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a b s t r a c t

We present a simple method for degree reduction of tensor product Bézier surfaces with
tangent plane continuity in L2-norm. Continuity constraints at the four corners of surfaces
are considered, so that the boundary curves preserve endpoints continuity of any order α.
We obtain matrix representations for the control points of the degree reduced surfaces by
the least-squaresmethod. A simple optimization scheme that minimizes the perturbations
of some related control points is proposed, and the surface patches after adjustment are C∞
continuous in the interior andG1 continuous at the common boundaries.We show that this
scheme is applicable to surface patches defined on chessboard-like domains.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Polynomial curves and surfaces in Bernstein–Bézier form are a widespread tool for the representations of curves and
surfaces in CAGD (Computer Aided Geometric Design) [1]. They can be effectively evaluated by the de Casteljau algorithm
and exhibit many elegant geometric properties, including the invariance under affine transformations, containment in the
convex hull, and an intuitive geometric interpretation of the coefficients as control points.
Degree reduction of Bézier curves and surfaces is one of the most important approximation problems in CAGD and

CAD/CAM. It consists of approximating a given curve or surface by another one of lower degree. The motivation for
this research is the practical need to communicate product data between diverse systems that impose fundamentally
incompatible constraints on their representation schemes. For example, some systems may restrict themselves to
polynomial forms or limit the polynomial degrees that they can accommodate. Thus, there has been a lot of work on
the degree reduction of Bézier curves [2–17] and of Bézier surfaces over rectangular [7,18,19], triangular [20–22] and
simplex [23] domains.
Various norms have been used to measure the approximation error for degree reduction of polynomial curves. In L∞-

norm, the constrained degree reduction (with continuity constraints at the endpoints) was considered in [19] and [2] by
using the Chebyshev and Jacobi polynomials, respectively. In L2-norm, the Legendre–Bernstein basis transformation was
used to give a simple solution for the unconstrained degree reduction [10], and the best constrained degree reduction
was investigated in [3,14,17] by different approaches with the same results, which can be further improved by imposing
geometric continuity instead of parametric continuity on the constraints [11]. In L1-norm, the best one-sided approximation
of polynomials was proposed and applied to degree reduction of interval Bézier curves [5].
While degree reduction of curves has been investigated extensively, very few studies have been carried out for surfaces.

Due to the tensor product nature, it was outlined in [6,7] how one can solve in a very simple and straightforward manner
the problem of degree reduction for tensor product Bézier surfaces once one has a suitable degree reduction method for
Bézier curves. The main idea is to apply the curve algorithm, first to every row of the original control net and afterwards to
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every column of the resulting new control net. In [18], another different method, based on degree elevation of surfaces and
Chebyshev polynomial approximation theory, was proposed. And the constrained Chebyshev economization was used for
degree reduction of curves and surfaces in [19].
In this paper, we study the degree reduction problem of tensor product Bézier surfaces with tangent plane continuity.

Similar to [18,21], the control net of every surface patch is divided into boundary control points and inner ones. Then the
problem is solved in three steps. Firstly, the four boundary curves of each patch are degree reduced to a lower degree by the
best Cα-constrained degree reduction method of curves in L2-norm [3], so the boundary control points of approximating
patches are obtained and any two adjacent patches will have a common boundary. Secondly, the inner control points of
each approximating patch are obtained by minimizing the squared L2-error with the boundary control points unchanged.
They are expressed in matrix form without the use of degree elevation. Thirdly, a simple optimization scheme is proposed
for two and four patches around a corner to satisfy the G1 conditions, and it can be further extended to patches defined
on chessboard-like domains. Some of the first two rings of control points from the boundaries are adjusted by optimizing
their perturbations in the positions, which is decomposed into two kinds of minimization problems: three control points
are arranged collinearly in a specific ratio, and nine control points are arranged collinearly in two specific ratios, cf. Fig. 3.
The final patches of lower degree will be smoothly joined to form a globally G1 surface.

