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Abstract

The Erdo+s–Ko–Rado theorem tells us how large an intersecting family of r-sets from an

n-set can be, while results due to Lovász and Tuza give bounds on the number of singletons

that can occur as pairwise intersections of sets from such a family.

We consider a natural common generalization of these problems. Given an intersecting

family of r-sets from an n-set and 1pkpr; how many k-sets can occur as pairwise intersections

of sets from the family? For k ¼ r and 1 this reduces to the problems described above. We

answer this question exactly for all values of k and r; when n is sufficiently large. Our result is

in the form of a structure theorem characterizing the extremal families in terms of extremal

families for the Lovász–Tuza problem.
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1. Introduction

A family of sets is intersecting if any two sets from the family meet. Let ½n�ðrÞ

denote the collection of all r-sets from ½n� ¼ f1; 2;y; ng; ½n�ðprÞ denote the collection

of all sets of size at most r from ½n� and 2½n� denote the power-set of ½n�: For an

intersecting family AD2½n� and 1pkpn define the intersection structure of A by

IðAÞ ¼ fA-B : A;BAAg
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and the collection of k-intersections of A by

A/kS ¼ fAAIðAÞ : jAj ¼ kg:

Although A/1S is a collection of singleton sets it will often be convenient to treat it
as a set of points, for example fa; b; cg instead of ffag; fbg; fcgg:

The primary result concerning intersecting families of sets is the celebrated Erdo+s–

Ko–Rado theorem. This tells us exactly how large an intersecting family AD½n�ðrÞ
can be. In the notation introduced above it gives a bound on jA/rSj:

Theorem 1 (Erdo+s et al. [2]). If nX2r and AC½n�ðrÞ is intersecting then jAj ¼
jA/rSjp n	1

r	1

� �
¼ jA1j; where A1 ¼ fAA½n�ðrÞ : 1AAg:

This theorem has been generalized in many different ways. Amongst the most
significant results in this area are the Hilton–Milner theorem [4], the Ray-
Chaudhuri–Wilson theorem [6], the Hajnal–Rothschild theorem [3] and the
Complete Intersection theorem [1].

All of these results share the common aim of giving bounds on the size of a family
of sets satisfying certain intersection properties. In this paper, we take a different
approach. Rather than giving bounds on the size of an intersecting family itself, we
instead consider the intersection structure of such a family. In particular, we consider
the question: how many sets of a given size can occur as the intersection of two sets

from an intersecting family? In other words, given an intersecting family AD2½n� and
1pkpn how large can jA/kSj be?

If AD2½n� is intersecting and 1pkpn then clearly A/kSD½n�ðkÞ: In fact we may

have A/kS ¼ ½n�ðkÞ: (Consider, for n odd, the collection of all sets in 2½n� containing
more than n=2 points.) However, if we restrict ourselves to uniform families this
question becomes more interesting.

We define for 1pkprpn

bðn; r; kÞ ¼ maxfjA/kSj :AD½n�ðrÞ is intersectingg:

Theorem 1 may now be rephrased as: ‘‘if nX2r then bðn; r; rÞ ¼ n	1
r	1

� �
’’.

It is perhaps not immediately obvious that bðn; r; 1Þ is bounded above for fixed r;
irrespective of the value of n: However the following result, due to Lovász [5], shows
that this is indeed the case.

Theorem 2 (Lovász [5]). If rX1 and

aðrÞ ¼ maxfbðn; r; 1Þ : nXrg

then aðrÞ is well-defined and satisfies

2r 	 3

r 	 1

� �
þ 2r 	 2paðrÞpð2r 	 1Þ

2r 	 3

r 	 1

� �
:
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Theorem 2 was subsequently improved by Tuza [7], who gave the following

bounds for aðrÞ:

Theorem 3 (Tuza [7]). If rX4 then

2
2r 	 4

r 	 2

� �
þ 2r 	 4paðrÞp

2r 	 1

r 	 1

� �
þ

2r 	 4

r 	 1

� �
:

The lower bound in Theorem 3 comes from the following construction. Take

½2r 	 4�ðr	2Þ ¼ fA1;B1;y;Am;Bmg; with m ¼ 1
2

2r	4
r	2

� �
and Ai ’,Bi ¼ ½2r 	 4�: For

each 1pipm introduce four new vertices: ai; bi; ci and di: Let A be the intersecting
family containing the sets Ai,fai; big;Ai,fci; dig;Bi,fai; cig and Bi,fbi; dig for
i ¼ 1;y;m: Clearly A/1S contains ½2r 	 4� together with fai; bi; ci; di : 1pipmg:

