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Abstract

Let k be an algebraically closed field of characteristic p40 and let c be another prime

number. Gabber and Looser proved that for any algebraic torus T over k and any perverse c-
adic sheaf F on T the Euler characteristic wðFÞ is non-negative.
We conjecture that the same result holds for any perverse sheaf F on a reductive group G

over k which is equivariant with respect to the adjoint action. We prove the conjecture when

F is obtained by Goresky–MacPherson extension from the set of regular semi-simple elements

in G: From this we deduce that the conjecture holds for G of semi-simple rank 1.

r 2003 Elsevier Science (USA). All rights reserved.

1. The main conjecture

1.1. Notations

In what follows, k denotes an algebraically closed field of characteristic p40: Let c
be a prime number different from p: For an algebraic variety X over k we denote by
DðXÞ the bounded derived category of c-adic sheaves on X : Also we denote by
PervðX ÞCDðXÞ the subcategory of perverse sheaves. For any FADðXÞ we denote
by wðFÞ the Euler characteristic of F; i.e.

wðFÞ ¼
X

ð�1Þi dim Hi
cðX ;FÞ ¼

X
ð�1Þi dim HiðX ;FÞ ð1:1Þ

(cf. [5] for the proof of the equality).
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Let T be an algebraic torus over k: The following theorem is proved in [3] (cf. also
[2] for a partial analogue in characteristic zero):

Theorem 1.2. Let FAPervðTÞ: Then wðFÞX0:

Let G be a connected reductive algebraic group over k: We shall denote by GrsCG

the open subspace of regular semi-simple elements. We denote by PervGðGÞ the
subcategory of PervðGÞ consisting of perverse sheaves which are equivariant
with respect to the adjoint action. We propose the following generalization of
Theorem 1.2.

Conjecture 1.3. Let FAPervGðGÞ: Then wðFÞX0:

Theorem 1.4. Assume that FAPervGðGÞ is equal to the Goresky–MacPherson

extension of its restriction to Grs: Then wðFÞX0:

Corollary 1.5. Conjecture 1.3 holds for G of semi-simple rank 1.

Proof. Let N be the cone of unipotent elements in G and let Z be the center of G:
Clearly it is enough to prove Conjecture 1.3 only for irreducible sheaves. However, if
FAPervGðGÞ is irreducible then either F is equal to the Goresky–MacPherson
extension of its restriction to Grs or it is supported on ZN: The former case is
covered by Theorem 1.4; hence it is enough to deal with the latter.

First of all there exists a connected component Z0 of Z such that F is supported
on Z0N: Thus one of the following is true:

(1) F is supported on Z0:

(2) F is equal to F 02ð %QlÞN [2] where F0 is an irreducible perverse sheaf on Z0

and ð %QlÞN is the constant sheaf on N:

(3) F ¼ F02E where F0 is an irreducible perverse sheaf on Z0 and E
is an irreducible perverse sheaf on N whose restriction to the open orbit is
isomorphic to (the only) non-trivial equivariant irreducible local system on
this orbit (this local system is of rank 1 and its square is isomorphic to the constant
sheaf).

In cases (1) and (2) our result follows immediately from Theorem 1.2 (note that Z0

is a torus and that in case (2) we have wðFÞ ¼ wðF0Þ). In case (3) it is known that

HnðN;EÞ ¼ 0; hence HnðG;FÞ ¼ 0; hence wðFÞ ¼ 0: &

Remark. Theorem 1.2 has an ‘‘ideological’’ explanation: namely in [3] Gabber and

Loeser construct a ‘‘Mellin transform’’ functor M :DðTÞ-Db
cohðLocTÞ where LocT

denotes the moduli space of tame rank one local systems on T and Db
cohðLocTÞ is the

bounded derived category of quasi-coherent sheaves on LocT : Moreover, for every
FAPervðTÞ the complex MðFÞ is actually a sheaf and wðFÞ is equal to the generic
rank of MðFÞ (hence wðFÞX0). We do not know whether a similar explanation of
Conjecture 1.3 is possible.
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We expect that Conjecture 1.3 holds also when k has characteristic 0 and perverse
sheaves are replaced by holonomic D-modules (the analogues of Theorem 1.4 and
Corollary 1.5 do hold in this case—the proofs discussed in this paper apply without
change to holonomic D-modules instead of l-adic perverse sheaves). When G is a
torus and the D-modules in question have regular singularities a beautiful geometric
proof of Theorem 1.2 was given by Franecki and Kapranov [2] where he explains
how to compute the corresponding Euler characteristics using certain non-compact
generalization of Dubson–Kashiwara index theorem. This technique has been very
recently generalized by Kiritchenko [4] to the case of ad-equivariant perverse sheaves
on a reductive group G over C (in particular she proves the analogue of Theorem 1.4
for perverse sheaves over C). It would be interesting to generalize the arguments of
[2,4] to the case of arbitrary holonomic D-modules (unfortunately, it is probably
impossible to obtain a similar proof for l-adic sheaves when the characteristic of k

is p40).