2. Definitions and notations

Let N0 be the set of nonnegative integers. For n = (n1, n2) ∈ N20, we sort all the indices i = (i1, i2) ∈ N20 satisfying
i1 ≤ n1 and i2 ≤ n2 in the following set

Λn
:= {(0, 0), (1, 0), . . . , (n1, 0), (0, 1), (1, 1), . . . , (n1, 1), . . . , (0, n2), (1, n2), . . . , (n1, n2)} ,

which has card(Λn) := (n1 + 1)(n2 + 1) elements. The addition and the binomial coefficient of two indices are expressed
as

n+ i := (n1 + i1, n2 + i2),
(n
i

)
:=

(
n1
i1

)(
n2
i2

)
.

Given the control points pi ∈ R3, the tensor product Bézier surface of degree n is defined by

P(u) =
∑
i∈Λn

Bni (u)pi, u = (u, v) ∈ [0, 1] × [0, 1], (1)

where

Bni (u) = B
n1
i1
(u)Bn2i2 (v) =

(
n1
i1

)(
n2
i2

)
(1− u)n1−i1ui1(1− v)n2−i2vi2

are the generalized Bernstein basis functions of degree n. These functions are nonnegative and form a partition of unity,
i.e.,

∑
i∈Λn Bni (u) = 1. The summation contains card(Λ

n) linearly independent polynomials. See [1] for more details on the
properties of the Bernstein form.
Let Bn

= {Bni (u)}i∈Λn be the row vector of the Bernstein basis functions of degree n, and Pn
= {pi}

T
i∈Λn be the

card(Λn) × 3 matrix of the control points, where the order of every entry conforms to the order of its subscript i in Λn.
Then, the expression (1) can be rewritten in matrix form as

P(u) =
∑
i∈Λn

Bni (u)pi = BnPn. (2)

The product of two generalized Bernstein polynomials is also a generalized Bernstein polynomial and given by

Bni (u)B
m
j (u) =

( n
i

) (m
j

)
(

n+m
i+j

) Bn+mi+j (u), i ∈ Λn, j ∈ Λm. (3)

Lemma 1. For all i ∈ Λn, the Bernstein basis functions of degree n satisfy∫ 1

0

∫ 1

0
Bni (u)dudv =

1
card(Λn)

. (4)

Lemma 2. Let Gn,m =
(
gi, j
)
be a card(Λn)× card(Λm)matrix with the elements given by

gi, j =
∫ 1

0

∫ 1

0
Bni (u)B

m
j (u)dudv =

1
card(Λn+m)

×

( n
i

) (m
j

)
(

n+m
i+j

) , i ∈ Λn, j ∈ Λm. (5)

Then, Gm,m is a real symmetric positive definite matrix.
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Fig. 1. Two steps for the constrained degree reduction.

Proof. Obviously, we can derive (5) from (3) and (4). For any nonzero column vector ξwith card(Λm) elements, we have∫ 1

0

∫ 1

0

(∑
i∈Λm

Bmi (u)ξi

)2
dudv = ξTGm,mξ > 0. �

3. Degree reduction with common boundaries

Given the control points Pn
= {pi}

T
i∈Λn , a tensor product Bézier surface of degree n can be expressed as

P(u) = BnPn.

The problemof degree reduction is to find the control pointsQm
= {qj}

T
j∈Λm , which define the approximating tensor product

Bézier surface

Q(u) = BmQm

of lower degree m (m1 < n1 and m2 < n2), such that the squared L2-error ε is minimized. Here ε, based on the L2-norm
between two surfaces, is defined by

ε =

∫ 1

0

∫ 1

0
‖P(u)− Q(u)‖2 dudv. (6)

We consider the constraints that the corresponding boundary curves have endpoints continuity of any order α (α ≥ 0).
The process of degree reduction consists of two steps:

(1) Boundary curves approximation (Section 3.1): for the two boundary curves of degree n1 (respectively n2) of the surface
P(u), find two approximating curves of degree m1 (respectively m2), having the same derivatives up to order α at the
endpoints.

(2) Constrained surface approximation (Section 3.2): with the boundary control points calculated above, obtain the inner
control points by the constrained least-squares method.

Fig. 1 demonstrates the two steps of degree reduction. After getting the black dots (•) from Step 1, we obtain the hollow
circles (◦) from Step 2. Finally, we obtain the whole control net of the approximating surface Q(u).

