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1 Introduction

The construction of duality invariant formulations of the supergravity limits of string the-

ory has been an active field of research in recent years. A paradigmatic case is Double Field

Theory (DFT), where T-duality is incorporated as a manifest symmetry of the universal

supergravity sector [1–5]. The framework allows to incorporate heterotic vector fields [1–

3, 6], the Ramond-Ramond fields of type II theories [7–10] and the fermions that complete

the supersymmetry multiplets [1–3, 10–12]. This program led to the full covariantization

of supergravities to lowest order in perturbation theory with respect to the T-duality sym-

metry of string theory. In the process, interesting novel geometric structures emerged,

such as the generalized metric [13] and frame [1–3, 14] including the supergravity fields as

components, and a generalized Lie derivative [1–3, 15, 16] that unifies diffeomorphisms and

two-form gauge transformations. In this framework, duality invariance is achieved by for-

mally defining the theory on a double space, and the physical space on which supergravity

is realized can be recovered upon enforcing the so-called strong constraint. The result is an
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elegant and powerful reformulation of supergravity in terms of generalized geometric quan-

tities that make T-duality manifest. Interestingly, the duality structure of these theories

is manifest even before compactification. For more details and references see [17, 18].

A natural question is how to incorporate α′ corrections in this context. Recently, this

question was nicely addressed in [19], where a duality invariant CFT that incorporates

α′ corrections was presented. Here we consider the heterotic string, and our goal is to

rewrite the massless bosonic sector of the effective low energy theory, including all first

order contributions of the α′ expansion, in the language of DFT. This comprises the action,

equations of motion, Bianchi identities and duality transformations. Although conceptually

our approach looks different from that in [19], we illustrate how both constructions could

be connected.

The first order α′ contributions to the heterotic string effective field theory have an

interesting structure. The action includes gauge and gravitational Chern-Simons terms in

the two-form field strength, in addition to quadratic terms of the Yang-Mills field strength

and of the Riemann curvature tensor with torsion. These contributions were originally

obtained from tree level scattering amplitudes of the massless heterotic string states [20, 21].

An alternative method to construct the gravitational part of this action was developed

in [22], making use of a symmetry that exists between the Yang-Mills and supergravity

fields in ten dimensions. Since this symmetry is an essential ingredient of our construction,

we briefly recall the main idea.

In d dimensional gravity, the spin-connection plays the role of an SO(1, d − 1) gauge

field, that gauges the local Lorentz transformations which are part of the gauge symmetries

of supergravity. Although this seems to imply that a Riemann curvature squared action

can be constructed from the Yang-Mills field strength squared action, simply replacing

everywhere the gauge connection by the Lorentz spin connection, these connections do not

have the same behavior under supersymmetry transformations. However, the replacement

of gauge by spin connection works well in the formulation of d = 10 supergravity as

an SO(1, 9) Yang-Mills multiplet if the spin connection has torsion and the torsion is

proportional to the two-form field strength. This symmetry between the Yang-Mills gauge

connection and the Lorentz torsionful spin connection will be crucial in our formalism, so

we will keep it manifest all along the analysis.

Let us start by reviewing the heterotic string low energy effective action to order α′.

The massless bosonic degrees of freedom are a d = 10 dimensional bein eµ
ā, a two-form

Bµν , ng = 496 gauge fields Aµ
α and a dilaton φ, where µ, ν, · · · = 1, . . . , d are space-time

indices, while ā, b̄, · · · = 1, . . . , d are flat Lorentz indices and α, β, · · · = 1, . . . , ng are indices

in the adjoint representation of the heterotic gauge group. The action can be written

as [20, 21]–[26]

S =

∫
d10x
√
−g e−2φ

(
R+ 4gµν∂µφ∂νφ−

1

12
gµσgντgρξHµνρHστξ (1.1)

− α′

4
gµρgνσFµν

αFρσ
βκαβ −

α′

4
gµρgνσR(−)

µν
ΛR(−)

ρσ
ΓκΛΓ

)
,

– 2 –
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where

Hµνρ = 3∂[µBνρ] − 3α′
(
∂[µAν

αAρ]
βκαβ +

1

3
fαβγAµ

αAν
βAρ

γ

)
(1.2)

−3α′
(
∂[µω

(−)
ν

Λω
(−)
ρ]

ΓκΛΓ +
1

3
fΛΓΣω

(−)
µ

Λω(−)
ν

Γω(−)
ρ

Σ

)
is the two-form field strength. As emphasized above, the α′ corrections include a Chern-

Simons contribution from the gauge fields Aµ
α and a Chern-Simons contribution from the

spin connection with torsion ω
(−)
µ

Λ. These terms depend on the gauge (Lorentz) Killing

metric and structure constants, which are proportional to καβ (κΛΓ) and fαβ
γ (fΛΓ

Σ)

respectively. The indices Λ,Γ, · · · = 1, . . . , nl where nl = d(d − 1)/2, are adjoint Lorentz

indices. We refer to the appendix for details on our conventions. The torsionful spin

connection is

ω(−)
µ

Λ(tΛ)ā
b̄ = ωµā

b̄(e)− 1

2
Hµνρeā

νgρσeσ
b̄ , (1.3)

where ωµā
b̄ is the usual torsionless spin connection and the two-form field strength plays

the role of torsion. Note that since ω
(−)
µ

Λ always appears in the action in terms with an

α′ factor, to O(α′) the Chern Simons terms contained in the torsion in (1.3) play no role.

The second line in (1.1) contains the field strengths of the connections

Fµν
α = 2∂[µAν]

α + fβγ
αAµ

βAν
γ , (1.4)

R(−)
µν

Λ = 2∂[µω
(−)
ν]

Λ + fΓΣ
Λω(−)

µ
Γω(−)

ν
Σ , (1.5)

the latter being the Riemann tensor defined in terms of the torsionful spin connection.

Written in this form, the symmetry between the connections is manifest in the action

Aµ
α ↔ ω(−)

µ
Λ , Fµν

α ↔ R(−)
µν

Λ

καβ ↔ κΛΓ , fαβ
γ ↔ fΛΓ

Σ (1.6)

This symmetry extends all along the Bianchi identities (BI). Indeed, the BI for the two-

form, gauge and gravitational field strengths read

∂[µHνρσ] = −3

4
α′F[µν

αFρσ]
βκαβ −

3

4
α′R

(−)
[µν

ΛR
(−)
ρσ]

ΓκΛΓ , (1.7)

D[µFνρ]
α = ∂[µFνρ]

α + fβγ
αA[µ

βFνρ]
γ = 0 , (1.8)

D
(−)
[µ R

(−)
νρ]

Λ = ∂[µR
(−)
νρ]

Λ + fΓΣ
Λω

(−)
[µ

ΓR
(−)
νρ]

Σ = 0 . (1.9)

At the level of the equations of motion (EOM), the symmetry is more subtle. The

reason is that, while the gauge fields Aµ
α are independent degrees of freedom, the torsionful

spin connection ω
(−)
µ

Λ is not. The latter depends on the bein, the two-form and the gauge

connection, and then a priori there seems to be no reason to consider its EOM. Let us then

begin by writing the well known EOM to O(α′) for the dilaton, bein, two-form and gauge

– 3 –
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fields (see for example [23]–[28] and references therein)

∆φ = R+ 4gµν (∇µ∇νφ− ∂µφ∂νφ)− 1

12
gµσgντgρξHµνρHστξ (1.10)

−α
′

4
gµρgνσFµν

αFρσ
βκαβ −

α′

4
gµρgνσR(−)

µν
ΛR(−)

ρσ
ΓκΛΓ = 0 ,

∆gµν = Rµν + 2∇µ∇νφ−
1

4
gστgλξHσλµHτξν

−α
′

2
gστFσµ

αFτν
βκαβ −

α′

2
gστR(−)

σµ
ΛR(−)

τν
ΓκΛΓ = 0 , (1.11)

∆Bµν = gρσ∇ρ
(
e−2φHµνσ

)
= 0 , (1.12)

∆Aν
β = α′gρµ∇(+,A)

ρ

(
e−2φFµν

β
)

= 0 , (1.13)

respectively, where we have defined

∇(+,A)
ρ Fµν

β = ∂ρFµν
β − Γ(+)

ρµ
σFσν

β − Γ(+)
ρν

σFµσ
β + fγα

βAρ
γFµν

α , (1.14)

Γ(+)
µν

ρ = Γµν
ρ +

1

2
Hµνσg

σρ , (1.15)

which covariantizes the derivative with respect to ten dimensional diffeomorphisms and

gauge transformations. Strictly speaking, the EOM written above are not those that one

would get by varying the action with respect to the component fields, but combinations

of them.

The heterotic EOM (1.10)–(1.13) break the symmetry (1.6) because, not being an

independent field, there is no EOM for ωµ
(−)Λ. However, it is instructive to discuss what

happens when varying the action with respect to ωµ
(−)Λ, i.e. treating it as an independent

degree of freedom. In this case one obtains the following equation

∆ω(−)
ν

Γ = α′gρµ∇(+,−)
ρ

(
e−2φR(−)

µν
Γ
)

= 0 , (1.16)

with

∇(+,−)
ρ R(−)

µν
Γ = ∂ρR

(−)
µν

Γ − Γ(+)
ρµ

σR(−)
σν

Γ − Γ(+)
ρν

σR(−)
µσ

Γ + fΛΣ
Γω(−)

ρ
ΛR(−)

µν
Σ , (1.17)

thus restoring the complete symmetry between the gauge and Lorentz sectors, i.e, un-

der (1.6) one has

∆Aν
β ↔ ∆ω(−)

ν
Γ . (1.18)

Interestingly, it was shown in [23] that, to O(α′), the equation (1.16) is automatically

satisfied by the solutions to the other equations. More precisely, one can show that, to

order α′, ∆ω
(−)
ν

Γ can be expressed as a linear combination of ∆gµν and ∆Bµν , and then it

trivially vanishes on-shell.

