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o/ corrections, and the gauge symmetries are generated by the usual (gauged) generalized
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through the spin connection with torsion, which is incorporated as a new degree of freedom
in the extended bein. We compute the generalized fluxes and find the Riemann curvature
tensor with torsion as one of their components. All the four-derivative terms of the action,
Bianchi identities and equations of motion are reproduced. Using this formalism, we obtain
the first order o corrections to the heterotic Buscher rules. The relation of our results to
alternative formulations in the literature is discussed and future research directions are
outlined.
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1 Introduction

The construction of duality invariant formulations of the supergravity limits of string the-
ory has been an active field of research in recent years. A paradigmatic case is Double Field
Theory (DFT), where T-duality is incorporated as a manifest symmetry of the universal
supergravity sector [1-5]. The framework allows to incorporate heterotic vector fields [1-
3, 6], the Ramond-Ramond fields of type II theories [7-10] and the fermions that complete
the supersymmetry multiplets [1-3, 10-12]. This program led to the full covariantization
of supergravities to lowest order in perturbation theory with respect to the T-duality sym-
metry of string theory. In the process, interesting novel geometric structures emerged,
such as the generalized metric [13] and frame [1-3, 14] including the supergravity fields as
components, and a generalized Lie derivative [1-3, 15, 16] that unifies diffeomorphisms and
two-form gauge transformations. In this framework, duality invariance is achieved by for-
mally defining the theory on a double space, and the physical space on which supergravity
is realized can be recovered upon enforcing the so-called strong constraint. The result is an



elegant and powerful reformulation of supergravity in terms of generalized geometric quan-
tities that make T-duality manifest. Interestingly, the duality structure of these theories
is manifest even before compactification. For more details and references see [17, 18].

A natural question is how to incorporate o/ corrections in this context. Recently, this
question was nicely addressed in [19], where a duality invariant CFT that incorporates
o’ corrections was presented. Here we consider the heterotic string, and our goal is to
rewrite the massless bosonic sector of the effective low energy theory, including all first
order contributions of the o/ expansion, in the language of DF'T. This comprises the action,
equations of motion, Bianchi identities and duality transformations. Although conceptually
our approach looks different from that in [19], we illustrate how both constructions could
be connected.

The first order o’ contributions to the heterotic string effective field theory have an
interesting structure. The action includes gauge and gravitational Chern-Simons terms in
the two-form field strength, in addition to quadratic terms of the Yang-Mills field strength
and of the Riemann curvature tensor with torsion. These contributions were originally
obtained from tree level scattering amplitudes of the massless heterotic string states [20, 21].
An alternative method to construct the gravitational part of this action was developed
in [22], making use of a symmetry that exists between the Yang-Mills and supergravity
fields in ten dimensions. Since this symmetry is an essential ingredient of our construction,
we briefly recall the main idea.

In d dimensional gravity, the spin-connection plays the role of an SO(1,d — 1) gauge
field, that gauges the local Lorentz transformations which are part of the gauge symmetries
of supergravity. Although this seems to imply that a Riemann curvature squared action
can be constructed from the Yang-Mills field strength squared action, simply replacing
everywhere the gauge connection by the Lorentz spin connection, these connections do not
have the same behavior under supersymmetry transformations. However, the replacement
of gauge by spin connection works well in the formulation of d = 10 supergravity as
an SO(1,9) Yang-Mills multiplet if the spin connection has torsion and the torsion is
proportional to the two-form field strength. This symmetry between the Yang-Mills gauge
connection and the Lorentz torsionful spin connection will be crucial in our formalism, so
we will keep it manifest all along the analysis.

Let us start by reviewing the heterotic string low energy effective action to order o’.
The massless bosonic degrees of freedom are a d = 10 dimensional bein e,%, a two-form
B, ng = 496 gauge fields A,* and a dilaton ¢, where p,v,--- = 1,...,d are space-time
indices, while a,b,--- =1,...,d are flat Lorentz indices and o, 8,--- = 1,...,ng4 are indices
in the adjoint representation of the heterotic gauge group. The action can be written
as [20, 21]-[26]