2. Proof of Theorem 1.4

2.1. The space G̃. Let B denote the flag variety of G; i.e. the variety of all Borel

subgroups of G: Let G̃ denote the variety of pairs ðBAB; gABÞ:We have the natural

maps p : G̃-G; a : G̃-T and b : G̃-B: It is easy to see that a is smooth and p is

proper. Let d ¼ dim G � dim T ¼ 2 dimB: Set G̃rs ¼ p�1ðGrsÞ ¼ a�1ðTrsÞ:

Lemma 2.2. (1) Let GAPervðTÞ: Assume that G is equal to the Goresky–MacPherson

extension of its restriction on Trs: Then p!anG½d�ðd
2
Þ is a perverse sheaf which is equal to

the Goresky–MacPherson extension of its restriction to Grs:
(2) Every W-equivariant structure on a sheaf GAPervðTÞ as above gives rise to a W-

action on p!anG½d�ðd
2
Þ:

(3) Let FAPervGðGÞ: Assume that F is equal to the Goresky–MacPherson

extension of its restriction to Grs: Then there exists a W-equivariant sheaf GAPervðTÞ
which is equal to the Goresky–MacPherson extension of its restriction to Trs such that

F ¼ p!anG½d�
d

2

� �� �W

: ð2:1Þ

Proof. The first statement of Lemma 2.2 is well-known (it follows from the smallness
property of p—cf. [1] and references therein).

It follows from 1 that in order to prove 2 it is enough to construct an action of W

on the restriction of p!anG½d�ðd
2
Þ to Grs: Note that W acts freely on G̃rs in the natural

way and

Grs ¼ G̃rs=W : ð2:2Þ
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Moreover, the restriction of a to G̃rs is W -equivariant. Hence anG½d�ðd
2
ÞjG̃rs

is W -

equivariant and thus (2.2) implies that p!anG½d�ðd
2
ÞjGrs

has a natural action of W :

Let us prove (3). Choose an embedding i : T-G: Let irs : Trs-G be its restriction

to Trs: Let Grs ¼ inrsF½�d�ð�d
2
Þ: It follows from the G-equivariance of F that Grs is

perverse. We let G be its Goresky–MacPherson extension to T :

Let us prove that G satisfies (2.1). Since both F and ðp!anG½d�ðd
2
ÞÞW are equal to

the Goresky–MacPherson extensions of their restrictions to Grs it is enough to

construct an isomorphism between FjGrs
and ððp!anG½d�ðd

2
ÞÞW ÞjGrs

: Since both

sheaves are equivariant with respect to the adjoint action of G it is enough to
construct a W -equivariant isomorphism of their restrictions to Trs where both
sheaves are canonically isomorphic to Grs: &

Proposition 2.3. Let F be as in Theorem 1.4 and let G be as in Lemma 2.2(3). Then

wðFÞ ¼ wðGÞ:

Clearly Proposition 2.3 together with Theorem 1.2 imply Theorem 1.4.

2.4. Proof of Proposition 2.3. Set

H ¼ anG½d� d

2

� �
APervðG̃Þ:

Clearly, Hn
c ðG;FÞ ¼ Hn

c ðG̃;HÞW :

Consider a!ðHÞ: By the projection formula it is isomorphic to G#a!ð %QlÞG̃½d�ðd
2
Þ: It

is easy to see that the complex a!ð %QlÞG̃½d�ðd
2
Þ is constant with fibers isomorphic to

HnðB; %QlÞ: Indeed, let d :B	 T-T denote the projection to the first multiple. Then

a!ð %QlÞG̃ ¼ d!ðb	 aÞ!ð %QlÞG̃: However, the map ðb	 aÞ : G̃-B	 T is a locally trivial

fibration (in Zariski topology) with fiber isomorphic to Ad : Thus ðb	
aÞ!ð %QlÞG̃Cð %QlÞB	T ½�d�ð�d

2
Þ and hence

a!ð %QlÞG̃Cð %QlÞT#HnðB; %QlÞ½�d� �d

2

� �
: ð2:3Þ

This clearly gives rise to the isomorphism

Hn

c ðG̃;HÞCHn

c ðT ;GÞ#HnðB; %QlÞ: ð2:4Þ

We can also characterize isomorphism (2.3) in the following way. To determine it
uniquely it is enough to construct it on Trs: Choose as before an embedding i : T-G:
There is a canonical Borel subgroup B containing iðTÞ (recall that the abstract
Cartan group T comes with a root system with a preferred set of positive roots).
Then for every tATrs we have canonical isomorphism

a�1ðtÞCG=T ð2:5Þ
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(which depends however on the above choice). Clearly

Hn

c ðG=T ; %QlÞ½d�
d

2

� �
¼ HnðB; %QlÞ:

Hence, we have constructed an isomorphism between a!ð %QlÞG̃½d�ðd
2
ÞjTrs

and the

constant complex with fiber HnðB; %QlÞ: It is easy to see that this isomorphism does
not depend on the choice of the embedding T-G and coincides with (2.3).