It is worth mentioning that simply replacing ω
(−)Λ
µ by an independent field, say ω̃µ

Λ,

does not lead to a first order formulation because, being higher order in derivatives, its

equation of motion (1.16) does not provide an algebraic expression relating ω̃µ
Λ with ω

(−)Λ
µ .

Rather, it is a differential equation that admits ω
(−)Λ
µ as a solution. However, due to the

lemma proved in [23], to O(α′) the result of varying the action with respect to the funda-

mental fields by first varying the explicit dependence and then adding the variation through

– 4 –
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the torsionful spin connection which implicitly also depends on them, coincides with the

result of simply considering the explicit variation. We discuss this further in the appendix.

This suggests that one can still consider a formulation in which ω
(−)
µ

Λ is treated as an in-

dependent degree of freedom. This point of view is then useful in order to extend the sym-

metry between the gauge and torsionful spin connections to all levels, including the EOM.

In this paper, we encode all these results in the manifestly T-duality invariant DFT.

Already for the gauge sector this was done in [1–3, 6], where the gauge fields were incorpo-

rated in an extended tangent space, enhancing the O(d, d) duality group to O(d, d + ng).

Here, we further extend this construction to incorporate the gravitational sector to or-

der α′, exploiting the above mentioned symmetry between the gauge and torsionful spin

connection. Related constructions can be found in [29]–[33].

We work in the generalized flux formulation of DFT [1–3, 14, 34], which is more con-

venient to display the covariant structures of the effective theory. In this formulation, the

field degrees of freedom appear as components of a generalized frame EĀ
M that parame-

terizes the quotient G/H (where G is the duality group), and the dilaton is combined with

the determinant of the metric in a shifted dilaton. The gauge transformations are encoded

in the generalized Lie derivative L (to be defined later), which in turn defines generalized

fluxes FĀB̄C̄ and FĀ. The components of these fluxes contain the covariant quantities of

the theory, namely the two-form field strength, the antisymmetrized spin connection, etc.

Closure of the gauge algebra imposes constraints which force these fluxes to be covariant

under L, and this leads to a set of closure constraints that take the form of generalized

BI. The fluxes are not covariant under the action of the local subgroup H, and then H-

invariance determines the form of the action up to the closure constraints. The result is an

action quadratic in fluxes, with generalized EOM that can also be written purely in terms

of fluxes.

To allow for a description of the O(α′) corrections to heterotic supergravity in this

formulation, we enlarge the duality group to G = O(d+ (d− 1), d+ ng + (d− 1)(d− 2)/2)

and take H = O(1 + (d − 1), (d − 1) + ng + (d − 1)(d − 2)/2) ⊗ O(d − 1, 1), so that the

dimension of the quotient G/H allows to accommodate, in addition to the bein and two-

form field, ng gauge and nl = d(d − 1)/2 Lorentz one-form connections.1 A subgroup of

the duality group is gauged and we will argue that a residual O(d, d) global symmetry

group is preserved by the gauging. In this framework, the generalized Lie derivative re-

produces the gauge transformations of the heterotic fields and the fluxes encode all the

covariant building blocks of the theory. Remarkably, one of the components of the fluxes

reduces to the Riemann tensor with torsion upon imposing the strong constraint, when

the Lorentz connections included in the generalized bein are identified with the spin con-

nection with torsion. Moreover, being quadratic in fluxes, the generalized action naturally

reproduces the Riemann squared term. In this way, the formalism manages to remove one

of the obstructions that impeded the inclusion of higher derivative terms in DFT, namely

the apparent absence of a T-duality invariant four-derivative combination built from the

generalized metric that reduces to the square of the Riemann tensor [38].

1A generalized spin connection was incorporated in an extended generalized frame in references [35–37].

It would be interesting to explore if this construction is related to the one presented here.
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An interesting application of our formalism is to determine the α′ corrections to the

Buscher rules of the heterotic massless fields. These rules play a significant role in the search

of solutions to the string equations of motion, allowing to generate new solutions from old

ones. Buscher derived the zero slope limit of the duality transformations of the fields from

the sigma model worldsheet action [39, 40] when there is an isometry (see also [41]). An

elegant way to recover these rules is by performing a canonical transformation [42, 43],

which shows that the dual models are classically equivalent. The explicit form of the

quantum corrections has been pursued using different methods and some partial results

are available [44–49]. Here, we obtain the O(α′) corrections to the transformation rules

of the massless heterotic fields in a manifestly duality covariant way. After constructing

the generalized metric and transforming it under the factorized T-duality elements of the

duality group G, we get the explicit results for the α′ corrected duality transformations of

generic background fields. We show how this works for the full O(d, d,R) duality group.

The paper is organized as follows. In section 2 we briefly review the generalized flux

formulation of DFT and its gauging. We then present the heterotic setup in section 3. We

extend the O(d, d) duality group to include the extra degrees of freedom that are necessary

to describe the O(α′) corrections to heterotic supergravity, we construct the generalized

frame and study the gauge transformations of the fields. The generalized fluxes are then

computed and the Bianchi identities they satisfy are found. The action and equations of

motion are presented in subsections 3.4 and 3.5, respectively. In section 4 we construct the

generalized metric formulation, and evaluate the O(α′) corrections to the heterotic Buscher

rules. We also discuss the relation of our formalism with the double α′-geometry introduced

in [19]. In the concluding section 5, we summarize our results and outline future directions

of research.

2 Generalized flux formulation of Double Field Theory

Let us begin by briefly reviewing the generalized flux formulation of DFT [1–3, 14, 34]. For

more details we refer to those references.

The theory is defined on an extended space where derivatives ∂M span the funda-

mental representation of a group G. The extended space indices M,N, . . . take values in

the fundamental representation of G and are raised and lowered with the constant and

symmetric group metric ηMN . Typically, in order to realize T-duality as a manifest sym-

metry, the group is taken to be G = O(d, d) and the space is doubled. However, this is not

strictly necessary and here instead we will consider a bigger group that contains O(d, d) as

a subgroup.

The fields are generalized tensorial densities TM...
N... of weight w(T ) that transform

under generalized diffeomorphisms as

(δξT )M...
N... = (LξT )M...

N... = ξP∂PT
M...

N... +
(
∂MξP − ∂P ξM

)
TP ...N... + . . .

+
(
∂Nξ

P − ∂P ξN
)
TM...

P ... + . . .

+ w(T ) ∂P ξ
P TM...

N... , (2.1)

where the gauge parameters ξM are generalized vectors themselves with vanishing weight.

– 6 –
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Consider a subgroup H and introduce flat indices Ā, B̄, . . . which are acted on by

H and are raised and lowered with the constant and symmetric metric ηĀB̄, taken to

numerically coincide with ηMN . The elements in H preserve both ηĀB̄, and a symmetric

and constant metric SĀB̄.

A generalized frame EĀ
M is a basis of generalized vectors of vanishing weight, and can

be taken to be parameterized by some of the supergravity field degrees of freedom, namely

the metric, two-form, one-form gauge fields, etc. Under generalized diffeomorphisms it

transforms as

(LξEĀ)M = ξP∂PEĀ
M +

(
∂MξP − ∂P ξM

)
EĀ

P . (2.2)

The particular parameterization of the generalized frame in terms of the supergravity

degrees of freedom depends on the H-gauge choice, which we do not need to specify right

now. After the action of generalized diffeomorphisms, the gauge choice must be restored.

Since it parameterizes the coset G/H, the frame satisfies

EĀ
M ηMN EB̄

N = ηĀB̄ , (2.3)

and so its inverse is given by EĀM = ηĀB̄ηMNEB̄
N . The dilaton, instead, is contained in

a density field e−2d, of weight w(e−2d) = 1, which transforms as a measure

Lξe−2d = ∂P

(
ξP e−2d

)
. (2.4)

The group of generalized diffeomorphisms closes provided a tower of closure constraints

is satisfied. In particular, the transformation of a tensorial density must be itself a tensorial

density

∆ξ1Lξ2T = 0 , ∆ξ = δξ − Lξ , (2.5)

where Lξ acts on a covariant object, while δξ faithfully transforms the object. Clearly,

on tensorial densities, one has ∆ξT = 0. Since (2.5) is not covariant, one should impose

the additional constraints that all its gauge transformations vanish as well. The result is

a tower of closure constraints that restricts the space of gauge parameters and tensorial

densities for which DFT is consistently defined. A stronger constraint, known as strong

constraint or section condition, can be imposed

∂M∂
M� = 0 , (2.6)

where � represents any combination of fields and gauge parameters. This constraint is

sufficient to satisfy the closure constraints (and hence to achieve gauge consistency), but

it is not necessary [34, 50]. Let us emphasize however that in this paper, for the sake of

concreteness and in order to make direct contact with the heterotic supergravity theory in

d = 10-dimensions, we will impose the strong constraint.

The generalized diffeomorphisms allow to define generalized fluxes

FĀB̄C̄ =
(
LEĀ

EB̄
)M

EC̄M , (2.7)

FĀ = e−2dLEĀ
e2d , (2.8)

– 7 –
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which by construction transform as scalars under generalized diffeomorphisms, up to the

closure constraints. When evaluated on generalized frames, the latter become

ZĀB̄C̄D̄ = ∂[ĀFB̄C̄D̄] −
3

4
F[ĀB̄

ĒFC̄D̄]Ē = 0 ,

ZĀB̄ = ∂C̄FC̄ĀB̄ + 2∂[ĀFB̄] −F C̄FC̄ĀB̄ = 0 . (2.9)

Moreover, when the strong constraint is enforced, these closure constraints then simply

become Bianchi identities.