1
S = /dwx —ge 2 (R + 49" 0,00, ¢ — ﬁg””g”Tgngu,,pHGTg (1.1)
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where
1
Hlﬂ/ﬂ = 36[MBVP] —3d <6[MA,,aAp]ﬂHaﬁ + 3fa57AuaAyﬁAp7> (1.2)
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is the two-form field strength. As emphasized above, the o’ corrections include a Chern-
Simons contribution from the gauge fields A, and a Chern-Simons contribution from the

,(f)A. These terms depend on the gauge (Lorentz) Killing

spin connection with torsion w
metric and structure constants, which are proportional to res (kar) and fos? (far®)
respectively. The indices A, T',--- = 1,...,n; where n; = d(d — 1)/2, are adjoint Lorentz
indices. We refer to the appendix for details on our conventions. The torsionful spin

connection is

_ 1 »
w/(t )A(t/&)&b = w,uflb(e) - iH,uz/pea gpaeab (13)

where wml_’ is the usual torsionless spin connection and the two-form field strength plays

the role of torsion. Note that since w( A always appears in the action in terms with an

o/ factor, to O(c’) the Chern Simons terms contained in the torsion in (1.3) play no role.
The second line in (1.1) contains the field strengths of the connections

Fu® = 20,,A," + f3," AP A7 (1.4)
R)A = 2a[uw£]’“ + frstw(OTwl)®, (1.5)

the latter being the Riemann tensor defined in terms of the torsionful spin connection.

Written in this form, the symmetry between the connections is manifest in the action

A#a < wl(;)A R F,Lu/a e R&;)A
Kag — KAT , fa67 <~ fAI‘E (16)

This symmetry extends all along the Bianchi identities (BI). Indeed, the BI for the two-
form, gauge and gravitational field strengths read

3

o 3 1 n(=)A p(-)T
OpHypo) = =50/ Fly* Fyo)iag — S0/ By JAR (T hinr, (1.7)
Dy Fyp™ = Opkyp™ + fﬁva‘Ll[;xﬁ}'ﬂvp]7 =0, (1.8)
(=) p(=)A _ (=)A A ATrp=)xz _
D[M Ryp} = 6[MRz/p] —i—frz w[u Rup] = 0. (1.9)

At the level of the equations of motion (EOM), the symmetry is more subtle. The
reason is that, while the gauge fields A,* are independent degrees of freedom, the torsionful
spin connection w7 is not. The latter depends on the bein, the two-form and the gauge
connection, and then a priori there seems to be no reason to consider its EOM. Let us then

begin by writing the well known EOM to O(a/) for the dilaton, bein, two-form and gauge



fields (see for example [23]-[28] and references therein)

1
A¢ = R + 4guy (V,uvzﬂb - au¢au¢) - Eguagm—gngm/pHan (1'10)
o oo ap B & ip v p(—)A p(=)T
_Zg g FMV po "iaﬁ - Zg g Rp,z/ Rpo- RAT = Oa

1
Agu = Ruy +2V, YV, — Zg”g/\gHg)\MHTg,,

% o B 3
_EQUTFUNaFTVBHaﬁ _ EgUTR((T,LL)ARg'y)FK/AF =0, (111)
AB/“, = gpgvp (6_2¢H,u110') =0, (1.12)
AA = o g A (e‘waﬁ) =0, (1.13)

respectively, where we have defined

Vng’A)F;wB = 9pFu’ — F,(OZ)JFGV’B - F/()JIE)UFMB + fra® A Fuu®, (1.14)
1
TL? = T? + 5 Huwag™ (1.15)

which covariantizes the derivative with respect to ten dimensional diffeomorphisms and
gauge transformations. Strictly speaking, the EOM written above are not those that one
would get by varying the action with respect to the component fields, but combinations
of them.

The heterotic EOM (1.10)—(1.13) break the symmetry (1.6) because, not being an
independent field, there is no EOM for wu(_)A. However, it is instructive to discuss what
happens when varying the action with respect to w“(_)A, i.e. treating it as an independent
degree of freedom. In this case one obtains the following equation

Awl(/_)r = o/gp“VgJ“_) <€_2¢R;(M_/)F> =0, (116)
with
VEIRGT = 9,RET TR TR+ aTuONED®, (117

thus restoring the complete symmetry between the gauge and Lorentz sectors, i.e, un-
der (1.6) one has
AAS & AT, (1.18)

Interestingly, it was shown in [23] that, to O(c’), the equation (1.16) is automatically

satisfied by the solutions to the other equations. More precisely, one can show that, to
(-)r

order o/, Aw can be expressed as a linear combination of Ag,, and AB,,, and then it

trivially vanishes on-shell.

