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Abstract

Background: A rapidly increasing flow of genomic data requires the development of efficient methods for
obtaining its compact representation. Feature extraction facilitates classification, clustering and model analysis for
testing and refining biological hypotheses. “Shotgun” metagenome is an analytically challenging type of genomic
data - containing sequences of all genes from the totality of a complex microbial community. Recently, researchers
started to analyze metagenomes using reference-free methods based on the analysis of oligonucleotides (k-mers)
frequency spectrum previously applied to isolated genomes. However, little is known about their correlation with the
existing approaches for metagenomic feature extraction, as well as the limits of applicability. Here we evaluated a
metagenomic pairwise dissimilarity measure based on short k-mer spectrum using the example of human gut
microbiota, a biomedically significant object of study.

Results: We developed a method for calculating pairwise dissimilarity (beta-diversity) of “shotgun” metagenomes
based on short k-mer spectra (5 ≤ k ≤ 11). Themethod was validated on simulatedmetagenomes and further applied
to a large collection of human gut metagenomes from the populations of the world (n = 281). The k-mer spectrum-
based measure was found to behave similarly to one based on mapping to a reference gene catalog, but different
from one using a genome catalog. This difference turned out to be associated with a significant presence of viral reads
in a number of metagenomes. Simulations showed limited impact of bacterial genetic variability as well as sequencing
errors on k-mer spectra. Specific differences between the datasets from individual populations were identified.

Conclusions: Our approach allows rapid estimation of pairwise dissimilarity between metagenomes. Though we
applied this technique to gut microbiota, it should be useful for arbitrary metagenomes, even metagenomes with
novel microbiota. Dissimilarity measure based on k-mer spectrum provides a wider perspective in comparison with
the ones based on the alignment against reference sequence sets. It helps not to miss possible outstanding features
of metagenomic composition, particularly related to the presence of an unknown bacteria, virus or eukaryote, as well
as to technical artifacts (sample contamination, reads of non-biological origin, etc.) at the early stages of bioinformatic
analysis. Our method is complementary to reference-based approaches and can be easily integrated into
metagenomic analysis pipelines.
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Background
During the last decade, metagenomics became one of
the explosively developing areas of molecular genomics.
Advent of the next-generation sequencing allowed per-
forming genomic analysis of samples obtained directly
from the environment. Such an approach provides data
for an extensive quantitative examination of the microbial
community structure, particularly including uncultivable
and previously undiscovered components. The sphere of
metagenomic analysis has extended from science to heavy
industry [1], agriculture [2, 3] and healthcare [4]. A large
amount of metagenomic data is constantly being accumu-
lated which leads to a demand in the means of efficient
analysis [5].
One of the common steps in metagenomic study is cal-

culation of pairwise dissimilarity between the samples
(beta-diversity) [6]. Beta-diversity is a quantitative mea-
sure of the differences in composition between twomicro-
bial communities. Its value is calculated from features like
taxonomic or functional composition, phylogenetic struc-
ture of the whole community, etc. A dissimilarity matrix
composed of pairwise distances between all samples is
used for further cluster analysis, classification and study
of influence of the experimental factors. In large-scale
studies involving tens and hundreds of metagenomes, crit-
ical requirements in beta-diversity analysis include high
algorithm performance and low memory usage.
For a long time, the standard technological approach

for the evaluation of beta-diversity was based on the
identification of species in metagenomic samples through
16S rRNA gene sequencing. However, this method has
inherent disadvantages including incompleteness of refer-
ence databases, presence of multiple copies of 16S rRNA
gene in the same genome, discrepancy between phylo-
genetic trees constructed using 16S rRNA and the other
genes and lack of information about the other genes and
subsequently metabolic potential of the studied commu-
nity. An alternative, more informative method is whole-
genome sequencing (WGS, “shotgun”) generatingmillions
of reads from the total DNA of the genomes of all organ-
isms inhabiting the environment. The identification of
the organisms in the short-read WGS metagenome is
commonly based on the alignment or de novo assem-
bly [7]. The alignment method is a comparison between
sequences of obtained reads and sequences of reference
genes or genomes, and has significant drawbacks such as
high computational costs and incomplete databases. De
novo assembly is usually a time-consuming task for such
complex data as metagenomes that may contain many
unknown or highly similar genomes of organisms with
widely varying abundance.
With a rapid increase in data output produced by

sequencing technologies, efficient methods for genomic
analysis based on k-mer composition analysis emerged.