Since the generalized fluxes are not H-covariant, by demanding H-invariance the action

is fixed to be

S =

∫
dX e−2d

(
FĀB̄C̄ F̌ ĀB̄C̄ + FĀF̌ Ā

)
, (2.10)

where

F̌ ĀB̄C̄ = FD̄ĒF̄
[

1

4
S[Ā|D̄η|B̄|Ēη|C̄]F̄ − 1

12
SĀD̄SB̄ĒSC̄F̄ − 1

6
ηĀD̄ηB̄ĒηC̄F̄

]
,

F̌ Ā = FB̄
[
SĀB̄ − ηĀB̄

]
. (2.11)

The action (2.10) is fully invariant under all the global and gauge symmetries, up to the

closure constraints (2.5).

Varying the action with respect to the generalized dilaton and frame yields the equa-

tions of motion

G = (2∂Ā −FĀ) F̌ Ā + FĀB̄C̄F̌ ĀB̄C̄ = 0 , (2.12)

GĀB̄ = −2∂[ĀF̌ B̄] + 6 (FD̄ − ∂D̄) F̌ D̄[ĀB̄] + 6F̌ C̄D̄[ĀFC̄D̄B̄] = 0 .

This concludes our brief summary of the gauge symmetries, action, BI and EOM of

the generalized flux formulation of DFT. For more details we refer to the original papers

or the reviews [17, 18].

2.1 Gauged Double Field Theory

DFT can be deformed through a gauging procedure [6], parameterized by an embedding

tensor that satisfies a linear and a quadratic constraint

fMNP = f[MNP ] , f[MN
P fQ]P

R = 0 , (2.13)

provided (any combination of) the fields and gauge parameters are further restricted to

satisfy the constraints

fMN
P∂P � = 0 . (2.14)

The embedding tensor dictates how the gauge group is embedded in the global duality

group G.

Under such a deformation, the generalized diffeomorphisms become gauged(
L̂ξT

)M...

N... = (LξT )M...
N... − fPQMξPTQ...N... + · · ·+ fPN

QξPTM...
Q... + . . . (2.15)

– 8 –
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and so do the gauge transformations of the generalized frame and dilaton(
L̂ξEĀ

)M
= (LξEĀ)M − fPQMξPEĀQ , (2.16)

L̂ξe−2d = Lξe−2d , (2.17)

which in turn induce gauged contributions to the generalized fluxes

F̂ĀB̄C̄ = FĀB̄C̄ − fMNPEĀ
MEB̄

NEC̄
P , (2.18)

F̂Ā = FĀ . (2.19)

After the gauging procedure, the action, equations of motion, closure constraints, etc.

take exactly the same form as in the previous section, but with hatted fluxes. In this paper

we will work with a gauged DFT (GDFT), but in order to lighten the notation we will

drop the hats. Let us finally comment that this gauging procedure was shown in [50] to be

equivalent to a generalized Scherk-Schwarz reduction [51, 52].

3 The heterotic setup

To accommodate the O(α′) corrections of the heterotic string effective theory, we take the

global symmetry group G = O(d + (d − 1), d + ng + (d − 1)(d − 2)/2) and consider the

subgroup H = O(1 + (d− 1), (d− 1) + ng + (d− 1)(d− 2)/2)⊗O(d− 1, 1). The dimension

of the quotient is then

dim(G/H) = d2 + dng + dnl , (3.1)

which allows to build in a symmetric d-dimensional metric gµν , a two-form Bµν , ng one-

forms Aµ
α plus other nl = d(d − 1)/2 one-forms ω̃µ

Λ. The indices take values µ, ν · · · =

1, . . . , d; α, β, · · · = 1, . . . , ng and Λ,Σ, · · · = 1, . . . , nl. To make contact with the heterotic

string, one has to assume that d = 10 is the dimension of the physical space-time, ng = 496

is the dimension of the adjoint representation of the SO(32) or E8 × E8 gauge group, and

nl = 45 is the dimension of the adjoint representation of the Lorentz group. In this way,

this construction introduces nl extra connections ω̃µ
Λ, which in order to reproduce the

heterotic string must be related to the torsionful spin connection ω
(−)
µ

Λ, depending on the

other fields (see (1.3)).

Now, there are two ways to proceed: (a) one treats ω̃µ
Λ as an independent quantity (we

have provided evidence in the introduction on why this is possible), or (b) one defines ω̃µ
Λ

from the start as a dependent quantity. The second option is subtle in two respects. On the

one hand, such dependent quantity must behave properly under duality transformations.

More concretely, if one simply replaces ω̃µ
Λ by ω

(−)Λ
µ , after a T-duality it will transform

to a different quantity that will depend, for instance, on dual derivatives. Then, in order

to construct a second order formulation that is well behaved under T-dualities, one must

proceed with caution and consider a quantity that transforms consistently under O(d, d,R)

and reduces to ω
(−)Λ
µ when the strong constraint is solved in the standard space-time

coordinates. On the other hand, the DFT formalism enforces an equation of motion for

ω̃µ
Λ, which must then be trivially satisfied. We will address these issues in due time, and

for now just proceed by treating ω̃µ
Λ as an independent quantity.
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A generalized vector is of the form VM = (Vµ, Vα, VΛ, V
µ), and the invariant metric in

G is taken to be

ηMN =


0 0 0 δµν
0 καβ 0 0

0 0 κΛΓ 0

δµ
ν 0 0 0

 , (3.2)

so the co-vector counterpart reads VM = (V µ, V α, V Λ, Vµ). Here, καβ and κΛΓ are pro-

portional to the (inverse) Killing metrics in the adjoint representations of the gauge and

Lorentz groups (see the appendix), with signatures (0, ng) and (d − 1, (d − 1)(d − 2)/2)

respectively.

We now introduce the H-invariant metric

SĀB̄ =


sāb̄ 0 0 0

0 κᾱβ̄ 0 0

0 0 κΛ̄Γ̄ 0

0 0 0 sāb̄

 , (3.3)

where sāb̄ = diag(−,+, . . . ,+). Here κᾱβ̄ = eα
ᾱκαβeβ

β̄ is numerically equivalent to καβ,

which allows to define elements eα
ᾱ that preserve the Killing metric of the gauge group,

and κΛ̄Γ̄ = eΛ
Λ̄κΛΓeΓ

Γ̄ is numerically equivalent to κΛΓ, which allows to define elements

eΛ
Λ̄ that preserve the Killing metric of the Lorentz group.

3.1 Generalized frame and gauge transformations

Consider a generalized G-valued frame EĀ
M satisfying EĀ

MηMNEB̄
N = ηĀB̄ with a fixed

H-gauge choice, and such that it has the following d-dimensional dynamical degrees of

freedom: a bein eµ
ā, a two-form Bµν , ng one-forms Aµ

α and nl one-forms ω̃µ
Λ. Including

also the elements eα
ᾱ and eΛ

Λ̄ introduced above, the frame can be written as

EĀ
M =


eµ
ā 0 0 0√

α′Aµ
βeβ

ᾱ eα
ᾱ 0 0√

α′ω̃µ
ΓeΓ

Λ̄ 0 eΛ
Λ̄ 0

−eāρcρµ −
√
α′eā

ρAρ
βκβα −

√
α′eā

ρω̃ρ
ΓκΓΛ eā

µ

 , (3.4)

where

cµν = Bµν +
α′

2
Aµ

γκγβAν
β +

α′

2
ω̃µ

ΓκΓΣω̃ν
Σ . (3.5)

The fact that such a generalized frame exists globally means that the extended space is

generalized paralellizable [53]. On the other hand, the dilaton φ is combined with the

determinant of the metric g in the shifted dilaton field

e−2d =
√
−ge−2φ . (3.6)

We now explore the action of generalized diffeomorphisms on the generalized frame

and dilaton, and for simplicity we impose the section condition and pick the frame in

which ∂M = (0, 0, 0, ∂µ). We will assume this for the sake of concreteness in all the rest of
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the paper, and we will also explicitly incorporate the α′ parameter. The generalized Lie

derivative acts as

(LξEĀ)M = ξP∂PEĀ
M +

(
∂MξP − ∂P ξM

)
EĀ

P − 1√
α′
fPQ

MξPEĀ
Q ,

Lξe−2d = ∂P

(
ξP e−2d

)
, (3.7)

where the non-vanishing fluxes fPQ
M have only pure gauge or pure Lorentz indices, thus

satisfying the constraint (2.14). Taking the gauge parameter ξM = (ξµ,
√
α′ξα,

√
α′ξΛ, ξ

µ),

in components we find

Lξφ = ξρ∂ρφ , (3.8)

Lξeµā = ξρ∂ρeµ
ā + ∂µξ

ρeρ
ā , (3.9)

Lξeαᾱ = ξρ∂ρeα
ᾱ − fαγβξγeβᾱ , (3.10)

LξAµβ = ξρ∂ρAµ
β + ∂µξ

ρAρ
β + ∂µξ

β − fαγβξαAµγ , (3.11)

LξeΛ
Λ̄ = ξρ∂ρeΛ

Λ̄ − fΛΣ
ΓξΣeΓ

Λ̄ , (3.12)

Lξω̃µΓ = ξρ∂ρω̃µ
Γ + ∂µξ

ρω̃ρ
Γ + ∂µξ

Γ − fΛΣ
ΓξΛω̃µ

Σ , (3.13)

LξBµν = ξρ∂ρBµν − 2∂[µξ
ρBν]ρ + 2∂[µξ̃ν] + α′∂[µAν]

ακαβξ
β + α′∂[µω̃ν]

ΛκΛΓξ
Γ , (3.14)

where we have defined

ξ̃µ = ξµ −
α′

2

(
Aµ

ακαβξ
β + ω̃µ

ΛκΛΓξ
Γ
)
. (3.15)

The last three terms in (3.14) include the gauge and Lorentz transformation of the two-form

that implement the Green-Schwarz mechanism [54]. Such a transformation guarantees that

the field strength of the two-form, which includes the Chern-Simons terms, is gauge and

Lorentz invariant.