It is worth mentioning that simply replacing w( A by an independent field, say dzuA,
does not lead to a first order formulation because, being higher order in derivatives, its
equation of motion (1.16) does not provide an algebraic expression relating CZJ#A with w,(f) A
(—)A

lemma proved in [23], to O(c’) the result of varying the action with respect to the funda-

Rather, it is a differential equation that admits w as a solution. However, due to the

mental fields by first varying the explicit dependence and then adding the variation through



the torsionful spin connection which implicitly also depends on them, coincides with the
result of simply considering the explicit variation. We discuss this further in the appendix.
This suggests that one can still consider a formulation in which w,(f)A is treated as an in-
dependent degree of freedom. This point of view is then useful in order to extend the sym-

metry between the gauge and torsionful spin connections to all levels, including the EOM.

In this paper, we encode all these results in the manifestly T-duality invariant DFT.
Already for the gauge sector this was done in [1-3, 6], where the gauge fields were incorpo-
rated in an extended tangent space, enhancing the O(d,d) duality group to O(d,d + ng).
Here, we further extend this construction to incorporate the gravitational sector to or-
der o/, exploiting the above mentioned symmetry between the gauge and torsionful spin
connection. Related constructions can be found in [29]-[33].

We work in the generalized flux formulation of DFT [1-3, 14, 34], which is more con-
venient to display the covariant structures of the effective theory. In this formulation, the
field degrees of freedom appear as components of a generalized frame E ;™ that parame-
terizes the quotient G/H (where G is the duality group), and the dilaton is combined with
the determinant of the metric in a shifted dilaton. The gauge transformations are encoded
in the generalized Lie derivative £ (to be defined later), which in turn defines generalized
fluxes F 155 and F ;. The components of these fluxes contain the covariant quantities of
the theory, namely the two-form field strength, the antisymmetrized spin connection, etc.
Closure of the gauge algebra imposes constraints which force these fluxes to be covariant
under £, and this leads to a set of closure constraints that take the form of generalized
BI. The fluxes are not covariant under the action of the local subgroup H, and then H-
invariance determines the form of the action up to the closure constraints. The result is an
action quadratic in fluxes, with generalized EOM that can also be written purely in terms
of fluxes.

To allow for a description of the O(a/) corrections to heterotic supergravity in this
formulation, we enlarge the duality group to G = O(d+ (d —1),d +ng+ (d —1)(d — 2)/2)
and take H = O(1 + (d—1),(d — 1)+ ng + (d — 1)(d — 2)/2) ® O(d — 1,1), so that the
dimension of the quotient G/H allows to accommodate, in addition to the bein and two-
form field, n, gauge and n; = d(d — 1)/2 Lorentz one-form connections." A subgroup of
the duality group is gauged and we will argue that a residual O(d,d) global symmetry
group is preserved by the gauging. In this framework, the generalized Lie derivative re-
produces the gauge transformations of the heterotic fields and the fluxes encode all the
covariant building blocks of the theory. Remarkably, one of the components of the fluxes
reduces to the Riemann tensor with torsion upon imposing the strong constraint, when
the Lorentz connections included in the generalized bein are identified with the spin con-
nection with torsion. Moreover, being quadratic in fluxes, the generalized action naturally
reproduces the Riemann squared term. In this way, the formalism manages to remove one
of the obstructions that impeded the inclusion of higher derivative terms in DFT, namely
the apparent absence of a T-duality invariant four-derivative combination built from the
generalized metric that reduces to the square of the Riemann tensor [38].

LA generalized spin connection was incorporated in an extended generalized frame in references [35-37].
It would be interesting to explore if this construction is related to the one presented here.



An interesting application of our formalism is to determine the o’ corrections to the
Buscher rules of the heterotic massless fields. These rules play a significant role in the search
of solutions to the string equations of motion, allowing to generate new solutions from old
ones. Buscher derived the zero slope limit of the duality transformations of the fields from
the sigma model worldsheet action [39, 40] when there is an isometry (see also [41]). An
elegant way to recover these rules is by performing a canonical transformation [42, 43],
which shows that the dual models are classically equivalent. The explicit form of the
quantum corrections has been pursued using different methods and some partial results
are available [44-49]. Here, we obtain the O(a/) corrections to the transformation rules
of the massless heterotic fields in a manifestly duality covariant way. After constructing
the generalized metric and transforming it under the factorized T-duality elements of the
duality group G, we get the explicit results for the o’ corrected duality transformations of
generic background fields. We show how this works for the full O(d,d,R) duality group.