Although Theorem 3 gives bounds on aðrÞ that are sharp up to a multiplicative

constant factor, aðrÞ is only known exactly for rp4; with að1Þ ¼ 1; að2Þ ¼ 3; að3Þ ¼ 7

and að4Þ ¼ 16:

2. Main result

Our main result, Theorem 4, is a structure theorem that provides an exact
determination of bðn; r; kÞ for all 1pkpr and sufficiently large n: This result says
that in order to maximize the number of k-intersections of an intersecting family of r-
sets we should first take an intersecting family of ðr 	 k þ 1Þ-sets whose pairwise
intersections realize as many singletons as possible and then extend this to an
intersecting family of r-sets by taking all r-sets containing a member of this family.

Since the value of aðrÞ is only known for rp4 our answer is necessarily given in

terms of aðr	kþ1Þ:
In order to describe our main result we need to introduce a construction, which we

will show is the essentially unique extremal family. However, before we can give this
construction we require a lemma.

We say that an intersecting family AD½n�ðrÞ is maximal iff any set in ½n�ðrÞ\A is

disjoint from at least one set in A: Similarly, an intersecting family AD½n�ðprÞ is

maximal iff any set in ½n�ðprÞ
\A is disjoint from at least one set in A:

Lemma 1. If nX2r and AD½n�ðprÞ
is intersecting and maximal then for every A;BAA

we have

A-B-A/1Sa|:

Proof. Suppose, for a contradiction, that there exist A;BAA with A-B-A/1S ¼
|: Let C ¼ A-B ¼ fc1;y; ckg and D ¼ fd1;y; dkgD½n�\ðA,BÞ: We define a
sequence of sets A0;A1;y;Ak; by A0 ¼ A and Ai ¼ ðAi	1\fcigÞ,fdig for 1pipk:
We claim that AiAA for 0pipk: This is true for i ¼ 0 since A0 ¼ AAA: Now
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suppose AiAA; for some 0piok: If Aiþ1eA then by the maximality of A there

exists EAA such that Aiþ1-E ¼ |: But then Ai-E ¼ fciþ1g; contradicting our
hypothesis that ciþ1eA/1S: Hence Aiþ1AA and so by induction AkAA: However
this is impossible since Ak ¼ ðA\CÞ,D is disjoint from B: &

Throughout the remainder of this section we will assume that n is a large positive
integer without explicitly determining exactly how large it must be. We will return to
this question at the end of the next section. At this point we simply remark that in

order to give our construction we will require at least nXaðr	kþ1Þ:

Construction 1. Let 1pkpron and BD½n�ðr	kþ1Þ
be an intersecting family satisfying

B/1S ¼ ½aðr	kþ1Þ�: Define a new intersecting family

A ¼ fAA½n�ðrÞ : (BAB such that BDAg:

We claim that

A/kS ¼ fCA½n�ðkÞ : C-½aðr	kþ1Þ�a|g:

Proof of Claim. We show first that any two sets from A contain a common point in

½aðr	kþ1Þ�: By adding sets from ½n�ðr	kþ1Þ to B we may form a maximal intersecting

family C such that BDCD½n�ðr	kþ1Þ: Since B/1SDC/1S and jB/1Sj ¼ aðr	kþ1Þ

we have C/1S ¼ B/1S ¼ ½aðr	kþ1Þ�:
If B1;B2ABDC then, by Lemma 1, we have B1-B2-½aðr	kþ1Þ�a|: So if

A1;A2AA then there exist B1;B2AB with B1DA1 and B2DA2: Hence

A1-A2-½aðr	kþ1Þ�a|: Thus,

A/kSDfCA½n�ðkÞ : C-½aðr	kþ1Þ�a|g:

We now prove the other inclusion. Let CA½n�ðkÞ satisfy C-½aðr	kþ1Þ�a|: If

xAC-½aðr	kþ1Þ� then there exist B1;B2AB such that B1-B2 ¼ fxg: Let D1 ¼ B1,C

and D2 ¼ B2,C: If jD1j ¼ d1 and jD2j ¼ d2; let E1 and E2 be disjoint sets of sizes
r 	 d1 and r 	 d2; respectively, in ½n�\ðD1,D2Þ: Then A1 ¼ D1 ’,E1 and A2 ¼ D2 ’,E2

both belong to A and A1-A2 ¼ C: So CAA/kS as claimed. &

Fig. 1 attempts to show how part of this family looks for k ¼ 2 and r ¼ 3:
Construction 1 shows that for n sufficiently large

bðn; r; kÞXjfAA½n�ðkÞ : A-½aðr	kþ1Þ�a|gj ¼
n

k

� �
	 n 	 aðr	kþ1Þ

k

 !
:

Our main result says that this construction is best possible, and that any other family
achieving this bound must contain a subfamily that is constructed in a similar

fashion. This result also tells us that any maximal intersecting family in ½n�ðrÞ that
does not contain such a subfamily has significantly fewer than bðn; r; kÞ
k-intersections.
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Theorem 4. If 1pkpron; with n large, then

bðn; r; kÞ ¼
n

k

� �
	 n 	 aðr	kþ1Þ

k

 !
¼ aðr	kþ1Þ n

k 	 1

� �
þ Oðnk	2Þ:

Moreover, if AD½n�ðrÞ is intersecting and maximal then either

jA/kSjpðaðr	kþ1Þ 	 1Þ
n

k 	 1

� �
þ Oðnk	2Þ;

or there is an intersecting family CD½n�ðr	kþ1Þ
satisfying jC/1Sj ¼ aðr	kþ1Þ such that

B ¼ fBA½n�ðrÞ : (CAC such that CDBg

is contained in A and

A/kS ¼ fAA½n�ðkÞ : A-C/1Sa|g ¼ B/kS:

3. Proof

We prove Theorem 4 using the following two lemmas. The first says that either
jA/kSj is small or A contains a family similar to that given in Construction 1. The
second lemma then allows us to show that we cannot extend such a family so as to
increase jA/kSj:

Lemma 2. If AD½n�ðrÞ is intersecting and maximal then either

jA/kSjpðaðr	kþ1Þ 	 1Þ
n

k 	 1

� �
þ Oðnk	2Þ;

or there exists a set DA½n�ðk	1Þ
such

C ¼ fA\D : DCAAAg
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is an intersecting family in ½n�ðr	kþ1Þ
satisfying jC/1Sj ¼ aðr	kþ1Þ and

B ¼ fBA½n�ðrÞ : (CAC such that CDBg

is contained in A:

Lemma 3. If 1pkprpn and A;BA½n�ðrÞ; CD½n�ðpr	kþ1Þ
satisfy

(i) A-B ¼ DA½n�ðkÞ;
(ii) E ¼ C,fA;Bg is intersecting,
(iii) jC/1Sj ¼ aðr	kþ1Þ;

then D-C/1Sa|:

Proof of Theorem 4. Construction 1 implies that for n large

bðn; r; kÞXjfAA½n�ðkÞ : A-½aðr	kþ1Þ�a|gj ¼
n

k

� �
	 n 	 aðr	kþ1Þ

k

 !
:

The fact that this is also an upper bound for bðn; r; kÞ will follow if we prove the
remainder of Theorem 4.

So let AD½n�ðrÞ be intersecting and maximal. Lemma 2 then implies that either

jA/kSjpðaðr	kþ1Þ 	 1Þ
n

k 	 1

� �
þ Oðnk	2Þ;

or there exists a set BA½n�ðk	1Þ such that

C ¼ fA\B : BCAAAg

is an intersecting family in ½n�ðr	kþ1Þ satisfying jC/1Sj ¼ aðr	kþ1Þ and

B ¼ fBA½n�ðrÞ : (CAC such that CDBg

is contained in A: We may suppose that the latter holds. Now, since B is constructed
identically to Construction 1, we have

B/kS ¼ fAA½n�ðkÞ : A-C/1Sa|g:

Also, since BDA; we have B/kSDA/kS: In order to complete the proof of
Theorem 4 we need to show that A/kS ¼ B/kS: This will follow if we show that

any set DAA/kS satisfies D-C/1Sa|:

If DAA/kS then there exist A;BAA such that A-B ¼ DA½n�ðkÞ: Also E ¼
C,fA;Bg is intersecting, since if FAA is disjoint from CAC then there exists

GABDA containing C such that F-G ¼ |; a contradiction. So A;B;C;D and E

satisfy the conditions of Lemma 3 and hence D-C/1Sa| as required. &

We now turn to the proofs of Lemmas 2 and 3.
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Proof of Lemma 2. Let AD½n�ðrÞ be intersecting and maximal. If a ¼
jA/1Sjoaðr	kþ1Þ then Lemma 1 implies that

jA/kSjp jfAA½n�ðkÞ : A-A/1Sa|gj

p ðaðr	kþ1Þ 	 1Þ
n

k 	 1

� �
þ Oðnk	2Þ:

So we may suppose that aXaðr	kþ1Þ:
We partition A/kS as A/kS ¼ A1 ’,A2; where

A1 ¼ fAAA/kS : if DCA and jDj ¼ k 	 1 then D-A/1Sa|g

and A2 ¼ A/kS\A2:
If AAA1 then jA-A/1SjX2; since otherwise there exists DCA satisfying jDj ¼

k 	 1 and D-A/1S ¼ |: Moreover, since apaðrÞ ¼ Oð1Þ; we have

jA1jpjfAA½n�ðkÞ : jA-A/1SjX2gj ¼
Xk

i¼2

a

i

� �
n 	 a

k 	 i

� �
¼ Oðnk	2Þ:

For DA½n�ðk	1Þ define

AD ¼ fA\D : DCAAAg:

Then

jA2jp
X

DA½n�ðk	1Þ; D-A/1S¼|

jAD/1Sj: ð1Þ

If DA½n�ðk	1Þ
\A/k 	 1S then ADD½n�ðr	kþ1Þ is intersecting. Also, by Lemma 1, if

DAA/k 	 1S then D-A/1Sa|; hence such D are not counted in this sum.

Therefore each term in the sum (1) is bounded above by aðr	kþ1Þ: So either there

exists a set DA½n�ðk	1Þ such that D-A/1S ¼ | and jAD/1Sj ¼ aðr	kþ1Þ or

jA2jpðaðr	kþ1Þ 	 1Þ
n 	 a

k 	 1

� �
:

In the latter case we have

jA/kSj ¼ jA1j þ jA2jpðaðr	kþ1Þ 	 1Þ
n

k 	 1

� �
þ Oðnk	2Þ;

so we may suppose that the former holds.

Let DA½n�ðk	1Þ satisfy D-A/1S ¼ | and jAD/1Sj ¼ aðr	kþ1Þ: Define

C ¼ AD ¼ fA\D : DCAAAg:

Then CD½n�ðr	kþ1Þ is an intersecting family and jC/1Sj ¼ aðr	kþ1Þ: The proof of the
lemma will be complete if we can show that

B ¼ fBA½n�ðrÞ : (CAC such that CDBgDA:
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If BAB then there exists CAC such that CDB: By definition of C we have C,DAA

and D-A/1S ¼ |: Now C meets every set in A; since if AAA and A-C ¼ | then

A-ðC,DÞ-A/1S ¼ |; contradicting Lemma 1. Hence B meets every set in A
and so by maximality BAA: &

For the proof of Lemma 3 we require the following simple result.

Lemma 4. If AD½n�ðprÞ
is intersecting then jA/1SjpaðrÞ:

Proof. Let AD½n�ðprÞ be intersecting. Add r 	 jAj distinct new vertices to each set

AAA: This gives an intersecting family BD½n þ N�ðrÞ; where N ¼
P

AAA r 	 jAj:
Then jA/1Sj ¼ jB/1SjpaðrÞ: &

Proof of Lemma 3. We use induction on k; for 1pkpr: If k ¼ 1 then E ¼ C,fA;Bg
is an intersecting family in ½n�ðprÞ: Let E0 be a maximal intersecting family in ½n�ðprÞ

containing E: Now C/1SDE0/1S and jC/1Sj ¼ aðrÞ so Lemma 4 implies that

E0/1S ¼ C/1S: Then, by Lemma 1, A-B-C/1S ¼ A-B-E0/1Sa| as
required. Hence the result holds for k ¼ 1:

Let 2pkpr and assume the result holds for k 	 1: Suppose, for a contradiction,

that D-C/1S ¼ |: Since kX2; there exist a; bAD with aab: We now replace a and
b by a new vertex v�e½n�: Define A� ¼ ðA\fa; bgÞ,fv�g; B� ¼ ðB\fa; bgÞ,fv�g and
D� ¼ ðD\fa; bgÞ,fv�g: Also let C�;E� be the families produced from C;E;
respectively, by replacing each occurrence of a or b in every set in these families
by v�: Note that C� and E� are intersecting and C� is a family of sets of size at most
r 	 k þ 1:

If C�/1S ¼ C/1S then, since 1pk 	 1pr 	 1; we may apply our inductive
hypothesis for k 	 1 to A�;B�;C�;D� and E�; with r replaced by r 	 1: This implies

that D�-C�/1Sa|: Then C�/1S ¼ C/1S and v�eC/1S imply that

D-C/1Sa| as required. So we may suppose that C�/1SaC/1S:
Since C� is an intersecting family of sets of size at most r 	 k þ 1; Lemma 4 implies

that jC�/1Sjpaðr	kþ1Þ: Therefore, as jC/1Sj ¼ aðr	kþ1Þ and C�/1SaC/1S; there
must exist cAC/1S such that ceC�/1S: This means that in replacing a and b by v�

we have ‘‘lost’’ the intersection fcg: This can only happen if for all F ;GAC

F-G ¼ fcg ) ðaAF and bAGÞ or ðbAF and aAGÞ: ð2Þ

Take such a pair F ;GAC (they exist since cAC/1S). Without loss of generality we
may suppose that aAF and bAG: Consider the set ðF \fcgÞ,fbg: We claim that this
set meets every set in C: If not then there exists HAC such that

H-ððF \fcgÞ,fbgÞ ¼ |: Thus, F-H ¼ fcg and beH so by (2) we must have
aAH: Hence aAF-H; contradicting the fact that F-H ¼ fcg:

So F ¼ C,fðF \fcgÞ,fbgg is an intersecting family of sets of size at most

r 	 k þ 1 and, by Lemma 4, jF/1Sjpaðr	kþ1Þ: However, ððF \fcgÞ,fbgÞ-G ¼ fbg
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and beC/1SCF/1S: So jF/1SjXjC/1Sj þ 1 ¼ aðr	kþ1Þ þ 1; a contradiction.
The result then follows by induction. &

4. Remarks

Can the characterization of the extremal families in Theorem 4 be strengthened to
A ¼ B; rather than BDA and A/kS ¼ B/kS (using the notation of Theorem 4)?
For k ¼ 1 or r this is trivially true, while for k ¼ r 	 1 this can still be verified easily.
However in general this is false.

For example, if k ¼ 2 and r ¼ 4; let

D ¼ f123; 145; 246; 356; 167; 257gC½7�ð3Þ

and

E ¼ fEA½n�ð4Þ : (DAD such that DCEg:

Then jD/1Sj ¼ aðr	kþ1Þ ¼ 7 and the family

F ¼ E,f1258; 3478g
satisfies

F/2S ¼ fFA½n�ð2Þ : F-½7�a|g:

However, it is easy to check that any set in ½n�ð4Þ\F that meets every set in F must

belong to ½8�ð4Þ: Hence if A is a maximal intersecting family in ½n�ð4Þ containing F
then the family B given by Theorem 4 must be E: So in this case we not only have
AaB but also A/lSaB/lS for lak: (We have A/1S ¼ ½8�a½7� ¼ B/1S;
A/2S ¼ B/2S; 128AA/3SaB/3S ¼ D and A/4S ¼ AaB ¼ B/4S).

Another obvious question to ask is when can we actually evaluate the expression

given in Theorem 4 for particular values of k; r and n? As we remarked earlier, aðrÞ is

only known for rp4: So we can evaluate aðr	kþ1Þ; and hence

n

k

� �
	 n 	 aðr	kþ1Þ

k

 !
;

whenever r 	 k þ 1p4: For other values of k and r we can use Theorem 3 to give
bounds on this quantity.

Finally we turn to the question of how large n must be for the value of bðn; r; kÞ to
be determined by Theorem 4. In order to use Construction 1 to give a lower bound

for bðn; r; kÞ we require nXaðr	kþ1Þ and so Theorem 3 implies we need

nX2
2r 	 2k 	 2

r 	 k 	 1

� �
þ 2r 	 2k 	 2:

Conversely, examining the proof of Lemma 2 we see that if a ¼ jA/1Sjoaðr	kþ1Þ

then Construction 1 provides an upper bound for jA/kSj: So we may suppose that
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aðr	kþ1ÞpapaðrÞ: Then our argument requires

n

k

� �
	 n 	 aðr	kþ1Þ

k

 !
Xðað4	kþ1Þ 	 1Þ

n 	 a

k 	 1

� �
þ
Xk

i¼2

a

i

� �
n 	 a

k 	 i

� �

for the upper bound to be valid. A rough calculation shows that this inequality holds

for nXkðaðrÞ þ 1Þ2 and hence Theorem 4 determines bðn; r; kÞ for nXkðaðrÞ þ 1Þ2:
Theorem 3 then implies that bðn; r; kÞ is determined for

nXk
2r

r

� �2

:

Clearly this could be improved, indeed it is plausible that Construction 1 is best
possible whenever it exists. However, given our lack of knowledge of the true value

of aðrÞ; it seems an extremely difficult problem to determine bðn; r; kÞ exactly for small
values of n:
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