The degrees of freedom allowed by the dimension of the quotient G/H suggest that we

can take eα
ᾱ and eΛ

Λ̄ constant. Note however that a generalized diffeomorphism generates

a gauge transformation on these quantities, shifting them to non-constant matrices. Then,

in order to preserve the gauge choice in which these matrices are constant, a gauge-restoring

infinitesimal H-transformation is necessary. Consider h ∈ H ∈ G, such that

hĀ
C̄ηC̄D̄hB̄

D̄ = ηĀB̄ , hĀ
C̄SC̄D̄hB̄

D̄ = SĀB̄ . (3.16)

For h sufficiently close to the identity hĀ
B̄ = δĀ

B̄ + ΛĀ
B̄, the above conditions impose

ΛĀ
C̄ηC̄B̄ = −ΛB̄

C̄ηC̄Ā , ΛĀ
C̄SC̄B̄ = −ΛB̄

C̄SC̄Ā . (3.17)

Since H is a symmetry of the theory, one can equivalently define the gauge transforma-

tions as

δξEĀ
M = LξEĀM − ΛĀ

B̄EB̄
M , (3.18)

where the last term is introduced to restore the gauge fixing. It is easy to see that the

particular gauge choice eα
ᾱ = const. and eΛ

Λ̄ = const. is restored through

ΛĀ
B̄ =


0 0 0 0

0 Λᾱβ̄ 0 0

0 0 ΛΛ̄
Γ̄ 0

0 0 0 0

 , (3.19)
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with

Λᾱβ̄ = −eβ̄βfβγαξγeαᾱ , ΛΛ̄
Γ̄ = −eΓ̄

ΓfΓΣ
ΛξΣeΛ

Λ̄ , (3.20)

which enforces

δξeα
ᾱ = 0 , δξeΛ

Λ̄ = 0 , (3.21)

and preserves the form of the other gauge transformations. In particular, eα
ᾱ and eΛ

Λ̄

can be taken to coincide with the identity, implying the equivalence between barred and

un-barred gauged and Lorentz indices.

We note that a subgroup of the global symmetry group is gauged by fMN
P . Since the

embedding tensor has only pure gauge and Lorentz components, there is a residual O(d, d)

global symmetry that generates the familiar T-duality transformations.

3.2 Generalized fluxes

Given the generalized frame and generalized Lie derivative defined in (3.4) and (3.7), re-

spectively, we are now ready to compute the generalized fluxes

FĀB̄C̄ =
(
LEĀ

EB̄
)M

EC̄M , (3.22)

FĀ = e−2dLEĀ
e2d . (3.23)

Using the above parameterization and imposing the strong constraint, one is left with the

following non-vanishing components

Fāb̄c̄ = −eāµeb̄νec̄ρHµνρ , F ᾱβ̄γ̄ = − 1√
α′
eα
ᾱeβ

β̄eγ
γ̄fαβγ ,

Fāb̄c̄ = 2ωµ[b̄
c̄eā]

µ , FāΛ̄Γ̄ = eā
µeΓ

Γ̄κΛΓD̃µeΛ
Λ̄ ,

Fāb̄ᾱ = −eāµeb̄νeαᾱ
√
α′Fµν

α , Fāb̄Λ̄ = −eāµeb̄νeΛ
Λ̄
√
α′R̃µν

Λ ,

Fāᾱβ̄ = eā
µeβ

β̄καβDµeα
ᾱ , F Λ̄Γ̄Σ̄ = − 1√

α′
eΛ

Λ̄eΓ
Γ̄eΣ

Σ̄fΛΓΣ ,

Fā = 2eā
µFµ + 2ωµ[b̄

b̄eā]
µ ,

(3.24)

where

Fµ = ∂µφ , (3.25)

Hµνρ = 3∂[µBνρ] − 3α′
(
∂[µAν

αAρ]
βκαβ +

1

3
fαβγAµ

αAν
βAρ

γ

)
−3α′

(
∂[µω̃ν

Λω̃ρ]
ΓκΛΓ +

1

3
fΛΓΣω̃µ

Λω̃ν
Γω̃ρ

Σ

)
, (3.26)

eā
µωµb̄

c̄ =
1

2

(
τāb̄

c̄ + sād̄s
c̄ēτēb̄

d̄ + sb̄d̄s
c̄ēτēā

d̄
)
, τāb̄

c̄ = 2e[ā
µ∂µeb̄]

νeν
c̄ , (3.27)

Fµν
α = 2∂[µAν]

α + fβγ
αAµ

βAν
γ , (3.28)

R̃µν
Λ = 2∂[µω̃ν]

Λ + fΓΣ
Λω̃µ

Γω̃ν
Σ , (3.29)

Dµeα
ᾱ = ∂µeα

ᾱ + fαβ
γAµ

βeγ
ᾱ , (3.30)

D̃µeΛ
Λ̄ = ∂µeΛ

Λ̄ + fΛΓ
Σω̃µ

ΓeΣ
Λ̄ . (3.31)
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We then readily identify all the covariant building blocks of the theory, namely the field-

strengths of the dilaton (3.25), the two-form (3.26), the bein (3.27) (which is the anti-

symmetrized spin connection), the gauge fields (3.28), the extra one-forms (3.29) (which

is nothing but the Riemann tensor when ω̃µ
Γ is identified with the spin connection) and

the covariant derivatives of the gauge and Lorentz beins (3.30) and (3.31). Of course, the

last two quantities are just pure gauge as we showed above, so we expect them not to

appear in the action. Moreover, since the action is quadratic in fluxes, one can already

anticipate the presence of the Riemann squared term induced by α′-corrections. Although

somehow expected, the fact that the Riemann tensor appears as one of the components

of a generalized flux is very interesting. As discussed in [38], the Riemann tensor is not a

component of the generalized Riemann tensor introduced in [55, 56], nor can it be gener-

ated from a combination of derivatives of the generalized metric. Here, the extension of

the tangent space permits to accommodate a spin connection, whose field strength is the

Riemann tensor, which then appears as a generalized flux component.

For the sake of completion, let us now compute the checked fluxes (2.11)

F̌ ĀB̄C̄ = FD̄ĒF̄
[

1

4
S[Ā|D̄η|B̄|Ēη|C̄]F̄ − 1

12
SĀD̄SB̄ĒSC̄F̄ − 1

6
ηĀD̄ηB̄ĒηC̄F̄

]
, (3.32)

F̌ Ā = FB̄
[
SĀB̄ − ηĀB̄

]
, (3.33)

which are necessary to build the action and derive the equations of motion. Their non-

vanishing components read

F̌ ā = sāb̄Fb̄ , F̌ āb̄ᾱ = − 1

12
sād̄sb̄ēκᾱβ̄Fd̄ēβ̄ ,

F̌ā = −Fā , F̌ āb̄ᾱ =
1

12
sād̄κᾱβ̄Fd̄b̄β̄ ,

F̌ āb̄c̄ = − 1

12
sād̄sb̄ēsc̄f̄Fd̄ēf̄ , F̌āb̄ᾱ = − 1

12
κᾱβ̄Fāb̄β̄ ,

F̌ āb̄c̄ =
1

6
Fd̄c̄[āsb̄]d̄ −

1

12
sād̄sb̄ēsc̄f̄Fd̄ēf̄ , F̌ āb̄Λ̄ = − 1

12
sād̄sb̄ēκΛ̄Γ̄Fd̄ēΓ̄ ,

F̌ āb̄c̄ =
1

12
sād̄Fd̄b̄c̄ −

1

6
Fb̄c̄ā , F̌ āb̄Λ̄ =

1

12
sād̄κΛ̄Γ̄Fd̄b̄Γ̄ ,

F̌āb̄c̄ =
1

4
sd̄[āFb̄c̄]d̄ −

1

6
Fāb̄c̄ , F̌āb̄Λ̄ = − 1

12
κΛ̄Γ̄Fāb̄Γ̄ .

(3.34)

Note that the fluxes F̌ āᾱβ̄ and F̌ āΛ̄Γ̄ vanish, signaling the fact that no kinetic term of the

gauge and Lorentz beins will appear in the action. Also, note that the checked fluxes carry

the information of the couplings in the action.

3.3 Generalized Bianchi identities

We have shown that the closure of the algebra of generalized Lie derivatives leads to a

set of closure constraints (2.9), that become BI when the strong constraint is enforced. In

terms of fluxes, they read

ZĀB̄C̄D̄ = ∂[ĀFB̄C̄D̄] −
3

4
F[ĀB̄

ĒFC̄D̄]Ē = 0 , (3.35)

ZĀB̄ = ∂C̄FC̄ĀB̄ + 2∂[ĀFB̄] −F C̄FC̄ĀB̄ = 0 . (3.36)
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Let us then compute their components to show how they match the BI of the heterotic

string. The non-vanishing components are

Zāb̄ = 2eā
µeb̄

ν
(
2∂[µFν] +R[µν]

)
, (3.37)

Zāb̄c̄d̄ = −eāµeb̄νec̄ρed̄σ
(
∂[µHνρσ] +

3

4
α′F[µν

αFρσ]
βκαβ +

3

4
α′R̃[µν

ΛR̃ρσ]
ΓκΛΓ

)
, (3.38)

Zāb̄c̄d̄ =
3

4
e[ā

µeb̄|
νRµν|c̄]

d̄ , (3.39)

Zāb̄c̄ᾱ = −3

4
eā
µeb̄

νec̄
ρeα

ᾱ
√
α′D[µFνρ]

α , (3.40)

Zāb̄c̄Λ̄ = −3

4
eā
µeb̄

νec̄
ρeΛ

Λ̄
√
α′D̃[µR̃νρ]

Λ , (3.41)

Zāb̄ᾱβ̄ = eā
µeb̄

ν

(
D[µ|eβ

β̄καβD|ν]eα
ᾱ +

1

2
eβ
β̄καβD[µDν]eα

ᾱ − 1

4
Fµν

γfγ
αβeα

ᾱeβ
β̄

)
(3.42)