The paper is organized as follows. In section 2 we briefly review the generalized flux
formulation of DFT and its gauging. We then present the heterotic setup in section 3. We
extend the O(d, d) duality group to include the extra degrees of freedom that are necessary
to describe the O(a’) corrections to heterotic supergravity, we construct the generalized
frame and study the gauge transformations of the fields. The generalized fluxes are then
computed and the Bianchi identities they satisfy are found. The action and equations of
motion are presented in subsections 3.4 and 3.5, respectively. In section 4 we construct the
generalized metric formulation, and evaluate the O(«’) corrections to the heterotic Buscher
rules. We also discuss the relation of our formalism with the double o/-geometry introduced
in [19]. In the concluding section 5, we summarize our results and outline future directions
of research.

2 Generalized flux formulation of Double Field Theory

Let us begin by briefly reviewing the generalized flux formulation of DFT [1-3, 14, 34]. For
more details we refer to those references.

The theory is defined on an extended space where derivatives dj; span the funda-
mental representation of a group GG. The extended space indices M, N, ... take values in
the fundamental representation of G and are raised and lowered with the constant and
symmetric group metric nysny. Typically, in order to realize T-duality as a manifest sym-
metry, the group is taken to be G = O(d, d) and the space is doubled. However, this is not
strictly necessary and here instead we will consider a bigger group that contains O(d, d) as
a subgroup.

The fields are generalized tensorial densities TM-  of weight w(7T) that transform
under generalized diffeomorphisms as

GeD)Mon. = (LT n. = PopTMn. 4+ (0Mép — 0pE™) TP . + ...
+ (8N§P — 8P€N) TM"'P... + ...
+ w(T) dpe? T ., (2.1)

where the gauge parameters M are generalized vectors themselves with vanishing weight.



Consider a subgroup H and introduce flat indices A, B,... which are acted on by
H and are raised and lowered with the constant and symmetric metric 745, taken to
numerically coincide with 7p7y. The elements in H preserve both 145, and a symmetric
and constant metric S45.

A generalized frame E ;1M is a basis of generalized vectors of vanishing weight, and can
be taken to be parameterized by some of the supergravity field degrees of freedom, namely
the metric, two-form, one-form gauge fields, etc. Under generalized diffeomorphisms it
transforms as

(LeED)M = PoapEsM + (0Mep — ape™) BT (2.2)

The particular parameterization of the generalized frame in terms of the supergravity
degrees of freedom depends on the H-gauge choice, which we do not need to specify right
now. After the action of generalized diffeomorphisms, the gauge choice must be restored.
Since it parameterizes the coset G/H, the frame satisfies

Ex™ nun EgY =na3, (2.3)

and so its inverse is given by EA M=T1 _BnMNEBN . The dilaton, instead, is contained in
a density field e=2¢, of weight w(e=2?) = 1, which transforms as a measure

Lee 2 = p (5%-”) . (2.4)

The group of generalized diffeomorphisms closes provided a tower of closure constraints
is satisfied. In particular, the transformation of a tensorial density must be itself a tensorial
density

A Le, T =0, Ag =0 — L, (2.5)

where L¢ acts on a covariant object, while d¢ faithfully transforms the object. Clearly,
on tensorial densities, one has AT = 0. Since (2.5) is not covariant, one should impose
the additional constraints that all its gauge transformations vanish as well. The result is
a tower of closure constraints that restricts the space of gauge parameters and tensorial
densities for which DFT is consistently defined. A stronger constraint, known as strong
constraint or section condition, can be imposed

oMo =0, (2.6)

where ¢ represents any combination of fields and gauge parameters. This constraint is
sufficient to satisfy the closure constraints (and hence to achieve gauge consistency), but
it is not necessary [34, 50]. Let us emphasize however that in this paper, for the sake of
concreteness and in order to make direct contact with the heterotic supergravity theory in
d = 10-dimensions, we will impose the strong constraint.