Such algorithms work with k-mers (oligonucleotide
sequences of length k, also called l-tuples or n-grams)
obtained directly from metagenomic reads, without pre-
mapping or assembly.
In comparison with reference-based methods, the main

advantages of k-mer based approaches are compressed
representation of sequences and inclusion of the entire
data volume into analysis (unlike alignment, where only
the reads successfully mapped to a reference database
influence the result). Among these methods, the most
simple and effective for exploratory analysis of large data
sets is comparison of sequences by calculation of pair-
wise dissimilarity between them on the basis of k-mer
spectrum - a normalized vector of frequencies of occur-
rences of each k-mer in the metagenome. The k-mer
length is a key factor influencing specificity and effi-
ciency of the comparison. For different intervals of k,
the respective algorithms have been designed that tar-
get different specific tasks. For example, for very short
k-mers (k = 4 − 7) only “rough” estimates are possi-
ble: sequence quality check [8, 9], taxonomic separation
of individual genomes [10–12] or comparison of metage-
nomic communities with notably different composition
[13–16]. For k = 15 − 30, the computational costs asso-
ciated with the processing of the whole spectrum increase
significantly. Two approaches can be applied to reduce
them. This problem can be solved in two ways. The first
is to select a fraction of k-mers that describe the stud-
ied data in the most complete way (feature extraction)
[17]. Another way is to combine multiple k-mers into one
feature using a certain principle (different approaches of
k-mer binning) [18, 19]. In the intermediate range (k =
7 − 12), it is still computationally feasible to analyze the
complete set of k-mers, and the k-mer length remains
sufficiently specific [12, 20] for comparing distinct
genomes.
Among the metagenomic k-mer methods, the most

simple and effective for exploratory analysis of large data
sets is comparison of sequences by calculation of pair-
wise distances between them on the basis of k-mer spectra
[21, 22]. In this area, researchers are actively designing
fast algorithms for calculating and assessing the k-mer
spectrum [23, 24]. Most studies are focused on exam-
ining clustering of the samples by one or more factors
(geography, nutrition, clinical status, etc.) [17, 21].
Since the prevalent approaches for assessment of beta-

diversity today are reference-based, an important question
is how their results correlate with the k-mer meth-
ods. In this study, we compared common reference-
based methods (based on taxonomic and gene composi-
tion, including phylogeny-aware methods) with the k-mer
approach. We explored how various characteristics of the
data influence the results of k-mer spectra analysis and
identified the advantages of k-mer analysis comparing
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with the reference-based approaches. To evaluate the
applicability of k-mer-based dissimilarity, metagenome
of human gut microbiota was selected, the study of
which has great biomedical importance and perspec-
tive. Although nowadays intestinal microbiota is one of
the most studied among complex microbial communi-
ties, many of its components are still not fully iden-
tified (among them are uncultured bacteria, phages,
fungi and protozoa) [25]. The application of our method
revealed significant presence of one of such compo-
nents - phage - that went undetected by reference-based
methods.

Methods
Simulated metagenomes
Two set of “shotgun” gut metagenomes were simulated
using MetaSim [26]. The high-diversity set included 100
metagenomes generated from the genomes of ten dis-
tantly related major bacterial species accounting for more
than 90% of all reads in Chinese group: Akkermansia
muciniphila ATCC BAA-835, Alistipes shahii WAL 8301,
Bacteroides vulgatus ATCC 8482, Bifidobacterium ado-
lescentis ATCC 15703, Coprococcus sp. ART55/1, Eubac-
terium eligens ATCC 27750, Faecalibacterium prausnitzii
L2-6, Lachnospiraceae bacterium 1 4 56FAA, Prevotella
copri DSM 18205 and Ruminococcus sp. 18P13.
The simulation included the following steps. First, for

each genome, mean and standard deviation of its rel-
ative abundance were estimated from the taxonomic
composition of the Chinese metagenomes. For each
metagenome, ten abundance values were randomly gener-
ated under normal distribution with these parameters and
the obtained values were normalized to 1 million reads; a
total of 100 genera abundance vectors were obtained (see
Additional file 1: Table S1). The metagenomes were gen-
erated by mixing ten bacterial genomes at the obtained
abundance levels and sampling short reads from the
genomes using MetaSim with read length 100 bp. Also
we performed sampling of these reads with errors (1% -
probability of error in each base).
The low-diversity simulated group included 100