Zāb̄Λ̄Γ̄ = eā
µeb̄

ν

(
D̃[µ|eΓ

Γ̄κΛΓD̃|ν]eΛ
Λ̄ +

1

2
eΓ

Γ̄κΛΓD̃[µD̃ν]eΛ
Λ̄ − 1

4
R̃µν

ΣfΣ
ΛΓeΛ

Λ̄eΓ
Γ̄

)
(3.43)

Zāᾱβ̄γ̄ = − 3

4
√
α′
eā
µeα

ᾱeβ
β̄eγ

γ̄Aµ
εfεη

[αfβγ]η , (3.44)

ZāΛ̄Γ̄Σ̄ = − 3

4
√
α′
eā
µeΛ

Λ̄eΓ
Γ̄eΣ

Σ̄ω̃µ
ΞfΞΠ

[ΛfΓΣ]Π , (3.45)

Z ᾱβ̄γ̄ε̄ = − 3

4α′
eα
ᾱeβ

β̄eγ
γ̄eε

ε̄f [αβ
δf
γε]δ , (3.46)

ZΛ̄Γ̄Σ̄Π̄ = − 3

4α′
eΛ

Λ̄eΓ
Γ̄eΣ

Σ̄eΠ
Π̄f [ΛΓ

Ξf
ΣΠ]Ξ , (3.47)

where

Rµνā
b̄ = 2∂[µων]ā

b̄ − 2ω[µ|ā
c̄ω|ν]c̄

b̄ , (3.48)

Rµν = Rρµā
b̄eν

āeb̄
ρ , (3.49)

DµFνρ
α = ∂µFνρ

α + fβγ
αAµ

βFνρ
γ , (3.50)

D̃µR̃νρ
Λ = ∂µR̃νρ

Λ + fΓΣ
Λω̃µ

ΓR̃νρ
Σ . (3.51)

Therefore, we have found the BI for the dilaton field strength and Ricci tensor (3.37),

the α′ corrected BI for the two-form field strength (3.38), the first BI for the Riemann

tensor (3.39), the BI for the gauge field strength (3.40), the differential second BI for the

torsionful Riemann tensor (3.41), plus other BI including quadratic constraints that are

trivially satisfied by the gauge and Lorentz structure constants.

3.4 The action

Having computed the components of the fluxes (3.24) and their checked projections (3.34),

it is now straightforward to compute the action

S =

∫
dX e−2d

(
FĀB̄C̄ F̌ ĀB̄C̄ + FĀF̌ Ā

)
. (3.52)

– 14 –



J
H
E
P
1
2
(
2
0
1
4
)
0
7
4

In components this reads

S =

∫
dXe−2d

(
FāF̌ ā + Fāb̄c̄F̌ āb̄c̄ + 3Fāb̄c̄F̌ āb̄c̄ + 3Fāb̄ᾱF̌ āb̄ᾱ + 3Fāb̄Λ̄F̌ āb̄Λ̄

)
(3.53)

=

∫
dXe−2d

(
Fāsāb̄Fb̄ +

1

2
sb̄d̄Fāb̄c̄Fd̄c̄ā −

1

4
sād̄sb̄ēsc̄f̄Fāb̄c̄Fd̄ēf̄ −

1

12
sād̄sb̄ēsc̄f̄Fāb̄c̄Fd̄ēf̄

−1

4
sād̄sb̄ēκαβFāb̄αFd̄ēβ −

1

4
sād̄sb̄ēκΛΓFāb̄ΛFd̄ēΓ

)
,

and after an integration by parts we are left with

S =

∫
d10x
√
−g e−2φ

(
R+ 4gµν∂µφ∂νφ−

1

12
gµσgντgρξHµνρHστξ (3.54)

−α
′

4
gµρgνσFµν

αFρσ
βκαβ −

α′

4
gµρgνσR̃µν

ΛR̃ρσ
ΓκΛΓ

)
,

where gµν = eā
µsāb̄eb̄

ν and R = gµνRµν .

This confirms our expectations related to the appearance of the Riemann squared term,

and the absence of kinetic terms for the gauge and Lorentz beins. Modulo the identification

of ω̃µ
Λ with ω

(−)
µ

Λ, the action precisely matches (1.1), the low energy effective action of

the heterotic string to order α′.

3.5 Equations of motion

As a final step, we now compute the EOM of the theory. As discussed above, all the EOM

are condensed in (2.12), the generalized EOM that depend on the generalized fluxes

G = (2∂Ā −FĀ) F̌ Ā + FĀB̄C̄F̌ ĀB̄C̄ = 0 , (3.55)

GĀB̄ = −2∂[ĀF̌ B̄] + 6 (FD̄ − ∂D̄) F̌ D̄[ĀB̄] + 6F̌ C̄D̄[ĀFC̄D̄B̄] = 0 . (3.56)

The non-vanishing components of these equations are

G = R+ 4gµν (∇µ∇νφ− ∂µφ∂νφ)− 1

12
gµσgντgρξHµνρHστξ (3.57)

−α
′

4
gµρgνσFµν

αFρσ
βκαβ −

α′

4
gµρgνσR̃µν

ΛR̃ρσ
ΓκΛΓ ,

where we use the convention

∇µVν = ∂µVν − Γµν
ρVρ , (3.58)

Γµν
ρ = ωµā

b̄eν
āeb̄

ρ + ∂µeν
āeā

ρ , (3.59)

and

Gāb̄ = −sāc̄sb̄d̄G c̄d̄ =
1

2
eā
µeb̄

νe2φ∆Bµν , (3.60)

Gāb̄ = eρ
āeb̄

νgµρ∆gµν , (3.61)

Gāᾱ = −sāb̄Gb̄ᾱ = − 1

2
√
α′
sāb̄eb̄

νeᾱ
ακαβe

2φ∆Aν
β , (3.62)

GāΛ̄ = −sāb̄Gb̄Λ̄ = − 1

2
√
α′
sāb̄eb̄

νeΛ̄
ΛκΛΓe

2φ∆ω̃ν
Γ , (3.63)
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where

∆Bµν = gρσ∇ρ
(
e−2φHµνσ

)
, (3.64)

∆gµν = Rµν + 2∇µ∇νφ−
1

4
gστgλξHσλµHτξν

−α
′

2
gστFσµ

αFτν
βκαβ −

α′

2
gστ R̃σµ

ΛR̃τν
ΓκΛΓ , (3.65)

∆Aν
β = α′gρµ∇(+,A)

ρ

(
e−2φFµν

β
)
, (3.66)

∆ω̃ν
Γ = α′gρµ∇̃(+)

ρ

(
e−2φR̃µν

Γ
)
. (3.67)

We have defined

∇(+,A)
ρ Fµν

β = ∂ρFµν
β − Γ(+)

ρµ
σFσν

β − Γ(+)
ρν

σFµσ
β + fγα

βAρ
γFµν

α , (3.68)

∇̃(+)
ρ R̃µν

Γ = ∂ρR̃µν
Γ − Γ(+)

ρµ
σR̃σν

Γ − Γ(+)
ρν

σR̃µσ
Γ + fΣΛ

Γω̃ρ
ΣR̃µν

Λ , (3.69)

in terms of a torsionful connection

Γ(+)
µν

ρ = Γµν
ρ +

1

2
Hµνσg

σρ . (3.70)

If the one-form ω̃µ
Λ were identified with the torsionful spin connection ω

(−)Λ
µ , one

readily identifies the EOM of the heterotic string as anticipated in section 1. The last

equation (3.67) is the result of varying the action with respect to ω̃ν
Γ. As we discussed

before, we expect this equation to admit the torsionful spin connection (1.3) as a solution

ω̃µ
Λ(tΛ)ā

b̄ = ω
(−)
µā

b̄ = ωµā
b̄(e)− 1

2
Hµνρeā

νgρσeσ
b̄ . (3.71)

A well known lemma discussed in [23] proves that this is indeed the case. In fact, replacing

ω̃µ
Γ = ω

(−)
µ

Γ in equation (3.67), after some algebra, one can show that2

α′gρµ∇(+,−)
ρ

(
e−2φR

(−)
µνā

b̄
)

= α′e−2φeν
d̄sb̄c̄

(
∇(+)

[ā Ĝc̄]d̄ +Hāc̄
ēĜēd̄

)
+O

(
α′2
)
, (3.74)

where

Ĝāb̄ = Gāc̄sc̄b̄ − Gāb̄ = −eāµeb̄ν
(

∆gµν +
1

2
e2φ∆Bµν

)
. (3.75)

The notation in the covariant derivative in (3.74) indicates that the curved indices of the

torsionful Riemann tensor are covariantized with respect to Γ
(+)ρ
µν and the flat Lorentz

indices are covariantized with respect to ω
(−)Λ
µ .

2To derive (3.74) we have used

R
(±)

āb̄c̄d̄
= R

(∓)

c̄d̄āb̄
+O

(
α′
)
, (3.72)

and the BI (3.41) which can be rewritten as

∇(±)

[c̄ R
(±)

d̄ē]āb̄
= ±H[c̄d̄

f̄R
(±)

ē]f̄ āb̄
, (3.73)

after suitable replacements.

– 16 –



J
H
E
P
1
2
(
2
0
1
4
)
0
7
4

Equation (3.74) is expressed in terms of the EOM of the bein and two-form, so on-

shell the extra EOM (3.67) is satisfied by the solution (3.71). This means that although

we have been treating ω̃µ
Λ as an independent component of the generalized frame from the

beginning, we could have as well considered some dependent quantity (well behaved under

T-dualities) that reduces to the torsionful spin connection ω
(−)Λ
µ when the strong constraint

is solved in the supergravity frame. In that case, although DFT forces one to consider an

extra EOM (3.74), such equation would be trivially satisfied to O(α′). Notice that ω
(−)Λ
µ

is a solution of (3.74) where the strong constraint was already imposed and solved. If

one chose a different solution to the strong constraint, then the dependent quantity to be

considered would be a T-duality rotation of ω
(−)Λ
µ . We will show in the next section that

there exists a field-dependent quantity, well behaved under T-dualities, that reduces to

ω
(−)Λ
µ when the strong constraint is solved in the standard space-time coordinates. This

will allow us to promote this formulation to a consistent second order formalism.