The generalized diffeomorphisms allow to define generalized fluzes

Fige = (EEAEB)ME@M, (2.7)

—2d 2d
fA = € »CEAG y



which by construction transform as scalars under generalized diffeomorphisms, up to the
closure constraints. When evaluated on generalized frames, the latter become

Zip = 80}“@@ +28[Afg] —féfégg = 0. (2.9)

Moreover, when the strong constraint is enforced, these closure constraints then simply
become Bianchi identities.

Since the generalized fluxes are not H-covariant, by demanding H-invariance the action
is fixed to be

S = /dX e~ 2d (]:ABC' FABC 4 fgﬁ;‘> , (2.10)
where
FABC _ Fo - |:4S[AD7IBE7]C]F _ ESADSBESCF - Dy EnCF} ’
FA = Fp [SAB - nAB] . (2.11)

The action (2.10) is fully invariant under all the global and gauge symmetries, up to the
closure constraints (2.5).

Varying the action with respect to the generalized dilaton and frame yields the equa-
tions of motion

= (205 — Fj) fA—FfABCv]}ABC =0, (2.12)
= 20 FPl 6 (Fp —0p) FDIAB] 4 GﬁCD[Af@DB] = 0.

T Q
|

gA

This concludes our brief summary of the gauge symmetries, action, BI and EOM of
the generalized flux formulation of DFT. For more details we refer to the original papers
or the reviews [17, 18].

2.1 Gauged Double Field Theory

DFT can be deformed through a gauging procedure [6], parameterized by an embedding
tensor that satisfies a linear and a quadratic constraint

funpe = founers funt fgpf =0, (2.13)

provided (any combination of) the fields and gauge parameters are further restricted to
satisfy the constraints
funtop o =0. (2.14)

The embedding tensor dictates how the gauge group is embedded in the global duality
group G.
Under such a deformation, the generalized diffeomorphisms become gauged

o \M...
(£5T> N = (LMo n  — fpMeP Ty A 4 fpnQEPTM g+ (2.15)



and so do the gauge transformations of the generalized frame and dilaton
> M M MePp Q
<££EA) = (LeEx)" — fro ¢ Ex~, (2.16)
Lee™ = Lee™2 (2.17)

which in turn induce gauged contributions to the generalized fluxes

Fapc = Fapc — funrEx EgNECT, (2.18)
Fi=7Fa. (2.19)

After the gauging procedure, the action, equations of motion, closure constraints, etc.
take exactly the same form as in the previous section, but with hatted fluxes. In this paper
we will work with a gauged DFT (GDFT), but in order to lighten the notation we will
drop the hats. Let us finally comment that this gauging procedure was shown in [50] to be
equivalent to a generalized Scherk-Schwarz reduction [51, 52].

3 The heterotic setup

To accommodate the O(a’) corrections of the heterotic string effective theory, we take the
global symmetry group G = O(d + (d — 1),d + ng + (d — 1)(d — 2)/2) and consider the
subgroup H = O(1+(d—1),(d—1)+ng+ (d—1)(d—2)/2) ® O(d —1,1). The dimension
of the quotient is then

dim(G/H) = d* + dng + dn; (3.1)

which allows to build in a symmetric d-dimensional metric g,,, a two-form B,,,, ny one-
forms A,* plus other n; = d(d — 1)/2 one-forms @,*. The indices take values p,v--- =
1,...,d; a,8,---=1,...,ngand A,¥,--- =1,...,n;. To make contact with the heterotic
string, one has to assume that d = 10 is the dimension of the physical space-time, ng, = 496
is the dimension of the adjoint representation of the SO(32) or Eg x Eg gauge group, and
n; = 45 is the dimension of the adjoint representation of the Lorentz group. In this way,
this construction introduces n; extra connections &)uA, which in order to reproduce the
heterotic string must be related to the torsionful spin connection w(_)A, depending on the
other fields (see (1.3)).

Now, there are two ways to proceed: (a) one treats cDMA as an independent quantity (we
have provided evidence in the introduction on why this is possible), or (b) one defines @, *
from the start as a dependent quantity. The second option is subtle in two respects. On the
one hand, such dependent quantity must behave properly under duality transformations.