Let W act on the left-hand side of (2.4) by means of the identification Hn
c ðG̃;HÞ ¼

Hn
c ðG; p!HÞ (note that by Lemma 2.2 the group W acts on p!H). Let W also act on

the right-hand side by means of the tensor product of the W -action on Hn
c ðT ;GÞ

coming from the W -equivariant structure on G and the natural W -action on

HnðB; %QlÞ:

Lemma 2.5. Isomorphism (2.4) is also an isomorphism of W-modules with respect to

the above actions.

Proof. Let Z ¼ G 	T=W T be the image of G̃ in G 	 T under the map g ¼ p	 a:
This is a closed subvariety of G 	 T : It is invariant with respect to the W action on
the second multiple. Let Zrs denote the set of ‘‘regular semi-simple’’ elements of Z

(i.e. the set of all elements of Z whose projection to G is regular semi-simple).
Let K ¼ g!ðHÞ: Then K is equal to the Goresky–MacPherson extension of its

restriction to Zrs: Since g induces an isomorphism G̃rsCZrs and since the restriction

of H to G̃rs is W -equivariant it follows that K also has a natural W -equivariant
structure as a perverse sheaf on G 	 T (where the W -action is as before on the

second multiple). Thus W acts naturally on Hn
c ðG 	 T ;KÞ: We have the natural

isomorphism Hn
c ðG̃;HÞCHn

c ðG 	 T ;KÞ and by the definition the action of W on

Hn
c ðG̃;HÞ introduced before Lemma 2.5 corresponds to the action of W on Hn

c ðG 	
T ;KÞ introduced above.

Consider, on the other hand, the complex p!ðKÞ where p : G 	 T-T denotes the

natural projection. Clearly, we have p!ðKÞ ¼ a!ðHÞCG#HnðB; %QlÞ: On the other
hand, since p commutes with W it follows that p!ðKÞ admits a natural W -
equivariant structure. To prove Lemma 2.5 it is enough to show that under the

identification p!ðKÞCG#HnðB; %QlÞ½d�ðd
2
Þ this structure is equal to the tensor

product of the original W -equivariant structure on G with the natural W -action on

HnðB; %QlÞ: Since every perverse cohomology of p!ðKÞ is equal to the Goresky–
MacPherson extension of its restriction to Trs it follows that it is enough to check this
equality only on Trs as guaranteed by the following lemma.

Lemma 2.6. Let X be a k-scheme, UCX—an open subset. Let FADðX Þ such that

every perverse cohomology of F is equal to its Goresky–MacPherson extension

from U.
Let s be an automorphism of F: Assume that sjU ¼ id: Then s ¼ id:
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Proof. To prove that s ¼ id on an object FADðXÞ it is enough to prove that s acts
as identity on every perverse cohomology of F which follows immediately from the
assumption that sjU ¼ id: &

However, the fact that the above W -equivariant structures coincide follows

immediately from the description of the W -equivariant structure on a!ð %QlÞG̃½d�ðd
2
ÞjG̃rs

given in Section 2.4 and the following observation:
Choose as before an embedding T-G: Let NðTÞ denote the normalizer of T in G:

Then W ¼ NðTÞ=T acts on G=T and hence on Hn
c ðG=T ; %QlÞ: By identifying

Hn
c ðG=T ; %QlÞ½d�ðd

2
Þ with HnðB; %QlÞ we get an action of W on the latter. This is the

standard W -action on HnðB; %QlÞ: &

It follows from Lemma 2.5 that wðFÞ is equal to the Euler characteristic of

ðHn
c ðGÞ#HnðB; %QlÞÞW : However, it is known that HnðB; %QlÞ lives only in even

degrees and when we forget the grading it is isomorphic to the regular representation
%Ql ½W � of W : Hence

wðFÞ ¼ wððHn

c ðT ;GÞ#HnðB; %QlÞ½d�ÞW Þ

¼ wððHn

c ðT ;GÞ# %Ql ½W �ÞW Þ ¼ wðHn

c ðT ;GÞÞ ¼ wðGÞ

which finishes the proof. &
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