4 Generalized metric formulation

An alternative formulation of GDFT can be performed in terms of the generalized metric.

The inverse generalized metric is given by

HMN = EĀ
MSĀB̄EB̄

N =


Hµν Hµβ HµΓ Hµν

Hαν Hαβ HαΓ Hαν

HΛν HΛβ HΛΓ HΛ
ν

Hµν Hµβ HµΓ Hµν

 , (4.1)

and it is straightforward to compute its components

Hµν = gµν = eā
µsāb̄eb̄

ν ,

Hµν = −cρµgρν ,
Hµν = gµν + gρσcρµcσν + α′Aµ

αAν
βκαβ + α′ω̃µ

Λω̃ν
ΓκΛΓ ,

Hαν = −
√
α′gνρAρ

βκαβ ,

HΛ
ν = −

√
α′gνρω̃ρ

ΓκΛΓ ,

Hµβ =
√
α′κβα (Aµ

α + gρσcρµAσ
α) , (4.2)

HµΓ =
√
α′κΓΛ

(
ω̃µ

Λ + gρσcρµω̃σ
Λ
)
,

Hαβ = καβ + α′καηκβγg
ρσAρ

ηAσ
γ ,

HΛΓ = κΛΓ + α′κΛΣκΓΠg
ρσω̃ρ

Σω̃σ
Π ,

HαΓ = α′καβκΓΛg
ρσAρ

βω̃σ
Λ .

The action of GDFT was given in terms of the generalized metric in [6] and it has the

following form

S =

∫
dXe−2d

(
1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂NHKL∂LHMK − 2∂Md∂NHMN

+ 4HMN∂Md∂Nd−
1

6
fMNKfMNK −

1

4
fMNKf

N
MLHKL (4.3)

− 1

2
fMNKHNPHKQ∂PHQM −

1

12
fMKP f

N
LQHMNHKLHPQ

)
.
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One can check that this action is equivalent (up to strong constraint violating terms)

to (2.10), and one can equally compute the BI and EOM in terms of the generalized metric.

Since the results agree with those obtained in previous sections through the generalized flux

formulation, we do not pursue this analysis here. However, the generalized metric is more

convenient than the generalized frame formulation to discuss duality symmetries. This

is because the generalized metric is H-invariant, and therefore, the action of the duality

group G must not be compensated by gauge-fixing H-transformations. We make use of

this advantage in the following subsection to compute the α′-corrections to the heterotic

Buscher rules induced by factorized T-dualities.

4.1 T-duality, α′ corrected Buscher rules and O(d, d,R)

We are now in a good position to compute the α′ corrections to the Buscher rules, and more

generally to discuss the role of the O(d, d,R) symmetry. In the absence of α′ corrections, the

Buscher rules were derived by Buscher [39, 40] from the sigma model formulation of string

theory, and they determine how the metric and two-form degrees of freedom mix g′(g,B)

and B′(g,B) under factorized T-dualities. Other derivations can be found in [41–43] and

α′ corrections were explored in [44–49], and references therein.

Here we apply a different, more direct, strategy. We have seen that the generalized

metric takes values in a big duality group G, which contains the continuous O(d, d) as a

subgroup. Starting from the generalized metric (4.1), one can then perform an O(d, d,R)

rotation that preserves its form. The dual fields are then extracted from the components

of the transformed generalized metric.

Any element of the group O(d, d,R) can be factorized as products of GL(d) transforma-

tions, B-shifts and factorized T-dualities [57]. The first two act trivially on the components

of the generalized metric, but the factorized T-dualities require a special treatment. We

have considered so far the space-time indices µ, ν, . . . , and we now select a particular di-

rection z, such that µ = (z, i). A factorized T-duality transformation in the z-direction

(not necessarily an isometry in DFT) acts as

H′MN = TM(z)PH
PQTN(z)Q , (4.4)

where

TM(z)N =


δνµ − δzµδνz 0 0 δzµδ

z
ν

0 δβα 0 0

0 0 δΓ
Λ 0

δµz δνz 0 0 δµν − δµz δzν

 ∈ G . (4.5)

leading to the following large system of equations

H′ij = Hij , H′ij = Hij , H′iα = Hiα , H′iΛ = HiΛ ,
H′iz = Hiz , H′iz = Hiz , H′zα = Hzα , H′zΛ = HzΛ ,
H′zz = Hzz , H′zz = Hzz , H′iα = Hiα , H′iΛ = HiΛ , (4.6)

H′ij = Hij , H′zz = Hzz , H′zα = Hzα , H′zΛ = HzΛ ,

H′iz = Hiz , H′zj = Hzj , H′αβ = Hαβ , H′ΛΓ = HΛΓ ,

H′αΛ = HαΛ ,
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that can be solved to order α′. Once these expressions are evaluated on the particular

components of the generalized metric (4.2), to order α′ the system admits a unique solution.

The computation is long but straightforward, so we simply state the result. The first order

α′ corrected Buscher rules are given by

g′zz =
1

gzz
− α′Az ·Az + ω̃z · ω̃z

g2
zz

, (4.7)

g′zi = −Bzi
gzz

+
α′

2

[
Az
gzz
·
(
Ai +

Az
gzz

(Bzi − gzi)
)

+
Az ·Az
g2
zz

Bzi

]
(4.8)

+
α′

2

[
ω̃z
gzz
·
(
ω̃i +

ω̃z
gzz

(Bzi − gzi)
)

+
ω̃z · ω̃z
g2
zz

Bzi

]
,

g′ij = gij −
gzigzj −BziBzj

gzz
− α′

2

[
Az
gzz
·
(
Ai +

Az
gzz

(Bzi − gzi)
)
Bzj (4.9)

+
ω̃z
gzz
·
(
ω̃i +

ω̃z
gzz

(Bzi − gzi)
)
Bzj + (i↔ j)

]
,

B′zi = − gzi
gzz

+
α′

2

(
Az ·Az + ω̃z · ω̃z

g2
zz

gzi −
Az ·Ai + ω̃z · ω̃i

gzz

)
, (4.10)

B′ij = Bij −
gziBzj −Bzigzj

gzz
+
α′

2

[
Az ·Az + ω̃z · ω̃z

g2
zz

(Bizgjz −Bjzgiz) (4.11)

+
Az
gzz
· (AiBjz −AjBiz) +

ω̃z
gzz
· (ω̃iBjz − ω̃jBiz)

]
A′z

α = −Az
α

gzz
+
α′

2

Az ·Az + ω̃z · ω̃z
g2
zz

Az
α , (4.12)

A′i
α = Ai

α +
Az

α

gzz
(Bzi − gzi)−

α′

2

(
Ai +

Az
gzz

(Bzi − gzi)
)
· Az
gzz

Az
α (4.13)

−α
′

2

(
ω̃i +

ω̃z
gzz

(Bzi − gzi)
)
· ω̃z
gzz

Az
α ,

where we have used the following notation for the gauge (Lorentz) trace Aµ · Aν =

Aµ
ακαβAν

β (ω̃µ · ω̃ν = ω̃µ
ΛκΛΓω̃ν

Γ). Regarding the dilaton, using that d′ = d and the

definition of d in terms of the dilaton and the determinant of the metric, one finds

φ′ = φ− 1

2
log

(
gzz −

α′

2
(Az ·Az + ω̃z · ω̃z)

)
. (4.14)

Finally, due to the symmetry (1.6) between gauge and torsionful gravitational connections,

one also finds

ω̃′z
Λ = − ω̃z

Λ

gzz
+
α′

2

Az ·Az + ω̃z · ω̃z
g2
zz

ω̃z
Λ , (4.15)

ω̃′i
Λ = ω̃i

Λ +
ω̃z

Λ

gzz
(Bzi − gzi)−

α′

2

(
Ai +

Az
gzz

(Bzi − gzi)
)
· Az
gzz

ω̃z
Λ (4.16)

−α
′

2

(
ω̃i +

ω̃z
gzz

(Bzi − gzi)
)
· ω̃z
gzz

ω̃z
Λ .
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The one-form gauge and Lorentz fields enter in the action always in O(α′) terms. Therefore,

the α′ corrections to their T-duality transformations (4.12)–(4.13) and (4.15)–(4.16) are

negligible to O(α′). We just included the corrections as they result from the transformation

because they might be useful when trying to extend this construction to higher orders.

We have seen that the EOM for ω̃µ
Λ (with the strong constraint solved in the super-

gravity frame) is solved to O(α′) by the torsionful spin connection (1.3), which depends on

the bein and the two-form. These latter fields have concrete transformation rules under the

factorized T-dualities. Then, one must check explicitly that these transformation rules are

consistent with the transformations (4.15) and (4.16). This computation was performed

in [49] assuming an isometry in the dualized direction, namely the transformation rules

of the torsionful spin connection were computed directly from the transformation of its

components, and the result is in precise agreement with (4.15) and (4.16).

In order to have a genuinely O(d, d,R) invariant formulation, one should not rely on

the presence of an isometry. In the general case, since the torsionful spin connection is

derivative dependent, after a T-duality it will transform into a dual derivative dependent

object. Then, one must find some quantity that, under factorized T-dualities, transforms

as in (4.15)–(4.16) to O(α′0), and that reduces to the torsionful spin connection only after

implementing and solving the strong constraint in the supergravity frame. We now show

that such an object exists, and corresponds to a particular component of the generalized

coefficients of anholonomy introduced in [1–3, 14].