metagenomes generated in a similar way from the
genomes of ten closely related major bacterial species
accounting for more than 90% of all reads in the HMP
group: Bacteroides vulgatus ATCC 8482, Bacteroides
dorei 5 1 36/D4, Bacteroides uniformis ATCC 8492,
Bacteroides stercoris ATCC 43183, Bacteroides caccae
ATCC 43185, Bacteroides ovatus (strains SD CMC, ATCC
8483 and 3 8 47FAA), Bacteroides xylanisolvensXB1A and
Bacteroides thetaiotaomicron VPI-5482. Bacterial propor-
tions for these simulations are listed in Additional file 1:
Table S2.
For single nucleotide polymorphism (SNP) simulations,

the same ten reference genomes and abundance values

as in the high-diversity dataset were used. Two different
models of SNPs introduction were used: “independent”
and “phylogenetic”.
In the “independent” SNPmodel, 64 “mutated” genomes

were generated for each reference species by chang-
ing nucleotide letter at random positions independently
with 0.5% substitution rate. Thus, the average amount
of SNPs between any two of the “mutated” genomes
was ∼ 1%.
In “phylogenetic” SNP model, the procedure was per-

formed in iterations for each reference genome:

a. Initialize with a single genome; iteration number = 1.
b. Make a copy of each of the genomes available at the

step.
c. Introduce SNPs to all genomes at random positions.
d. Increment iteration number.
e. If the iteration number is greater than 6, stop; else

return to step b.

After the 6 iterations, 26 = 64 “mutated” genomes are
obtained.
In each model, the random “mutated” genomes of cor-

responding bacteria were used to generate metagenomes
the same way as for high-diversity simulation above.

Real metagenomic datasets
Two “shotgun” gut metagenomic datasets were ana-
lyzed: 129 metagenomes of healthy USA population [27]
(referred to as HMP, Illumina platform, read length 101
bp) and 152 metagenomes of Chinese population [28]
including healthy and type 2 diabetes individuals (referred
to as China, Illumina platform, read length 90 bp). For
each sample, the reads were filtered by quality using
FASTQ Quality Filter script from FASTX-Toolkit [29]
(threshold QV ≥ 30 for each nucleotide in a read).
For each metagenome, 1 million of high-quality reads
was sampled using random_records script from [30].
Comparison of various sampling sizes showed that the
selected size of subsampling does not significantly affect
the results of the measures’ comparison (see Additional
file 2: Figure S5).

Calculation of k-mer vectors and dissimilarity measures
For each metagenome, k-mer spectrum was calculated
using an ad hoc Java program that processes FASTA files
read-wise by obtaining k-mer counts for each read and
adding the counts to a global array (the value of k is limited
to 15 due to memory consumption). After processing all
reads, the counts for reverse-complementary k-mers were
summed and normalized to a sum of 1. The length of the
final feature vector (spectrum) did not exceed n = 22k−1

for odd k and n = 22k−1 + 2k−1 for even k because of
reverse-complement k-mers.
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The obtained k-mer spectra were used to calculate pair-
wise dissimilarity via Bray-Curtis measure defined as:

BC(x, y) = 1 −
2

4k∑

i=1
min(mi(x),mi(y))

4k∑

i=1
(mi(x) + mi(y))

(1)

where m is the vector of k-mer frequencies normal-
ized to a sum of 1 per metagenome and x, y are
two different metagenomes. BC = 0, if the frequen-
cies are equal for all k-mers between the metagenomes,
and BC = 1, if no common k-mers are present in the
metagenomes.

Beta-diversity analysis using reference-based methods
Taxonomic profiling via mapping of metagenomes to a
reference genome catalog and coverage analysis was per-
formed as described previously [31], with the only differ-
ence: a non-redundant set of 353 genomes of gut microbes
was used (Additional file 1: Table S3). The final fea-
ture vector for each metagenome included relative abun-
dance of microbial species was normalized to a sum of
100% (Additional file 1: Tables S4 and S5). Dissimilarity
was calculated using these vectors both with Bray-Curtis
measure and whole-genome adaptation of the weighted
UniFrac metric [31]. Functional profiling was performed
as described previously [31] to yield COG (Clusters of
Orthologous Groups) [32] relative abundance vectors sub-
sequently used for dissimilarity analysis using Bray-Curtis
measure (Additional file 1: Table S6).
An alternative method of taxonomic profiling employed

MetaPhlAn v1.7.7 (parameters: -t rel_ab –tax_lev s(g));
here mapping was performed using Bowtie2 v2.0.2 soft-
ware [33], up to 3 mismatches per read were allowed
(mapping results and statistics are in Additional file 1:
Table S7). All reference-based methods were summarized
in Table 1.

