is invariant under translation by a lattice point, so
is u �→ Res

v=u

[
φ(v)F−m,ε(z, v)

]
. Hence, we can drop the condition that z0 is such that z ∈ Pz0

and take z0 to be arbitrary (as long as there are no poles of φ on the boundary of Pz0 ). The
theorem now follows immediately by inserting the definition of the Laurent coefficients
Dn,u. �

Before giving the proof of Theorem1.4, we require the following properties of the partial
theta functions under consideration, which follow from a direct calculation.
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Lemma 3.2 For all λ,μ ∈ Z, 	 ∈ 1
2Z, and M ∈ 1

2N, we have

(−1)2	μqMλ2ζ 2Mλϑ+
	,ε,M (z + λτ + μ) = ϑ+

	−2Mλ,ε,M(z). (3.1)

Furthermore,

ϑ+
	,ε,M(z) − (−1)εqMζ 2Mϑ+

	,ε,M(z + τ ) = q
	2
4M ζ−	. (3.2)

Proof of Theorem 1.4 By the residue theorem, we have
∫

∂Pz0
φ(v)ϑ+

	,ε,−m(v)dv = 2π i
∑

u∈sz0 ,τ
Res
v=u

[
φ(v)ϑ+

	,ε,−m(v)
]
.

On the other hand, we can compute the integral directly. Since φ ϑ+
	,ε,−m is one-periodic

(using the fact that 	 ∈ m + Z), we find using (2.1) and (3.2) that

∫

∂Pz0
φ(v)ϑ+

	,ε,−m(v)dv =
∫ z0+1

z0
φ(v)ϑ+

	,ε,−m(v)dv −
∫ z0+τ+1

z0+τ

φ(v)ϑ+
	,ε,−m(v)dv

=
∫ z0+1

z0

(
φ(v)ϑ+

	,ε,−m(v) − φ(v + τ )ϑ+
	,ε,−m(v + τ )

)
dv

=
∫ z0+1

z0
φ(v)

(
ϑ+

	,ε,−m(v) − (−1)εe−2π im(τ+2v)ϑ+
	,ε,−m(v + τ )

)
dv

= e−
π i	2τ
2m

∫ z0+1

z0
φ(v)e−2π i	vdv = h	,z0 (τ ).

Comparing the two evaluations of the integral implies that

h	,z0 (τ ) = 2π i
∑

u∈sz0 ,τ
Res
v=u

[
φ(v)ϑ+

	,ε,−m(v)
]
.

The result then follows directly by inserting the definition of the Laurent coefficients into
the last formula. �

Proof of Corollaries 1.2 and 1.5 By (2.3), we find that φM,N transforms according to (2.1)
with ε = ε(N ) and m = M−N

2 . Further note that φM,N is a function whose only poles
are poles of order N in Z + Zτ . Corollary 1.2 then follows directly by applying (1.2) with
z0 = − 1

2 − τ
2 . Similarly, Corollary 1.5 follows directly by plugging into Theorem 1.4. �
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