3.1. Boundary curves approximation

There are four boundary curves to the given surface P(u):

Pv=0(u) =
n1∑
i=0

Bn1i (u)p(i, 0), Pv=1(u) =
n1∑
i=0

Bn1i (u)p(i, n2), u ∈ [0, 1],

Pu=0(v) =
n2∑
j=0

Bn2j (v)p(0, j), Pu=1(v) =
n2∑
j=0

Bn2j (v)p(n1, j), v ∈ [0, 1].

The problem is now to construct the four approximating curves with endpoints continuity of order α.
The best Cα-constrained degree reduction of polynomial curves in L2-norm is a classical problem in CAGD.Manymethods

have been developed to tackle it, see e.g. [3,7,11,14,17]. And the method in [11] produces better approximation than other
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methods, since the constraints of geometric continuity will give additional parameters to optimize the approximation.
However, it is somewhat complicated because the solution is achieved by numerical iterative methods. Therefore, in this
paper, we use the method in [3], which proved that the best weighted Euclidean approximation of Bézier coefficients
provides the best Cα-constrained degree reduction of Bézier curves in L2-norm.

3.2. Constrained surface approximation

In order to distinguish the calculated control points from the unknown ones, we divide the setΛm into two subsets, i.e.,

Λm
= Λm

c ∪Λ
m
f ,

where

Λm
c = {(i1, i2) ∈ Λ

m: i1 = 0 or i2 = 0 or i1 = m1 or i2 = m2}

is the union of all the corresponding indices of the boundary control points, andΛm
f = Λ

m
\Λm

c is its complement. Let

Qm
= Qm

c ∪ Qm
f = {qi ∈ Qm: i ∈ Λm

c } ∪ {qi ∈ Qm: i ∈ Λm
f },

where Qm
c and Q

m
f denote the boundary and inner control points, respectively.

We now have to determine Qm
f . We use the least-squares method to solve it, see e.g. [24]. Recall that our goal is to

minimize the squared L2-error

ε =

∫ 1

0

∫ 1

0
‖P(u)− Q(u)‖2 dudv

=

∫ 1

0

∫ 1

0

∥∥BnPn
− Bm

c Q
m
c − Bm

f Q
m
f

∥∥2 dudv. (7)

Taking the partial derivatives of (7) with respect to qi (i ∈ Qm
f ) and setting the derivatives equal to zero lead to the normal

equations∫ 1

0

∫ 1

0
Bmi (u)

(
BnPn

− Bm
c Q

m
c − Bm

f Q
m
f

)
dudv = 0, i ∈ Qm

f . (8)

Finally, we rewrite (8) into matrix form

GffQm
f = Gf Pn

− GfcQm
c , (9)

where

Gff := Gm,m
(
Λm
f ;Λ

m
f

)
, Gf := Gm,n

(
Λm
f ;Λ

n) , Gfc := Gm,m
(
Λm
f ;Λ

m
c

)
.

The notation A(. . . ; . . .) denotes the submatrix of the matrix A obtained by extracting the specific rows and columns.
Since the matrix Gm,m is a real symmetric positive definite matrix (see Lemma 2), Gff is invertible. Therefore, (7) is

minimized by choosing

Qm
f =

(
Gff
)−1(Gf Pn

− GfcQm
c

)
. (10)

Theorem 1. The squared L2-error for the degree reduction is given by

ε = (Pn)TGn,nPn
− 2(Pn)TGn,mQm

+ (Qm)TGm,mQm. (11)

Remark 1. If a user-prescribed tolerance should be fulfilled, one has to combine degree reduction with surface subdivision.
When α ≥ 0, the piecewise tensor product Bézier surfaces are C0 continuous on the boundary curves and C∞ continuous
in the interior; when α = 1, the tangent planes at the corners are also continuous; when α > 1, the order of continuity on
the boundary curves does not increase any more. Therefore, if one starts with several smoothly joined surface patches and
applies degree reduction to each one, piecewise continuous approximations are obtained without undesirable gaps.