CrAssphage abundance analysis
All crAssphage genes (GenBank: JQ995537.1) [34] were
aligned to the reference gene catalog (similarity criterion:

e − value < 1E − 5, percent of identity < 80%, align-
ment length/query length> 0.8, alignment length/subject
length > 0.8). For each gene, its relative abundance was
estimated as a ratio of the total length of the reads mapped
to this gene to the total length of the reads mapped
to the reference gene catalog. Phage relative abundance
was determined as a sum of the relative abundance val-
ues of its genes (Additional file 1: Table S8). As an
additional method of metagenomic classification, DIA-
MOND aligner [35] was used (method: BLASTx against
nr database with default parameters) in combination with
MEGAN classifier [36].

Statistical analysis
Statistical analysis was implemented in R. The code is
available at:
http://download.ripcm.com/Dubinkina_2015_suppl_data/

and https://github.com/Zireae1/kmer_project/.

Ethical approval
The sampling procedure was approved by the Ethical
Committee for Clinical Research from the Peking Univer-
sity Shenzhen Hospital, Shenzhen Second People’s Hospi-
tal and Medical Research Center of Guangdong General
Hospital (from the [28] reference), and Enrollments were
approved by the Institutional Review Boards of the two
recruitment centers (Baylor College of Medicine, Hous-
ton, TX andWashington University, St. Louis, MO) (from
[27]).

Results
To compare the k-mer based metagenomic beta-diversity
measure with traditional reference-based methods we
conducted a series of computational experiments on sim-
ulated and real data. To validate the k-mer measure and
find an optimal value of k, we simulated metagenomes
from prevalent human gut bacterial genomes. Then the
method was applied for the analysis of a group of real
human gut metagenomes sequenced in two large-scale
projects: China population (n = 152) [28] and HMP (n =
129) [27].

Table 1 Types of reference-based analyses used in the study

Type of reference-based analysis Method Beta-diversity measure Designation

Taxonomic profiling Mapping to a reference catalog Bray-Curtis BC TAX (org), (genus)
of 353 genomes of intestinal microbiota [31]

Whole-genome version of WG UniFrac
weighted UniFrac

Quantitative profiling of unique Bray-Curtis BC MetaPhlAn
clade-specific marker genes (MetaPhlAn) [48]

Functional profiling Mapping to Metahit 3,9M catalog of genes [49] Bray-Curtis BC COG
grouped by COGs

http://download.ripcm.com/Dubinkina_2015_suppl_data/
https://github.com/Zireae1/kmer_project/
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Comparison of beta-diversity measures for simulated
metagenomes
There is considerable variation between k-mer spectra for
genomes of distinct bacterial species due to the differ-
ences in the gene content, amino acid coding preferences,
etc. [37]. Supposedly, in the case of a metagenome includ-
ing sufficiently covered genomes of multiple species, one
should observe significant accordance between k-mer
spectrum of the metagenome and its taxonomic com-
position. To verify this hypothesis, we simulated several
datasets with different degrees of community richness and
applied the Bray-Curtis measure (a common microbial
ecological index) for both taxonomic and k-mer profiles
to compare the two respective dissimilarity matrices (see
Methods for details).

Simulation 1: high-diversity communities
The first synthetic dataset included 100 metagenomes
generated by randomly sampling “reads” from ten
genomes of common phylogenetically distant human gut
bacteria (see Methods for details). Comparison of the two
approaches showed that, as k increases, so does the corre-
lation value between the two dissimilarity matrices based
on k-mers and taxonomic composition. With high values
of k, the two matrices are highly similar (e.g. for k = 10,
Mantel test: Spearman correlation r = 0.88, p = 0.001,
see Additional file 3: Figure S1 and Additional file 4:
Figure S2).

Simulation 2: sequencing errors and SNPs
Besides the considerable number of species within
microbiota, the other factors contributing to the diver-
sity of metagenomic k-mers are presence of mutations
and sequencing errors in reads. Therefore, we con-
ducted two experiments by introducing artificial SNPs
into genomes and, separately, random single-nucleotide
changes (“sequencing errors”) into the reads in order to
explore their influence on the correlation of beta-diversity
estimates using k-mer and taxonomic methods. Datasets
from simulation 1 were used here.
For sequencing errors modeling, the reads for each

metagenome were simulated with per-nucleotide substi-
tution rate of 1% (a typical order of value for most modern
DNA sequencing platforms [38]). Introduction of such
“errors” did not lead to a significant change in correlation
between the two methods (from 0.88 to 0.87, for k = 10).
For SNP modeling, bacterial genomes with 1% of

