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Tracer (Bromide) movement through the unsaturated agricultural soil was investigated in soil columns.
Two tracer column experiments, with a diameter of 7 cm and a depth of 25 cm, were vertically ho-
mogeneous packed with sandy loam and then carried out to investigate bromide (Br�) transport under
different water contents (at steady flow condition). One soil column (Column 1) represents the unsat-
urated agricultural soil in dry season (with water content ranging from 0.23 to 0.26) and the other
(Column 2) represents the soil in wet season (water content from 0.24 to 0.35). Bromide samples were
periodically collected by vacuum tubes inserted at 6.25 cm equally spaced intervals (e.g., 6.25, 12.5, 18.75
and 25 cm) along the length of the column and the effluent collected at the end of the column. The
observed breakthrough curves (BTCs) of bromide in both columns represented a relative smooth and
sigmodal curves at different distances (sampling ports). Dispersivity (a, cm) for sandy loam at different
locations was numerically estimated by curve fitting the experimental data with HYDRUS-1D. The a can
be well described by the convectionedispersion equation and these values derived from Column 1
(ranging from 0.37 to 0.98 cm) are more than those from Column 2 (0.25e0.59). Moreover, the a in both
columns increases with the travel distance due to the scale-dependent effect. Furthermore, the a values
were plotted on a logelog scale against travel distances and they yield empirical power law relationships
with an excellent correlation (a ¼ 0.102 (L)0.697, R2 ¼ 0.999 and a ¼ 0.086 (L)0.579, R2 ¼ 0.963 for Column 1
and 2, respectively).
© 2016 Chinese Institute of Environmental Engineering, Taiwan Production and hosting by Elsevier

B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
1. Introduction

The soil-column experiment was widely used to evaluate the
transport model and determine the fate and migration of con-
taminants through soils [1,2]. The movement of water in unsatu-
rated porous media and associated moisture contents are
important in study of surface water and groundwater interaction
with the average linear velocity for groundwater movement
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estimation. However, effect of the variation of water velocity on
solute migration is accounted for in the convection-dispersion
equilibrium (CDE) with the hydrodynamic dispersion concept.
Theoretically, the hydrodynamic dispersion coefficient (D) is the
sum of mechanical dispersion and molecular dispersion. The dis-
persivity (a) reflects the degree of mechanical mixing, caused by
variations in the local groundwater velocity. The value of a has
traditionally been considered under saturated water condition and
usually reported in the range of 0.1e2 cm for homogeneous satu-
rated soils [3]. From previous literature, Dagan [4], Sudicky [5] re-
ported that the a may increase with the travel time, distance, and/
or experimental scales. However, in laboratory experiments, few
studies have attempted to explore the transport parameters (e.g., a)
through natural geologic media under various degree of water
and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND
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Table 1
Input parameters of the transport of bromide using in Hydrus-1D.

Parameters Value

Saturated hydraulic conductivity, Ks (cm h�1) 0.41
Residual soil water content, q r (�) 0.16
Saturated soil water content, qs (�) 0.36
Parameter a in the soil water retention function (�) 0.007
Parameter n in the soil water retention function (�) 2.19
Bulk density, Bd (g cm�3) 1.64
Solution of bromide (Br�), C (g L�1) 12.86
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saturation, although many column studies of solute transport have
been conducted in unsaturated porousmedia. As known, Thailand is
the agricultural country and in order to yield high production, ag-
rochemicals have been intensively applied for last decades. Conse-
quently, such chemicals (pesticides and fertilizers)may, in turn, pass
through unsaturated zone and eventually reach and contaminate
groundwater system. Therefore, the purposes of this study were to
investigate tracer transport in variably saturated agricultural soil
and construct the relationship between awith travel distance under
different volumetric water contents. The findings from this study
derive the a of unsaturated agricultural soils for assessing ground-
water contamination in agricultural areas of Thailand.

2. Materials and methods

2.1. Soil sampling

This study collected soil samples randomly in one of the inten-
sively agricultural areas at the Huarua area, Muang district, Ubon-
Ratchathani Province. This study soil is located in the northeastern
part of Thailand. The soil texture of the present study is sandy loam,
consisting of approximately 71% sand, 25% silt, and 4% clay. Soil
samples were collected, packed in the zipper bag and then trans-
ported back to the laboratory. All soil aggregates were crushed, air-
dried,andsieved throughasieveNo.10 (2mm)before columnstudies.