4. Tangent plane continuity at common boundaries

After the constrained degree reduction by Section 3, any two adjacent surface patches will share a common boundary
curve. However, in practical applications, only positional continuity is not satisfactory, see Fig. 5 for an illustration. So,
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Fig. 2. Parameterization of two surface patches with a common boundary.

we require the approximating surfaces to have continuously varying tangent planes along common boundaries, i.e., G1
continuous. This means that the surfaces are C∞ everywhere except at the inner patch boundaries.
Geometric continuity between two tensor product Bézier surfaces has beenwidely investigated (see e.g. [1,25–27],where

necessary and sufficient conditions are derived and discussed). They mostly give a system of conditions of the form: Two
adjacent patches are smoothly joined with Gn continuity if and only if there exist parameters such that a certain set of
equations are satisfied. In particular, DeRose [25] provided a set of conditions related only to the placement of control points
to judge whether or not two patches are G1 continuous. However, our goal is to perturb some related control points such
that adjacent patches have continuously varying tangent planes along common boundaries. Therefore, their conditions are
not in a form that is convenient for the current study. In this section, we will present a simple method to optimize the
perturbations of control points to satisfy the requirement of tangent plane continuity.

4.1. G1 conditions between two surface patches

Let S1 and S2 be two adjacent tensor product Bézier patches parameterized as in Fig. 2. They join at the common boundary
with tangent plane continuity if and only if there exist two scalar functions such that

∂S2

∂u
(0, v)+ λ(v)

∂S1

∂u
(0, v)+ ν(v)

∂S1

∂v
(0, v) = 0, (12)

where λ(v) > 0 is assumed to avoid ridges.
We now consider a simple case of (12) by taking the scalar functions as follows:

λ(v) = λ > 0, ν(v) = 0.

Then, it becomes

∂S2

∂u
(0, v) = −λ

∂S1

∂u
(0, v). (13)

It is obvious that when λ = 1, the concept of G1 continuity degenerates to C1.
Without loss of generality, we assume that the degree of the common boundary curve is n, and represent it in Bernstein

form

S1(0, v) = S2(0, v) =
n∑
i=0

Bni (v)bi, v ∈ [0, 1].

Denote the first inner column control points of S1 from the common boundary by a0, . . . , an, and those of S2 by c0, . . . , cn.
We then express (13) as

n∑
i=0

Bni (v)(ci − bi) = −λ
n∑
i=0

Bni (v)(ai − bi),

which is equivalent to (due to the linear independence of the Bernstein basis)

ci − bi = λ(bi − ai), i = 0, 1, . . . , n. (14)

The constant λ in (13) and (14) controls the ratio of the three points ai, bi and ci. And (14) implies that if ai, bi and ci are
collinear and in the same ratio for all i (cf. Fig. 2), then S1 and S2 are G1 continuous and thus have continuous tangent planes
along the common boundary.

Remark 2. If S1 and S2 satisfy the conditions (14), then we can find a linear map,

φ: [0, 1] × [0, 1] 7→ [0, λ] × [0, 1], φ(u, v) = (λu, v),

such that S1(u, v) and S2(φ(u, v)) are joined with C1 continuity.
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Fig. 3. Parameterization of four surface patches and the control points related to the twists at the corner b0 .

For two adjacent patches with a common boundary, the conditions (14) may be not satisfied. Our main idea is to perturb
the control points ai and ci if needed to meet all the conditions. At first, we determine λ from the optimization problem:

min
λ

n∑
i=0

wi

(
‖ci − bi‖
‖bi − ai‖

− λ

)2
, (15)

where

wi =


(
n− i
n

)2
, i ≤

⌊n
2

⌋
,(

i
n

)2
, i >

⌊n
2

⌋
.

The weightswi are used to preserve important features near the two endpoints. Obviously, the solution of (15) is

λ =
1
n∑
i=0
wi

n∑
i=0

wi
‖ci − bi‖
‖bi − ai‖

. (16)

Next, we have to fix the new positions of ai and ci for all i, denoted as ai and ci. By the ratio, we have

ci = −λai + (1+ λ)bi. (17)

Then, ai is obtained in the sense of minimizing the perturbations

‖ai − ai‖2 + ‖ci − ci‖2 = ‖ai − ai‖2 + ‖ci − (1+ λ)bi + λai‖2.