randomly introduced single-nucleotide substitutions
(according to an estimate for gut bacteria [39]) were used
to generate simulated metagenomes with the same abun-
dance proportions as in simulation 1. We employed two
different models of SNPs introduction - “independent”
and “phylogenetic”. With the former simulation being
more straight-forward, “phylogenetic” approach was

developed tomodel the accumulation of mutations in bac-
terial species during evolutionary process (see Methods
for details). The results of simulations showed that, inde-
pendent of the model choice, in general SNPs had a minor
effect on k-mer spectra comparable to the effect of sim-
ulated sequencing errors: correlation between the k-mer
and taxonomic methods decreased from 0.931 to 0.929
for “independent” model and 0.927 for “phylogenetic”
model (Additional file 3: Figure S1A,B). Noteworthy,
introduction of SNPs had a more pronounced effect on
metagenomes with highly similar taxonomic composi-
tion. This was particularly marked when the SNP rate was
increased to 10% (Additional file 3: Figure S1C).

Simulation 3: low-diversity communities
The second synthetic dataset included 100 metagenomes
generated by randomly sampling “reads” from ten
genomes of common phylogenetically close human gut
bacteria - belonging to the same genus - Bacteroides
(see Methods for details). The correlation between the
methods was found to be lower for such homogeneous
community than for a heterogeneous one (for k = 10,
Mantel test: Spearman correlation r = 0.82, p = 0.001).
The correlation value tends to increase with k but does
not achieve the level of simulation 1 (for k = 10, r = 0.88,
see Additional file 3: Figure S1). It suggests that higher val-
ues of k should be used to increase accuracy; however, the
size of the feature vector increases as 4k, hence the com-
putational time quickly becomes unacceptable. To select
the optimal k value, we evaluated the correlation between
k-mer and taxonomic dissimilarity matrices together with
the computational time of k-mer matrix generation for
k = 5 − 12 using both high- and low-diversity simulated
datasets (see Additional file 5: Figure S3). As the results
in both simulations showed, with k = 11 the dissimilar-
ity matrices are highly correlated while the computational
time is still acceptable (on a single computation core, the
calculation of k-mers spectra for one sample took about
ten seconds (for comparison the Jellyfish counter [23] with
parameters: -m 11 -s 10000 -t 32 (hash size was optimized
for the value of k) took about 80 seconds to calculate the
spectra) Further statistical analysis - calculation of dissim-
ilarity matrix - took about 1 - 10 minutes, see Additional
file 5: Figure S3). At the same time, it is the highest value
practically acceptable in terms of memory usage: for k =
11, the spectra occupied ∼4 Gb of memory in R environ-
ment, but for k = 12 - asmuch as 15Gb. Considering these
observations we selected k = 11 for further analyses.

Comparison of beta-diversity measures on real human gut
metagenomes
After testing the method on simulated data, we examined
two real human gut datasets from large-scale metage-
nomic projects: China [28] andHMP [27], with the former
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cohort representing more diverse microbial community
structures than the latter [31]. Using this data, the pair-
wise dissimilarity matrix obtained by the k-mer approach
with Bray-Curtis measure (refered as BC kmer in the
Figures and further in the text) was compared with the
dissimilarity matrices obtained by each of the four meth-
ods based on taxonomic and functional reference (see
Table 1).
To visualize the distributions of beta-diversity values, we

applied two types of scatter plots. The first type is a basic
principle coordinate analysis (PCoA) plot constructed
using a single dissimilarity measure, with dots represent-
ing distinct metagenomes (e.g. Fig. 1a). On the second
type of plot, two dissimilarity measures are compared:
each triangle corresponds to a pair of metagenomes, one
measure is plotted against the other (Fig. 2a, Additional
file 6: Figure S4). Samples from the two studies (China and
HMP) tended to cluster separately by functional, as well as
by k-mer composition, but not by taxonomic composition
(Fig. 1a, b, c, d). Therefore, the two cohorts were further
analyzed separately. Another interesting fact was that 3 of
the outliers (all from HMP group) present on k-mer scat-
ter plot were also on the periphery of COG scatter plot
but not of the taxonomic scatter plot (Fig. 1a, b; outliers
marked with asterisks). These samples were examined in
details.

Comparison of the five beta-diversity measures showed
that the k-mer measure has a significant similarity with
each of the reference-based ones (Mantel test, Spearman
correlation, p < 0.01, Fig. 1f). The closest was themeasure
based on COG composition. For the Chinese group, the
correlation values tended to be higher than for the HMP
group in all comparisons (Fig. 1f). The phylogeny-aware
metric WG UniFrac was among the most dissimilar (r =
0.39 for HMP, r = 0.62 for China).