2.2. Tracer experiment setup

The soil was uniformly wet-packed vertically into each column
with 1-cm increment with an internal diameter of 7 cm and depth
of 25 cm. The experimental setup using in this study are shown in
Fig. 1, consisting of: 1) soil column (Column 1) with low volumetric
water content (Fig. 1a), which represents soils in dry season and 2)
soil column (Column 2) with high volumetric water content
(Fig. 1b), which represents soils in rainy season. The groundwater
table (saturated zone) is constant at the bottom end of the soil
column by using overspill, connected with the bottom end of the
soil column (Fig. 1b). The packed soil columns may be assumed to
be homogeneous. A bulk density of agricultural soil from field
measurement is ~1.64 g cm�3, for which packed soil inside the
column should have the similar bulk density after the water satu-
ration. Each column was reproduced by packing with the similar
bulk density measured in the field. Firstly, deionizedwater from the
bottomwith at least 2e3 pore volumes (PVs) was used in saturated
soil column to remove entrapped air and then allowed the water
drain through the port at the bottom of the column. Then, a steady-
state water flow was maintained by injecting the water from the
Fig. 1. Column experiment set up consisting of a) low w
top of column and kept it constant at a rate of 0.41 cm h�1 at least
2e3 PV. After that, the solution of 12.86 g L�1 of bromide (Br�) was
injected at the top of the column by gravity at a rate of 0.41 cm h�1

(Table 1). The column effluent was periodically collected using
vacuum tube water and then analysed using the electrical con-
ductivity probe at a depth of 6.25, 18.75, 12.5 and 25 cm. The
breakthrough curves (BTCs), expressed as the relative concentra-
tion (C/C0) versus PV. Where C is Br� concentration at time t and C0
the influent Br� concentration.
2.3. Water flow and solute transport equations

The one dimensional movement of water in unsaturated soils is
a non-linear partial differential equation (Eq. (1)) as commonly
known as Richards equation [6,7].

vqðhÞ
vt

¼ v

vz

�
KðhÞ vh

vz

�
þ KðhÞ (1)

where q(h) is the soil q (volumetric water content) at the suction
head (cm3 cm�3); K(h) is unsaturated hydraulic conductivity (cm
h�1); z is the vertical distance (cm) and t is time (h).

The solute transport in homogeneous porous media under a
steady flow of water at constant velocity equation (Eq. (2)) can be
written as
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where C is the concentration of solute in water (mg L�1); Vx is the
fluid velocity which passing though the pore of media (cm h�1); DL
is the coefficient of dispersion length (cm2 h�1); r is the soil bulk
density (g cm�3); C* is the adsorption of solute per unit weight of
the medium porous (mg g�1); rxn is the subscript indicating a
chemical or biological reaction of the solute (other than sorption)
often defined as the sum of the effective molecular diffusion and
ater content (dry) and b) high water content (wet).
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molecular diffusion (Eq. (3)). The ratio of the diffusion coefficient to
the pore water velocity to derive a (Eq. (4))

D ¼ Dwtw þ Dh (3)

f ¼ D
V

(4)

where Dw is the molecular coefficient (m2 s�1); tw is a tortuosity
(�); Dh is mechanical dispersion (cm2 h�1); v is velocity (cm h�1),
generally determined a characteristics of natural aquifer media
under saturated condition. The tortuosity factor, dependent on
water content, accounts for the pore geometry [8].

3. Results and discussion

3.1. Bromide BTCs: experimental results

Br� used in the study was a non-reactive and applied to test
hydrodynamic characteristics of agricultural sandy loam column.
The BTC results of these column experiments are shown in Fig. 2.
Under steady-state flow conditions, the BTCs of bromide show
symmetrical shape, demonstrating equilibrium behaviour in sandy
loam soil columns. The column was divided into 4 depth: (a) 6.25,
(b) 12.5, (c) 18.75 and (d) 25 cm for inserting sampling ports. In
Column 1, at 6.25 cm, bromide came out faster than those at depth
of 12.5,18.75 and 25 cm, indicating that there is no preferential flow
in the column. Similar observation of BTCs in Column 2, at a depth
of 6.25 cm, bromide came out faster than others. Interestingly,
breakthrough of bromide in Column 2 came faster than those BTCs
of the other column.