And the solution is

ai =
ai + λ(1+ λ)bi − λci

1+ λ2
, ci =

−λai + (1+ λ)bi + λ2ci
1+ λ2

. (18)

At the patch corner ((u, v) = (0, 0) or (0, 1)), the G1 continuity is directly related to the twists. Therefore, the following
necessary conditions of G1-continuity, called compatibility conditions (refer to [1, Section 22.6]), must hold:

∂2S2

∂u∂v
(0, v) = −λ

∂2S1

∂u∂v
(0, v), v = 0, 1. (19)

Take the corner at (u, v) = (0, 0) for example. To satisfy (19), we have to verify that

(c1 − c0)− (b1 − b0) = −λ
(
(a1 − a0)− (b1 − b0)

)
,

which is a result of (17).

4.2. G1 conditions between four surface patches

We consider four adjacent tensor product Bézier patches around the corner b0, see Fig. 3. Let us start with discussing
the G1 join along the v-direction at u = 0. S1 and S2 are G1 continuous if the conditions (14) are satisfied. Denote the
control points of S4(0, v) by e0, . . . , en, and denote the first inner column control points of S4 from the common boundary
by d0, . . . , dn and those of S3 by f0, . . . , fn. Then, the G1 conditions at the boundaries u = 0 become

ci − bi = λ(bi − ai), fi − ei = λ(ei − di), i = 0, 1, . . . , n. (20)
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Usually, the values of λ, computed by (16), may be different for the boundary of S1 and S2 and that of S4 and S3. We
suggest to take their average. However, it is possible that the difference (in the form of standard deviation, for example)may
be very big in some worst cases, especially when the boundaries are composed by more than two segments. If this happens,
we divide the boundaries into some continuous groups collected according to the values of λ, and every two groups will be
separated by one or several segments. This scheme can better preserve the features of patches. But, since the adjustment is
applied after degree reduction, the difference will be small when the original surface patches are smoothly joined.
Similar to (20), the G1 conditions can be derived for the u-direction. Denote by µ the ratio at the boundaries v = 0. We

thus have

d1 − a0 = µ(a0 − a1), e1 − b0 = µ(b0 − b1), f1 − c0 = µ(c0 − c1). (21)

Now, we begin to adjust the positions of some control points to satisfy (20) and (21). First of all, since a0, b0, c0 and b1,
b0, e1 are collinear with the ratios λ and µ respectively, these points (marked by � in Fig. 3) must be coplanar. Otherwise,
we adjust the positions for a0, c0, b1 and e1 by (18), and denote them by a0, c0, b1 and e1.
Secondly, we have to determine the new positions for all the points marked by � in Fig. 3, denoted by a1, c1, d1 and f1.

From the conditions (20) and (21), we have the following equations:

c1 = −λa1 + (1+ λ)b1,

d1 = −µa1 + (1+ µ)a0, (22)

f1 = λµa1 − λ(1+ µ)a0 + (1+ λ)e1 = λµa1 − µ(1+ λ)b1 + (1+ µ)c0.

We optimize a1 by minimizing the perturbations

‖a1 − a1‖2 + ‖c1 − c1‖2 + ‖d1 − d1‖2 + ‖f1 − f1‖2 = ‖a1 − a1‖2 + ‖c1 − (1+ λ)b1 + λa1‖2

+‖d1 − (1+ µ)a0 + µa1‖2 + ‖f1 + λ(1+ µ)a0 − (1+ λ)e1 − λµa1‖2,

with the solution given by

a1 =
a1 − λc1 − µd1 + λµf1 + λ(1+ λ)b1 + µ(1+ λ2)(1+ µ)a0 − λµ(1+ λ)e1

(1+ λ2)(1+ µ2)
. (23)

And the new positions of c1, d1 and f1 are obtained by substituting (23) into (22).
Finally, we determine all the other related points (marked by • and ◦ in Fig. 3) by using (18) (replacing λ with µ for the

u-direction).
It is easy to verify that compatibility conditions such as (19) hold at b0 and the other four corners in Fig. 3, due to (20)

and (21).