More concretely, if one simply replaces LZJ“A by w(_)A, after a T-duality it will transform
to a different quantity that will depend, for instance, on dual derivatives. Then, in order
to construct a second order formulation that is well behaved under T-dualities, one must
proceed with caution and consider a quantity that transforms consistently under O(d, d,R)
and reduces to wi ™ when the strong constraint is solved in the standard space-time
coordinates. On the other hand, the DFT formalism enforces an equation of motion for
(IJMA, which must then be trivially satisfied. We will address these issues in due time, and

for now just proceed by treating (:JMA as an independent quantity.



A generalized vector is of the form VM = (Viu, Vo, Vo, V#), and the invariant metric in
G is taken to be

0 0 0 o~
0 k¥ 0 0
_ 3.2
IMN 0 0 M 0 | (3.2)
5, 0 0 0

so the co-vector counterpart reads Vi = (V#, Ve, VA,VM). Here, k*? and k™ are pro-
portional to the (inverse) Killing metrics in the adjoint representations of the gauge and
Lorentz groups (see the appendix), with signatures (0,n4) and (d — 1,(d — 1)(d — 2)/2)
respectively.

We now introduce the H-invariant metric

s 0 0 0
0 k% 0 0
Sig= P , 3.3
AB 0 0 &0 (3:3)
0 O Sab
where s;; = diag(—,+,...,+). Here K0P = ea&/@“fge/gg is numerically equivalent to £®7,

which allows to define elements e,® that preserve the Killing metric of the gauge group,

and K,AF A AFeFF

= ep\"K is numerically equivalent to !, which allows to define elements

ea? that preserve the Killing metric of the Lorentz group.

3.1 Generalized frame and gauge transformations

Consider a generalized G-valued frame E ;M satisfying E;MnynEgY = 145 with a fixed
H-gauge choice, and such that it has the following d-dimensional dynamical degrees of
freedom: a bein e,%, a two-form B,,,,, ny one-forms A,* and n; one-forms Cu“A. Including
also the elements e, and e A]\ introduced above, the frame can be written as

eu’ 0 0 0
\/&A#ﬂe/ga e’ 0 0
V'@, Ler 0 ea 0

—ea’Cop f\/JeapAp%ﬁa f\/aea%p%m ez’

S
g
|
=1
=1
w
=

where .
o
2
The fact that such a generalized frame exists globally means that the extended space is
generalized paralellizable [53]. On the other hand, the dilaton ¢ is combined with the

determinant of the metric g in the shifted dilaton field

e 2 = \/—ge . (3.6)

We now explore the action of generalized diffeomorphisms on the generalized frame

/
[0 - ~
cuw = By + ) AﬂmyﬂAyﬁ + wupmpgw,,z . (3.5)

and dilaton, and for simplicity we impose the section condition and pick the frame in
which dy = (0,0,0,0,). We will assume this for the sake of concreteness in all the rest of

~10 -



the paper, and we will also explicitly incorporate the o/ parameter. The generalized Lie
derivative acts as

1
(LeE)M = PopE M + (0Mep — 9pe™M) B4T — ﬁprMngAQ :

Lee ™ = 0p <§Pe_2d) , (3.7)

where the non-vanishing fluxes prM have only pure gauge or pure Lorentz indices, thus
satisfying the constraint (2.14). Taking the gauge parameter M = (£, Va/€,, Va/ép, EH),
in components we find

Legp = EP0po, (3.8)
Lee,* = EPDye,” + 0,8 e,” (3.9)
Leeo™ = P0pea™ — far EMes”, (3.10)
LeAS = €P0,A,P + 0,60 A0 +0,6° — fo, P A, (3.11)
Leen™ = €P0,ep™ — fas e er? (3.12)
Lew,t = €P0,0," +0,6P0," + 0,6" — faxTeh0,E, (3.13)
LeBu, = £°0,Bu, — 201,6” By, + 20,6 + o/ 0, A" kapt” + o/ 0,0, karé",  (3.14)

where we have defined
F o ~ A r
f,u = éu - E (Aua/iaﬂfﬁ + wy KATE > . (3.15)

The last three terms in (3.14) include the gauge and Lorentz transformation of the two-form
that implement the Green-Schwarz mechanism [54]. Such a transformation guarantees that
the field strength of the two-form, which includes the Chern-Simons terms, is gauge and
Lorentz invariant.