Influence of readsmappability
To assess the contribution of the unmapped reads to the
results, k-mer spectra were also computed only using the
reads that successfully mapped to the corresponding cat-
alog (fraction of mapped reads: for HMP group - 49 ±
17% for genome catalog, 60 ± 5% for gene catalog, for
China - 49 ± 12%, 61 ± 6%, respectively; values are given
in median ± s.d. here). This analysis led to interesting
results (Fig. 2). First, we observed an equalization of BC
TAX org vs. BC kmer correlation between the two cohorts
(0.74 for HMP and 0.77 for China). Therefore, fraction
of unmapped reads appears to be one of the major fac-
tors contributing to the difference between the cohorts.
This parameter is dependent on the representability
of the reference catalog and quality of sequencing
run.

Fig. 1 Variation of metagenomes using different dissimilarity measures. PCoA plots for different dissimilarity measures: a BC kmer, b BC COG, cWG
UniFrac, d BC TAX (org), e BC MetaPhlAn (org). Three samples-outliers are marked with asterisks. f Heatmap of Spearman correlation coefficient
between dissimilarity matrices obtained using different measures (the upper triangle of matrix represents coefficients for China, the lower - for HMP)
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Fig. 2 Comparison of pairwise difference measures obtained by k-mer and reference-based methods. For each plot, Y-axis represents k-mer
distance, X-axis - distance by one of the reference-based methods. Distribution of dissimilarity measures is shown for a BC kmer for all reads and BC
TAX (org); b BC kmer for all reads and BC COG; c BC kmer for reads mapped to the catalog of genomes and BC TAX (org); d BC kmer for reads
mapped to the catalog of genes and BC COG

Second, we assessed the shift of each outlier in the
direction of the central cloud of points. Quantitatively, for
each outlier we calculated the BC kmer difference value:
the difference between its BC kmer value and the lin-
early interpolated middle of the cloud obtained for the
same reference-based value (Fig. 2). For comparison with
BC TAX, the BC kmer difference decreased significantly
- from 0.31 ± 0.09 to 0.03 ± 0.04 (Wilcoxon test, p =
2.2E − 16). For comparison with BC COG, the BC kmer
difference changed slightly: from 0.34 ± 0.08 to 0.39 ±
0.07. Correspondingly, a group of pairs-outliers men-
tioned above moved into the central cloud of points in the
BC TAX org vs. BC kmer comparison, but did not change
their visual location in BC COG vs. BC kmer comparison.
This observation is in agreement with the fact that the

gene reference catalog is more complete than the genome
reference catalog and the percentage of mapping to the
gene catalog is higher (49± 17% vs 60± 5% for HMP and
49 ± 12% vs. 61 ± 6% for China, respectively, Wilcoxon
test, p = 2.2E − 16). Presumably, the presence of pairs-
outliers could be caused by k-mers from certain domi-
nant sequences that are present in the reference base of

genes but not genomes. We investigated these outliers in
details.

Investigation of samples-outliers
The total human gut metagenome is a phylogenetically
diverse structure including not only the sequences of bac-
terial genomes but also ones from bacterial mobilome
(phages, plasmids, etc.), fungi, protozoa, traces of DNA of
dietary origin, host. Our reference genome catalog partly
accounts for such non-microbial components by includ-
ing the genomes of several common intestinal eukaryotes -
clinically relevant yeasts Candida (3 genomes) and pro-
tozoan Blastocystis (1 genome; see Methods for details).
However, many sequences are not present in our genome
catalog, particularly viral genomes. Therefore, in our anal-
ysis the potential reads of viral origin would not contribute
to the taxonomic difference but would change the k-mer
spectrum. Recently, a new bacteriophage was discovered -
crAssphage - shown to be a sole major dominant of the
human gut viriome [34]. Moreover, its presence was esti-
mated for the HMP metagenomes analyzed in our work:
crAssphage genome amounts for up to 20% of the reads
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for this group. Obviously, such a prevalent genome should
have a significant influence on k-mer spectra and thus on
our comparison of the beta-diversity measures.
Basing on the available data on the abundance of

crAssphage in HMP samples (seeMethods for details), the
cohort was split into two groups - with high phage abun-
dance (n = 5, 5 − 20% of crAssphage reads) and with low
phage abundance (n = 124,< 5% of crAssphage reads).
The whole group of extreme outliers was found to consist
of the pairs where at least one of the samples belonged to
the phage-enriched group (Fig. 3a, chi-square test: X2 =
802.97, p = 2.2E − 16). Moreover, the outliers on Fig. 1a
were also found to be the samples with high fraction of
crAssphage reads (see Additional file 1: Table S8).
As the extreme outliers were found to be generated