The various input parameters needed in Hydrus-1D, namely the
saturated hydraulic conductivity (Ks), qs, qr, and van Genuchten
parameters (a and n), bulk density (Bd) and concentration (C) were
used to fit bromide transport in variably saturated soil columns as
shown in Table 1.

3.2. Bromide BTCs: Hydrus-1D modelling results

The HYDRUS-1D program is a model for simulating one-
dimensional water flow and solute transport in variably saturated
Fig. 2. Experimental BTCs for NaBr of dry and wet c
media through different soil types, concerning the impacts of
physical and chemical non equilibrium conditions [9]. Figs. 3 and 4
show the observed data and fitted BTCs for bromide using HYDRUS-
1D with the CDE model. The dispersivity values were fitted as
shown in Table 2. According to fitted results with HYDRUS-1D,
Column 1 (dry season) in Fig. 3, the dispersivity at depth of 6.25,
12.5, 18.25 and 25 cm are 0.37, 0.59, 0.78 and 0.98 cm, respectively
with the order of R2 from 0.9922 to 0.9952. For Column 2 (rainy
season) in Fig. 4, the dispersivity at depth of 6.25, 12.5, 18.25 and
25 cm are 0.25, 0.39, 0.43 and 0.59 cm, respectively, with the order
of R2 from 0.9930 to 0.9951 (Table 2). Porro et al. [10] found that the
dispersivity in homogeneous unsaturated column increased from
2.2 cm to 7.8 m at the travel distances of 82 and 400 cm, respec-
tively. Similarly, Huang et al. [11] presented the dispersivity values
increased from 0.1 to 5.0 cm as increasing distance in the homo-
geneous saturated sandy column of 12.5 m long. A logelog plot of
dispersivity versus column length Fig. 5 shows that the dispersivity
is higher under lower water content (Column 1) and tends to lin-
early increase as travel distance increases. They yield empirical
power law relationships with an excellent correlation as follows:
a¼ 0.102 (L)0.697 (R2 ¼ 0.999) and a¼ 0.086 (L)0.579 (R2 ¼ 0.963) for
Column 1 and 2, respectively. These results are in agreement with
the study of Neuman [12] who found that dispersivity for the flow
distance less than 3500 m, can be calculated from the power law
relationship as follows: a ¼ 0.0175 (L)1.46.

The comparison of the dispersivity between two columns at
each location indicates that the values of dispersivity in Column 1
were higher than those in Column 2, suggesting that most soil
pores are partially filled resulting in high tortuous factor; conse-
quently, the local velocity varies and dispersivity values become
higher. Chou andWyseure [13] found that dispersivity decreased as
the volumetric water content increased.

4. Conclusions

In this present study, the BTCs of bromide transport in homo-
geneous sandy loam columns under different water contents and
travel distances are demonstrated. Both columns showed that, at a
depth of 6.25 cm, bromide came out faster than those at deeper
locations. Values of the dispersivity derived from Column 1
(ranging from 0.37 to 0.98 cm) is higher than those from Column 2
olumn at (a) 6.25 (b) 12.5 (c) 18.75 (d) 25 cm.



Fig. 3. Fitted curves of the observed data in Column 1 (dry).

Fig. 4. Fitted curves of the observed data in Column 2 (wet).

Table 2
Dispersivity fitted from HYDRUS-1D at different locations in both columns.

Column Depth (cm) Average linear velocity (cm h�1) Dispersivity (cm) R2

Column 1 (dry) 6.25 0.41 0.37 0.9923
12.5 0.41 0.59 0.9930
18.75 0.41 0.78 0.9922
25 0.41 0.98 0.9952

Column 2 (wet) 6.25 0.41 0.25 0.9930
12.5 0.41 0.39 0.9939
18.75 0.41 0.43 0.9935
25 0.41 0.59 0.9951
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Fig. 5. The power law relationship between dispersivity versus travel distance of
Column 1 (dry) and Column 2 (wet).
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(0.25e0.59). Moreover, the dispersivity values in both columns
increase with the travel distance due to the scale-dependent effect.
Moreover, dispersivity of sandy loam is the important factor on the
movement of the BTCs and depends on the travel distance and
water content.
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