4.1.1 T-duality covariant Lorentz connection

We would like to show that there is a field-dependent object that transforms under factor-

ized T-dualities, to O(α′0), as ω̃µ
Λ

ω̃′z
Λ = − ω̃z

Λ

gzz
, ω̃′i

Λ = ω̃i
Λ +

ω̃z
Λ

gzz
(Bzi − gzi) , (4.17)

and reduces to ω
(−)Λ
µ when the strong constraint is solved in the supergravity frame.

We will now work in the usual double space, so we consider the invariant O(d, d,R)

metric ηmn with m,n, · · · = 1, . . . , 2d, and the generalized double frame Em̄m, where the

indices m̄, n̄, · · · = 1, . . . , 2d are flat O(1, d− 1)2 indices. While the O(d, d,R) indices split

as m = (µ , µ), the flat indices split as m̄ = (ā , ā), and we have

ηmn =

(
0 δµν
δµ
ν 0

)
, Em̄m =

(
eµ
ā 0

−eāρBρµ eāµ

)
. (4.18)

The generalized frame transforms as follows

E ′m̄m = Λm̄
n̄En̄pTpm , (4.19)

where Tm
n is a global element of O(d, d,R), i.e.

Tm
pηpqTn

q = ηmn , (4.20)
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and Λm̄
n̄ is a local double Lorentz transformation that satisfies

Λm̄
p̄ηp̄q̄Λn̄

q̄ = ηm̄n̄ =

(
0 δāb̄
δā
b̄ 0

)
, Λm̄

p̄Sp̄q̄Λn̄
q̄ = Sm̄n̄ =

(
sāb̄ 0

0 sāb̄

)
(4.21)

with sāb̄ the Minkowski metric.

We now explore how the components of the generalized frame transform under

O(d, d,R). The elements of this group factorize in GL(d) transformations, B-shifts, and

factorized T-dualities. The first two preserve the triangular form of the generalized frame,

but the latter do not. Then, in order to restore the gauge one has to compensate with a

local double Lorentz transformation. A factorized T-duality in the z direction has the form

T (z)
m

n =

(
δνµ − δzµδνz δµz δνz
δzµδ

z
ν δµν − δµz δzν

)
. (4.22)

Acting with this element on the space-time index of the generalized frame takes it away

from the triangular parameterization. However, compensating with the following double

Lorentz transformation

Λm̄
n̄ =

(
δā
b̄
− sb̄c̄ ez

c̄ezā

gzz
ezāezb̄

gzz

sāc̄sb̄d̄
ezc̄ezd̄

gzz
δb̄ā − sāc̄ ez

c̄ezb̄

gzz

)
, (4.23)

one finds the following transformation rules for the components of the generalized frame

e′z
ā =

ez
ā

gzz
, e′i

ā = ei
ā − ez

ā

gzz
(giz −Biz) , (4.24)

e′ā
z = eā

zgzz + eā
i(giz −Biz) , e′ā

i = eā
i , (4.25)

B′zi = − gzi
gzz

, B′ij = Bij −
gziBzj −Bzigzj

gzz
. (4.26)

The transformations for the bein are only defined up to the diagonal part of the double

Lorentz group. One can check that they reproduce the transformations (4.7)–(4.11) for the

metric and two form to lowest order in α′.

On the other hand, one can define the O(d, d) generalized fluxes (also called generalized

coefficients of anholonomy) in terms of the generalized frame

Fm̄n̄p̄ = E[m̄|
m∂mE|n̄nEp̄]n . (4.27)

The components of these fluxes are detailed in [34]. Under a global T-duality these objects

are manifestly invariant, but after the compensating double Lorentz transformation they

transform in a non-trivial way [34]

F ′m̄n̄p̄ = 3Λ[m̄|
q̄∂q̄Λ|n̄

r̄Λp̄]r̄ + Λm̄
q̄Λn̄

r̄Λp̄
s̄Fq̄r̄s̄ . (4.28)

To understand the impact of these transformations, it is convenient to perform an

SO(2, 2d− 2) rotation on flat indices through the element

Om̄n̄ =
1√
2

(
δā
b̄
−sāb̄

sāb̄ δb̄ā

)
. (4.29)
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This rotation connects the frame formalism in [1–3] and [14] with that in [34]. Under this

rotation, the quantities defined above become

η̂m̄n̄ = Om̄p̄On̄q̄ηp̄q̄ =

(
−sāb̄ 0

0 sāb̄

)
, (4.30)

Ŝm̄n̄ = Om̄p̄On̄q̄Sp̄q̄ =

(
sāb̄ 0

0 sāb̄

)
, (4.31)

Λ̂m̄
n̄ = Om̄p̄Λp̄q̄(O−1)q̄

n̄ =

(
δā
b̄
− 2sb̄c̄

ezc̄ezā

gzz
0

0 δb̄ā

)
, (4.32)

and the rotated generalized coefficients of anholonomy are given by

F̂m̄n̄p̄ = Om̄q̄On̄r̄Op̄s̄Fq̄r̄s̄ . (4.33)

Now, they transform under hatted compensating double Lorentz transformations after a

factorized T-duality as

F̂ ′m̄n̄p̄ = 3Λ̂[m̄|
q̄∂̂q̄Λ̂|n̄

r̄Λ̂p̄]r̄ + Λ̂m̄
q̄Λ̂n̄

r̄Λ̂p̄
s̄F̂q̄r̄s̄ . (4.34)

Let us pay particular attention to the component F̂ āb̄c̄. Under a compensating double

Lorentz transformation, it varies as

F̂ ′āb̄c̄ = Λ̂āq̄∂̂q̄Λ̂b̄
r̄Λ̂c̄r̄ + Λ̂b̄

q̄∂̂q̄Λ̂c̄
r̄Λ̂ār̄ + Λ̂c̄

q̄∂̂q̄Λ̂
ār̄Λ̂b̄r̄ + Λ̂āq̄Λ̂b̄

r̄Λ̂c̄
s̄F̂q̄r̄s̄ . (4.35)

Replacing (4.32), we see that the first three terms cancel, and one is left with

F̂ ′āb̄c̄ =

(
δād̄ − 2sd̄ē

ez
ēez

ā

gzz

)
F̂ d̄b̄c̄ . (4.36)

Then, if we define

ω̃µb̄
c̄ = − 1√

2
eµ
āsād̄s

c̄ēF̂ d̄b̄ē , (4.37)

we find that under a factorized T-duality it transforms as

ω̃′zb̄
c̄ = − ω̃zb̄

c̄

gzz
, ω̃′ib̄

c̄ = ω̃ib̄
c̄ +

ω̃zb̄
c̄

gzz
(Bzi − gzi) . (4.38)

Moreover, one can check [14] that under the definition (4.37), ω̃µb̄
c̄ exactly reduces to ω

(−)

µb̄
c̄

defined in (1.3), when the strong constraint is solved in the supergravity frame.

4.2 Comparison with double α′-geometry

Having computed the generalized metric, it is instructive to compare our approach with that

of the double α′-geometry presented in [19]. There, it was realized that α′ corrections can

be obtained from a duality covariant CFT construction. In that approach, the generalized

Lie derivative receives an α′ correction, T-dualities are not corrected, and the tangent space

is the usual double tangent space. In contrast, here we preserve the form of the generalized
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Lie derivative and extend the duality group by enhancing the generalized tangent space.

It is then natural to ask if these two seemingly different approaches can be reconciled.

In [19], both the inner product and the generalized Lie derivative receive higher deriva-

tive corrections (we introduce α′ explicitly to make the comparison with our results clearer)

〈ξ, V 〉 = ξmηmnV
n − α′∂mξn∂nV m , (4.39)

(LξV )m = ξp∂pV
m + (ηmnηpq∂nξ

q − ∂pξm)V p − α′ηmn∂pV q∂n∂qξ
p . (4.40)

Here, we use the same convention of the previous subsection, namely m,n, · · · = 1, . . . , 2d

are O(d, d) indices, which are raised and lowered with the O(d, d) invariant metric ηmn.

With this convention, the strong constraint reads ηmn∂m∂n� = 0.

Now consider an extended tangent space with generalized vectors

VM =
(
V m,
√
α′(tm

n)p
q∂qV

p
)
, (4.41)

where the extended directions are not independent from the original ones and take values

in the adjoint of O(d, d). The O(d, d) generators (which coincide with the O(d, d) Killing

metric)

(tp
q)m

n =
1

2

(
δnp δ

q
m − ηqnηpm

)
= (tm

n)p
q , (4.42)

can be used to define an invariant metric in the extended space

ηMP =

(
ηmp 0

0 −2(tm
n)p

q

)
. (4.43)

The key observation is that the usual inner product and gauged generalized Lie deriva-

tive in the extended space

〈ξ, V 〉 = ξMηMNV
N ,

(LξV )M = ξP∂PV
M +

(
ηMNηPQ∂Nξ

Q − ∂P ξM
)
V P − fPQMξPV Q , (4.44)

where the gaugings correspond to the O(d, d) gaugings in the extra directions, exactly

reduce to the above equations (4.39) and (4.40) on the usual double tangent space

〈ξ, V 〉 = ξmηmnV
n − α′∂mξn∂nV m , (4.45)

(LξV )m = ξp∂pV
m + (ηmnηpq∂nξ

q − ∂pξm)V p − α′ηmn∂pV q∂n∂qξ
p , (4.46)

after implementing the strong constraint. In particular, when the constraint is solved in

the frame in which everything depends only on the supergravity coordinates, one finds

〈ξ, V 〉 = ξµVµ + ξµV
µ − α′∂µξρ∂ρV µ ,

(LξV )µ = ξρ∂ρV
µ − V ρ∂ρξ

µ , (4.47)

(LξV )µ = ξρ∂ρVµ + Vρ∂µξ
ρ − 2V ρ∂[ρξµ] − α′∂ρV σ∂µ∂σξ

ρ .