by pairs including at least one of the two samples
(SRS062427 and SRS014287, see Fig. 1a), these sam-
ples were analyzed in detail. The reads that did not
map to the genome catalog (86% and 88% from the
total read number, respectively) were subject to metage-
nomic classification using an alternative method - using
DIAMOND alignment and MEGAN classifier algorithms
(see Methods). As a result, additionally 35% and 29%
of the reads were identified as crAssphage (Fig. 3b).
To further confirm the contribution of high phage frac-
tion to formation of outliers, we subtracted the k-mers
of the crAssphage reads from k-mer spectra of the
samples. Indeed, such operation significantly decreased
the k-mer-based dissimilarity for the respective pairs
(0.57 ± 0.08 to 0.53 ± 0.07, one-tailed Wilcoxon test,
p < 2.2E − 16, Fig. 3a).

Discussion
Here we have developed an algorithm for assessing
pairwise dissimilarity of “shotgun” metagenomes basing

on k-mer spectrum and compared it with commonly
used reference-based approaches. The comparison was
performed using various measures (Bray-Curtis dissim-
ilarity and whole-genome adaptation of UniFrac) on
a set of simulated metagenomes as well as on real
metagenomes from two large-scale human gut microbiota
studies.
For simulated metagenomes, we showed that k = 11

is an optimal value in terms of balancing between the
resolution of the method and computational time. This
value of k performed well for both high- and low-diversity
simulated metagenomes; however, for low-diversity sim-
ulations the dissimilarity matrices based on k-mer
method and taxonomic composition were less correlated
(Spearman correlation r = 0.94 and r = 0.87 for high-
and low-diversity, respectively). This fact was likely due to
the decreased diversity of k-mers and thus reduced differ-
entiating resolution. For real gut metagenomes with com-
plex community structure, the k-mer approach allows to
delineate the samples with a wide range of functional com-
position, as demonstrated on two international cohorts
(HMP and Chinese population). On the other hand,
we observed that k-mers are less correlated with tax-
onomic composition than with functional (gene-based)
one. We speculate that this difference could be associ-
ated with significant subspecies-level genomic diversity
of gut microbes: a recent analysis of publicly available
metagenomic data showed that the average gene varia-
tion between individuals across 11 abundant species was
as high as 13 ± 4.5% [40]. The k-mer frequencies as well
as the gene relative abundance features are sensitive to
gene content variation, while in the case of species relative
abundance features it would be ignored.
Besides gene presence/absence, another common form

of genomic variability is SNPs. We attempted to model

Fig. 3 Analysis of samples-outliers. aDistribution of pairwise dissimilarity obtained using k-mer and taxonomic composition for HMP cohort. Different
colors indicate groups of dissimilarities for: all HMP pairs, pairs-outliers - where at least one of the samples belonged to the phage-enriched group;
CP-filtered pairs - extreme outliers (all pairs with k-mer distance > 0.5) after removal of k-mers from reads mapped to crAssphage (CP) genome;
b Composition of sample SRS062427 according to the combined results from two analyses (mapping to genome catalog and DIAMOND + MEGAN)
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their influence on k-mer beta-diversity. Theoretically,
introduction of SNPs would lead to change in frequencies
of k-mers and thus deteriorate correlation between k-
mer and reference-based dissimilarity. In our simulations,
when 1% SNPs were introduced to simulated datasets
(according to an estimate for gut bacteria [39]), the cor-
relation between the methods dropped slightly (from r =
0.938 to r = 0.935), independent of whether the evo-
lutionary character of SNP accumulation was considered
during modeling or not. However, for real metagenomes
the correlation between the methods was lower (HMP:
r = 0.73, China: r = 0.76). These results suggest the
existence of other real-life effects having stronger influ-
ence on the correlation than SNPs (not only other types
of genetic polymorphisms like indels but also including
technical factors, etc.).
A major advantage of the k-mer approach is that it

exploits the totality of the reads - unlike reference-based
methods that inherently discard the reads that failed to
map to the reference catalog - and thus the informa-
tion contained within them. Such a feature promotes the
application of the k-mer approach as a tool for assess-
ing the representability of the reference set for given
metagenomes. Currently representative sets of reference
genomes are available for microbial communities of few
environments (e.g. human gut). However, recent dis-
coveries imply that the so called reference genomes do
not capture a wide intra-species level variation even for
this extensively examined community [41, 42]. The sit-
uation is even worse for less popular environments -
like marine ecosystems [43] or human skin [44]: ref-
erence catalogs for their microbiota are considerably
less complete, thus rendering beta-diversity assessment
difficult.
We propose to assess the representability of a refer-