The degrees of freedom allowed by the dimension of the quotient G/H suggest that we
can take e,% and e AA constant. Note however that a generalized diffeomorphism generates
a gauge transformation on these quantities, shifting them to non-constant matrices. Then,
in order to preserve the gauge choice in which these matrices are constant, a gauge-restoring
infinitesimal H-transformation is necessary. Consider h € H € @, such that

hi“nephs” =nzp,  hi“Sephs” =Sap. (3.16)
For h sufficiently close to the identity A AB =9 AB + A AB, the above conditions impose
Ai%nep = —Ag“nca,  Ai“Sep = —A5Sea- (3.17)

Since H is a symmetry of the theory, one can equivalently define the gauge transforma-
tions as )

6 EM = LeExM — AP ERM, (3.18)
where the last term is introduced to restore the gauge fixing. It is easy to see that the
particular gauge choice e,® = const. and ep™ = const. is restored through

00 00
- 0A: 0 0

AB = g = , 3.19

A 0 0 A0 (3.19)
00 00
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with

AaB = —egﬁfga,a‘fvead, AAf _ —efrfrzAézeAA, (3.20)

which enforces .
dcea” =0,  deen™ =0, (3.21)
and preserves the form of the other gauge transformations. In particular, e,® and eA]\

can be taken to coincide with the identity, implying the equivalence between barred and
un-barred gauged and Lorentz indices.

We note that a subgroup of the global symmetry group is gauged by fa/n*. Since the
embedding tensor has only pure gauge and Lorentz components, there is a residual O(d, d)
global symmetry that generates the familiar T-duality transformations.

3.2 Generalized fluxes
Given the generalized frame and generalized Lie derivative defined in (3.4) and (3.7), re-
spectively, we are now ready to compute the generalized fluxes
M
]:*Bé = (EEAEB) EC’M? (3.22)
Fi=e2Lp . (3.23)

Using the above parameterization and imposing the strong constraint, one is left with the

following non-vanishing components

. 1 _
Fabe = _eﬁuegyeépﬂuupy FobT — — = Ca 6556 Ayfaﬁfy,
\VA8
c c AT I AT F A
‘F(_Ll_)c = 2(“);1[5666}#7 Fa =egl'er K DueA ’
fagd = —ea“eg”ea@\/JF,wa, .7'—&5/\ = —ea“e,;”eAAv o/Rw,A, (3.24)
_= = _ N 1 -
]_—aaﬁ — ea"@g’gﬁaﬁl)ueaa, FATS _ AT EfAFE,

\/JQA e exn

]:a = QGE#F'M + 2&)#[51)6&]# 5

where
Fu=0u¢, (3.25)
1
Hywp = 30,8, — 3a/ (8[MAVaAp]B“aB + 3fa,6’7AuaAvﬂAp7)
A~ 1 - A~ T~
—3a’ (8[MWVAMP]FI€AF + 3prgquwVprE> , (3.26)
o1 _ - o _ _

eal'w,;" = 3 (Tagc + 5,550 + s,;gsceTgad> , Tap = 2ea"Oueg” e, (3.27)
Fu®™ = 20, A% + f3," A, A (3.28)
RN = 20,0, + frsto @, (3.29)
Dyeo® = Opea” + faﬁmfeﬂ, (3.30)
Duea™ = dea™ + far®@, es? . (3.31)
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We then readily identify all the covariant building blocks of the theory, namely the field-
strengths of the dilaton (3.25), the two-form (3.26), the bein (3.27) (which is the anti-
symmetrized spin connection), the gauge fields (3.28), the extra one-forms (3.29) (which
is nothing but the Riemann tensor when &;MF is identified with the spin connection) and
the covariant derivatives of the gauge and Lorentz beins (3.30) and (3.31). Of course, the
last two quantities are just pure gauge as we showed above, so we expect them not to
appear in the action. Moreover, since the action is quadratic in fluxes, one can already
anticipate the presence of the Riemann squared term induced by o/-corrections. Although
somehow expected, the fact that the Riemann tensor appears as one of the components
of a generalized flux is very interesting. As discussed in [38], the Riemann tensor is not a
component of the generalized Riemann tensor introduced in [55, 56], nor can it be gener-
ated from a combination of derivatives of the generalized metric. Here, the extension of
the tangent space permits to accommodate a spin connection, whose field strength is the
Riemann tensor, which then appears as a generalized flux component.
For the sake of completion, let us now compute the checked fluxes (2.11)