Remark 3. Assume that the four surface patches in Fig. 3 are defined on the domain [−1, 0] ∪ [0, λ] × [−µ, 0] ∪ [0, 1].
Then they form C1 continuous Bézier spline surfaces, if the conditions (20) of the v-direction and the counterparts of the
u-direction including (21) are satisfied. In fact, a similar result also exists for surface patches defined on chessboard-like
domains: They will be joined to form a globally G1 surface (C1, after linear maps of the domain) when all the inner u- and
v-directions conform to the G1 conditions like (20).

5. Examples

Example 1. A tensor product Bézier surface of degree (6, 6) is shown in Fig. 4, with its control points given by P(6, 6) =
{(0, 0, 0.8), (0.2, 0.8, 1.8), (0.5, 2.1, 2.3), (0.3, 3.2, 1.6), (0, 3.8, 0.2), (0.2, 4.8,−1.2), (0.5, 5.5,−1.7), (1,−0.7, 1.6),
(1.2, 0.6, 2.2), (1, 1.6, 2.4), (0.7, 2.5, 1.6), (1, 3.4, 0), (1.3, 4.3,−0.45), (1.4, 4.4,−0.8), (2.3, 0.55, 2.1), (2.1, 1.4, 3.2),
(1.6, 2.4, 3.6), (1.9, 3.4, 2.4), (2.2, 4.7, 1.3), (1.8, 5.5, 0.2), (1.5, 4.7,−1.8), (3.1, 0.2,−2.8), (3.2, 0.8, 1.2), (3.1, 2.2, 2.1),
(2.8, 3.2, 0.2), (2.6, 4.1,−0.4), (3.1, 4.8,−2.8), (2.8, 5,−3.2), (3.6,−0.6, 0.1), (3.9, 0.3, 0.9), (4, 1.2, 1.2), (3.9, 2.2, 1.2),
(3.6, 3.3, 0.1), (3.6, 4.3,−1.1), (3.9, 4.6,−1.1), (5.1, 0.1,−0.6), (5.5, 1.1, 0.1), (5.6, 2.3, 1.1), (5.1, 3.1, 2.2), (4.9, 4.1,
1.1), (4.6, 5.1,−0.8), (4.8, 5.2,−1.8), (6.4, 0.8,−0.1), (6.4, 1.6, 1.2), (6.7, 2.7, 2.5), (6.4, 3.6, 3.2), (6.3, 4.6, 1.7), (5.9,
4.9,−0.6), (5.7, 6,−1.2)}.

We subdivide the surface at the domain point (0.5, 0) using the de Casteljau algorithm [1], and then reduce the degree
to (4, 4) by the method in Section 3 with α = 1. The result is shown in Fig. 5(a). Clearly, the approximation effect is
unsatisfactory, since the degree reduction can only achieve the same positions at the common boundary. Then, we further
adjust a column of control points of either patch by the scheme in Section 4.1, with the improved result in Fig. 5(b). And the
maximum L2-errors (i.e.,

√
ε of (11)) of the two pairs of patches are 0.071 and 0.161, respectively. Therefore, we obtain a

satisfactory approximation since the two patches have continuously varying tangent planes, at the cost of the increase of
approximation error. A better approximation is provided in Fig. 5(c), where the four patches are obtained by subdividing the
original surface at the domain point (0.5, 0.5) and using the scheme in Section 4.2 after degree reduction. The maximum
L2-error of the four pairs of patches is 0.011.
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Fig. 4. The surface patch given in Example 1.

Fig. 5. Degree reduction of the surface patch in Fig. 4 from degree (6, 6) to degree (4, 4). In (b) and (c), the two patches are G1 continuous.
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Fig. 6. Degree reduction of the surface patch in Fig. 4 from degree (6, 6) to degree (4, 4) by using the method in [7].

Fig. 7. The torus model. (a) 4 patches with degree (8, 8); (b) 16 patches with degree (4, 4); (c) 16 patches with degree (3, 3). The patches in (a) are C1
continuous, while the patches in (b) and (c) are G1 continuous and are obtained from (a) through subdivision and degree reduction.

Table 1
The mean and maximum errors of three examples.