Then, we see that the α′ corrections to the O(d, d) inner product and generalized Lie

derivative of [19] can be encoded in an extended space in which the inner product and

generalized Lie derivative take the usual expressions. This parallelism, while promising in

order to reconcile both approaches, deserves a better understanding.
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5 Conclusions

In this paper we have extended the generalized flux formulation of DFT to include the O(α′)

corrections to the low energy effective heterotic string theory. This includes the gauge and

Lorentz Chern-Simons terms contained in the field strength of the Kalb-Ramond field, as

well as the Yang-Mills and Riemann squared terms in the action. The gauge and Lorentz

connections neatly fit together with the d-dimensional bein and two-form field into an

enlarged generalized frame that transforms covariantly under a large duality group, part

of which is gauged. The Lorentz connections included in the generalized frame can either

be treated as dependent quantities on the other fields or as independent connections which

are finally related to the torsionful spin connection on-shell. An important outcome of

this enhancement is that the Riemann curvature tensor with torsion appears as one of the

components of the generalized fluxes. In this way, being quadratic in fluxes, the generalized

action successfully reproduces the curvature squared term of the heterotic effective theory.

Hence, the construction allows to circumvent the issue raised in [38] about the absence of a

T-duality invariant four-derivative object, built from the generalized metric, that reduces

to the square of the Riemann tensor.

The gauging preserves a remnant O(d, d) global symmetry that allowed us to com-

pute the explicit α′ corrections to the Buscher rules. Indeed, acting on the extended

generalized metric with factorized T-duality transformations, we have found the first order

α′ corrections to the transformation rules of the massless bosonic heterotic fields. These

transformations serve as a solution generating mechanism, as new solutions of the heterotic

EOM can be found by applying these rules to known solutions.

Several subsequent directions to extend these results suggest themselves. One obvious

course of future action is the construction of higher derivative terms. The ultimate goal

is to incorporate all order α′ corrections in a duality invariant formulation. This is clearly

a difficult problem and a more modest target would be to understand these corrections

order by order. Using duality symmetries to determine higher derivative corrections to

supergravity has been a prolific area of research in recent years (for example, see [58–

62] and references therein). It is possible that higher order corrections require further

enhancements of the duality group and additional extensions of the tangent space, in order

to allow for more degrees of freedom into a yet larger generalized bein.

The supersymmetric extension is another direction of interest. Supersymmetric DFT

was constructed in [1–3, 10–12] and more recently in gauged DFT in [63]. As explained

in [23], the symmetry between the gauge and gravitational connections extends to the

fermionic sector as well (more specifically the symmetry interchanges the gauginos with

the curvature of the gravitinos), and this can be useful in the construction of the super-

symmetric extension of our work.

It would also be interesting to explore α′ corrections in the bosonic string and Type

II superstring theories and see if they can be cast in a duality invariant form, similar to

the one considered here. One can already make contact with Type II theories by letting

the heterotic gauge group be embedded in the holonomy group. In this case, due to the

symmetry between gauge and gravitational connections, the order α′ terms in the action
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cancel each other, in concordance with the fact that Type II theories only receive corrections

of order α′3 and higher. The bosonic case will be discussed in a separate work [64].

From a more phenomenological perspective, compactifying this theory to lower dimen-

sions would allow to study the quantum corrections to the low energy effective couplings

and scalar potential. Compactifications in manifolds with SU(3) structure were performed

in [65], and it is also of interest to study supersymmetry preserving generalized Scherk-

Schwarz compactifications along the lines of [51, 52] in this context. The deformations of

the moduli space induced by α′ corrections may have important consequences in the search

of vacua and the construction of sensible cosmological models in string theory. Moreover, it

would allow to explore the relation between α′ corrections and non-geometry, particularly

the duality orbits of non-geometric fluxes discussed in [66], where the non-geometric effects

are expected to be of order α′.

Note 1. At early stages of this work we received a preliminary version of [33], which

contains some of the building blocks of our paper. This includes the extended tangent space,

inner product and generalized Lie derivative. We would like to emphasize that a similar

discussion on the relation between this formalism and the one in [19] was first posed in [33].

Note 2. Soon after our work was posted, the papers [67, 68] appeared, which aim to

describe bosonic and heterotic α′ corrections following the approach in [19].
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A Conventions and comments on the equations of motion

A.1 Conventions

All through the paper we have used conventions that are useful to highlight the symmetry

between the gauge and gravitational sectors. In this appendix we would like to discuss

these conventions. Regarding the gauge sector, given the generators of the gauge group tα
we use the convention

[tα, tβ] = −fαβγtγ , καβ = tr(tαtβ) . (A.1)

The gauge vectors are one forms in the adjoint of the gauge group Aµ = Aµ
αtα which is

embedded in the fundamental of G. We then have for example that

Fµν = 2∂[µAν] − 2A[µAν] , (A.2)

Fµν
αFρσ

βκαβ = tr (FµνFρσ) , (A.3)

∂[µAν
αAρ]

βκαβ +
1

3
fαβγAµ

αAν
βAρ

γ = tr

(
A[µ∂νAρ] −

2

3
A[µAνAρ]

)
. (A.4)
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Similarly, given the generators of the Lorentz group tΛ we use the convention

[tΛ, tΓ] = −fΛΓ
ΣtΣ , κΛΓ = −tr(tΛtΓ) . (A.5)

The spin connection (with torsion) is a one-form in the adjoint of the Lorentz group ω̃µ =

ω̃µ
ΛtΛ which is embedded in the fundamental of G as well. For this sector we then find

R̃µν = 2∂[µω̃ν] − 2ω̃[µω̃ν] , (A.6)

R̃µν
ΛR̃ρσ

ΓκΛΓ = −tr
(
R̃µνR̃ρσ

)
, (A.7)

∂[µω̃ν
Λω̃ρ]

ΓκΛΓ +
1

3
fΛΓΣω̃µ

Λω̃ν
Γω̃ρ

Σ = −tr
(
ω̃[µ∂ν ω̃ρ] −

2

3
ω̃[µω̃ν ω̃ρ]

)
. (A.8)

Note the different conventions used for the Killing metrics in the gauge (A.1) and

Lorentz (A.5) sectors.

A.2 Comments on the equations of motion

In this appendix we outline the procedure to obtain the equations of motion to O(α′),

i.e. (1.10)–(1.13). For further details we refer to [23]–[28] and references therein. Specifically

we only focus on the EOM for the two-form and the bein, since their derivation is subtle

due the fact that they are both implicitly contained in the torsionful spin connection.

We consider first the equation of motion for the two-form. Explicitly, the Lagrangian

does not depend on Bµν , but on its derivatives. Implicitly, it depends on first and second

derivatives of Bµν through the torsionful spin connection and its derivatives. Therefore,

the full variation of the action is

δBS =

∫
dx

[
δL

δ∂λBρν
δ∂λBρν +

δL
δω

(−)
µā

b̄

δω
(−)
µā

b̄

δ∂λBρν
δ∂λBρν

+
δL

δ∂ηω
(−)
µā

b̄

(
δ∂ηω

(−)
µā

b̄

δ∂λBρν
δ∂λBρν +

δ∂ηω
(−)
µā

b̄

δ∂ξ∂λBρν
δ∂ξ∂λBρν

)]
,

which can be rewritten, after integrating by parts, as

δBS =

∫
dx

[
−∂λ

δL
δ∂λBρν

δBρν +

(
δL

δω
(−)
µā

b̄
− ∂η

δL
δ∂ηω

(−)
µā

b̄

)
δBω

(−)
µā

b̄

]
. (A.9)

It is straightforward to compute the expression multiplying δBω
(−) in (A.9), that we denote

δω(−)L, and the result is

δω(−)L =
α′

2

√
−g∇ρ

(
e−2φHρµν

)
ω

(−)

νb̄
ā + α′

√
−g∇(+,−)

ν

(
e−2φR(−)µν

b̄
ā
)
. (A.10)

Using

δBω
(−)
µā

b̄ =
δω

(−)
µā

b̄

δ∂λBρν
δ∂λBρν = −3δ[λ

µ eā
ρec̄

ν]sc̄b̄δ∂λBρν +O(α′) , (A.11)
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replacing in (A.9) and integrating by parts, we get

δBL =
√
−g ∇λ

(
e−2ΦHλρν

)
δBρν − 3α′∂λ

(√
−g
2
∇η(e−2ΦHηµ[λ)ωµ

νρ] (A.12)

+
√
−g ∇(+,−)

µ

(
e−ΦRµ[λνρ]

))
δBρν +O(α′2) .

Here, the first term is what we denoted ∆B in (1.12) and the second one is proportional

to both ∆B and ∆g defined in (1.11) (see for example (3.74)). This is a very useful and

well known result obtained in [23]. However, because of the complete antisymmetry in the

indices λ, ρ, ν, the dependence on ∆g (which is symmetric) vanishes. One ends with

δBL =
√
−g
(

∆Bρν + α′Ôρν [∆B] +O(α′2)
)
δBρν , (A.13)

where the linear differential operator is defined by

Ôρν [∆B] =
3

2
√
−g

∂λ

(√
−g∆Bµ[λω(−)

µ
ρν] +

√
−ggµ[λ∇(+)

µ ∆Bρν]
)
. (A.14)

We then see from (A.13) that the EOM for the B-field takes the following schematic form(
1 + α′Ô

)
∆B = O(α′2) . (A.15)

Remarkably, since the operator 1 + α′Ô is invertible to O(α′), one ends with

∆Bµν = O(α′2) . (A.16)

Using this equation and implementing the same strategy for the EOM of the bein, one

finds an identical equation to (A.15) with a different operator(
1 + α′Õ

)
∆g = O(α′2) . (A.17)

Again, the details of this operator are not important in this calculation, and the only thing

that matters is that to O(α′) the operator 1 +α′Õ is invertible, so that one finally obtains

∆gµν = O(α′2) . (A.18)

We then see that the EOM for the bein and two-form, properly computed from the

full variation of the action, are equivalent (to O(α′)) to the EOM that one would obtain by

only varying the action with respect to the explicit dependence of the fields, and treating

the torsionful spin connection as an independent field.
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