ence genome catalog via examining the k-mer content of
the metagenomic reads mapped to it. On the analyzed
gut metagenomic data, we observed that k-mer spectra of
the mapped reads produced dissimilarity profiles that had
higher correlation with those obtained with taxonomic
composition than the k-mer spectra of the whole set of
reads. However, lower correlation between the two meth-
ods observed for some pairs of samples suggested the
presence of dominant genomic sequences not included
in the reference catalog. Detailed analysis showed that
these outliers corresponded to the HMP samples enriched
in crAssphage, a recently discovered gut bacteriophage
[34]; the genome of this phage was not included in the
respective reference catalog.
Subtraction of the crAssphage k-mers moved the out-

liers towards the main cloud of points but not into
it completely (BC kmer difference decreased by 90 ±
10%). Presumably, such incomplete compensation can be
linked to high level of genomic variability inherent to gut

phages [45]: originally the consensus crAssphage genome
was obtained by combined assembly of 12 metagenomes
from individuals not included in our groups [46], so its
sequence in the latter might be quite distant than all
the crAssphage-related k-mers in our analysis. Addition-
ally, over 50% of the reads remain unidentified by two
different methods (mapping to reference genome cata-
log and DIAMOND+MEGAN-based pipeline) they can
correspond to genome(s) contributing to formation of
outliers.
Considering the gene catalog, dedicated analysis of

the reads mapped to reference genes did not lead to
shift of outliers (BC kmer difference slightly increased
by 16 ± 9%). First, a likely reason for this is that
the crAssphage sequences were included in the catalog:
search for crAssphage genes in the reference gene cat-
alog (see Methods) identified highly similar hits for 70
of the 80 phage genes (182 catalog genes in total) that
were detected in at least onemetagenome. Second, the gut
microbial gene catalog was originally constructed from
the contigs assembled from total DNA reads [49] and is
known to contain not only the bacterial genes, but viral
and eukaryotic, too.
Interestingly, our results also imply that the Chinese

cohort lacks metagenomes with such high prevalence
of this phage, provoking speculations on world-wide
phage phylogeography. While no clinical associations for
crAssphage have been described to date, omission of
phage components could be a significant miss in biomed-
ical studies of microbiota. There is a growing under-
standing that gut phages play an important role in the
ecology of “phage-gut microbiota-human” system and
include potential biomarkers; they are able to transfer
clinically important bacterial genes - e.g. antibiotic resis-
tance and pathogenicity determinants [47]. Application
of our reference-free k-mer approach can facilitate early
detection of such sequences in biomedical diagnostics
data and discovery of novel biomarkers.
Our approach is not only applicable to metagenomes

from an arbitrary environment, but is indispensable for
dissimilarity and cluster analysis of communities with
poorly described components. The approach allows to
detect a major presence of an unknown organism and/or
virus in a metagenome. We suggest that the approach
should be introduced as a necessary method of “shot-
gun” metagenome composition analysis complementary
to reference mapping in order to avoid biases associated
with unrepresentative reference database.
Although we did not find evidence for outliers caused

by technical issues in the examined datasets, the approach
can also be used for primary detection of metagenomes
with abnormal composition caused by high abundance of
host DNA (e.g. in case of inflammatory process or specific
to biopsy material), DNA of dietary origin (undigested
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food) and technical artifacts (e.g. dominance of sequenc-
ing adapters).
Finally, comparison of the metagenomes basing on k-

mer spectrum provides more information than mapping
to reference sequence catalogs. Essentially, k-mer analysis
is a feature extraction procedure applied to metagenomic
reads. The produced set of features (k-mer spectrum)
is several orders of magnitude larger than one yielded
in reference-based approaches. Therefore, it provides
higher discriminative resolution that opens a promising
opportunity for developing a new generation of meth-
ods for metagenomic analysis, and our method makes
a step towards understanding of how to explore such
high-dimensional feature space efficiently.

Conclusions
Analysis of k-mer spectra for both simulated and real
“shotgun” metagenomes showed that this method allows
quick assessment of the pairwise dissimilarity of such
datasets. Simulations show that the method is robust to
variability introduced by sequencing errors and genomic
mutations. The obtained dissimilarity matrix can be used
not only for cluster analysis and classification purposes,
but also for early detection of major unknown compo-
nents and quality control of reference-based approaches.
It is recommended that the method should be included as
a complementary step in high-throughput computational
pipelines for metagenomic data analysis.
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