Fig. 5(a) Fig. 5(b) Fig. 5(c) Fig. 6 Fig. 7(b) Fig. 7(c) Fig. 8(b) Fig. 8(c)

εmean 5.775e−02 1.275e−01 7.709e−03 1.479e−01 1.184e−02 1.113e−01 6.746e−03 4.468e−03
εmax 2.991e−01 3.450e−01 3.895e−02 3.013e−01 2.044e−02 2.124e−01 1.919e−02 1.453e−02

In Fig. 6, we use the method in [7] to the two patches obtained by subdividing the patch in Example 1 at (0.5, 0). The
approximations are achieved by applying the C1-constrained degree reduction to every row and afterwards to every column
of control nets. The maximum L2-error of the two pairs of patches is 0.177. By comparing it with Fig. 5(b), and by the results
in Table 1, we can see that the G1-constrained approximation in this paper is better than the C1-constrained one. This is
because the G1 constraint is much more relaxed in approximation problems.

Example 2. Consider the torus model parameterized as

T(u, v) =
(
(3+ cos v) cos u, (3+ cos v) sin u, sin v

)
, u, v ∈ [0, 2π).

In Fig. 7(a), we approximate the torus by four C1 tensor product Bézier patches of degree (8, 8) with high precision. Then,
we obtain 16 patches of degree (8, 8) by subdividing every patch into four patches at the domain point (0.5, 0.5). Finally, we
reduce the degree of the 16 patches to (4, 4) and (3, 3) in Figs. 7(b) and 7(c), respectively. And the approximating patches
are adjusted by the scheme in Section 4.2.

Example 3. Consider the cup model, which is a surface of revolution and parameterized as

R(u, v) =
(
φ(v) cos u, φ(v) sin u, ψ(v)

)
, u ∈ [0, 2π), v ∈ [0, 2],

where (φ(v), ψ(v)) is represented by two C1 Bézier curves of degree six, with the control points given by {(0.96, 0),
(−0.16, 0.3), (0.47, 0.6), (0.08, 0.9), (0.19, 1.2), (0.39, 1.45), (0.61, 1.8)} and {(0.61, 1.8), (0.83, 2.15), (0.9, 2.24),
(1.08, 2.8), (0.9, 2.85), (1.03, 3.25), (0.85, 3.5)}. In Fig. 8(a), we approximate the cup by two C1 tensor product Bézier
patches of degree (8, 8)with high precision. Then, we obtain 8 patches of degree (8, 8) by subdividing every patch into four
patches at the domain point (0.5, 0.5). Finally, we reduce the degree of the 8 patches to (4, 4) in Fig. 8(b). In Fig. 8(c),
the subdivision of each original patch is applied twice, so there are 32 patches, with the degree (3, 3). Similarly, the
approximating patches obtained by degree reduction are adjusted by the scheme in Section 4.2.
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Fig. 8. The cup model. (a) 2 patches with degree (8, 8); (b) 8 patches with degree (4, 4); (c) 32 patches with degree (3, 3). The patches in (a) are C1
continuous, while the patches in (b) and (c) are G1 continuous and are obtained from (a) through subdivision and degree reduction.

Fig. 9. An irregular domain whose center has valence 5.

Table 1 summarizes the numerical results of three examples. The mean errors εmean and maximum errors εmax are
sampling-based estimates of various errors between the original patches and their approximating ones. More precisely,
for every pair of patches, we take samples as follows:

εi,j =

∥∥∥∥P( i
100

,
j
100

)
− Q

(
i
100

,
j
100

)∥∥∥∥ , i, j = 0, 1, . . . , 100.

6. Conclusion and future work

In this paper, we have considered constrained approximation of tensor product Bézier surfaces with special emphasis on
the boundaries. By the position adjustment of some related control points after degree reduction, the resulting patches are
smoothly joined with tangent plane continuity. So, we can trade off a little accuracy to achieve G1-continuity.
Although the adjustment is simple and able to dealwith surface patches defined on chessboard-like domains, it is a global

scheme since the G1 conditions are related to all the patches located on both sides of the boundaries for every direction. In
future work, we plan to develop a local scheme such that the G1 conditions depend only on the two patches on both sides
of a common boundary and all the other patches incident to the two corners of the boundary. Moreover, we will be able to
deal with surface patches defined on irregular domains, such as Fig. 9.
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