FABC _ g [iS[AanlBlEnlé}F _ %SADSBESCF_ 14D, BE,CF| (339
FA— F. |:SAB _nAB] : (3.33)

which are necessary to build the action and derive the equations of motion. Their non-
vanishing components read

. _7 7 1 -7 %= 2
J—_'a — Sabe , J—_'aba — _EsadSbGH&BfJéB ,
. . 1 -5 3
]:a:—fa, faE@:ESa K/ag]:d_bﬁ,
1 o7 oz 5 1 :
b d b
F =58 6scffczafa Faba = ~15"aplab
| o " _ (3.34)
.Fabﬁ — 6‘7_‘ [a b]d ES dS Scffde ’ -Fabj_\ — _Esadsbeﬁj_\ffgér 7
Fa L gad a Fa L ad P
P = 158" Fabe ~ 6}735“7 P = 155" karta
_ 1 P! . 1 r
Fabe = ySdatg — gFabes Faba = —{gRArtab -

Note that the fluxes F ‘7&5 and F%55 vanish, signaling the fact that no kinetic term of the
gauge and Lorentz beins will appear in the action. Also, note that the checked fluxes carry
the information of the couplings in the action.

3.3 Generalized Bianchi identities

We have shown that the closure of the algebra of generalized Lie derivatives leads to a
set of closure constraints (2.9), that become BI when the strong constraint is enforced. In
terms of fluxes, they read

3
Zascp = 9akpon) — 7| [ABE]: cng = 0, (3.35)

Zip = 8CJ:CAB+28[AfB] FFazp = 0. (3.36)
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Let us then compute their components to show how they match the BI of the heterotic
string. The non-vanishing components are

Z.5 = 2egte” (28[qu} + R[/w]) , (3.37)
3 3 - -
Zabcd —€g" €} ecpecz <a[#Hypo} + Za/F[Wana]B”aﬂ + 4OZ/R[#VARPO-}F/€AF> s (338)
— 3 » _
ZaBad = 16[6“65\ Ruu|a}da (3.39)
Zap" = _Ze&ueéyeépea&\/aD[uFup]a ) (3.40)
Zfbcl_\ = —Zea“eg”egpe,\/_\\/ab[uéyp]/\, (3.41)

_ _ _ 1 =z = 1 5 B
2% = eatey” <D[“eﬁﬂ/ia5Dy]€aa + §€5ﬁ“aBD[uDu}eaa - 4Fuv7fva’36aa€5’8> (3.42)

- 1
ZaISAF = eaﬂel—)”< [Mep I{', D| }eA +§€1“ /<; D[ ,,]eA —fRWEfz FeAAerF> (3.43)
o 3 o
2% = _mea#eaaeﬁﬁe”ﬂflueﬂn[afﬁﬂna (3.44)
R 3 — —
Z AT ea“eAAepFechfo:H[AfFE]H ’ (3.45)
4ol -
o 3 _
Zoz/a"ye _ 4 —eq eﬂﬁevveeﬁf[aﬁaf’yfw , (346)
AT 3 =
ZAPST _ —FeAAer exZer 1 fIAT S fETIE (3.47)
where
Rua’ = 20,wi1a" — 2000 whie’ (3.48)
HVa [wWva Wiula WY > :
R,uzz = Rp,u(‘zbeuaef)pa (349)
DuFyp® = 0uFup™ + [y " Ay FVP ) (3.50)
DuRupA = 8;LR1/pA + fFE W,u }{l/pE . (351)

Therefore, we have found the BI for the dilaton field strength and Ricci tensor (3.37),
the o corrected BI for the two-form field strength (3.38), the first BI for the Riemann
tensor (3.39), the BI for the gauge field strength (3.40), the differential second BI for the
torsionful Riemann tensor (3.41), plus other BI including quadratic constraints that are
trivially satisfied by the gauge and Lorentz structure constants.

3.4 The action

Having computed the components of the fluxes (3.24) and their checked projections (3.34),
it is now straightforward to compute the action

S = /dX 6_2 Fige fABé+ fA}V—A> . (3.52)
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In components this reads

S = / dXe’Qd FaF® o+ FupoF ™ 4 3F o F 4+ 3F 0 F s + 3F 5 F5 ) (3.53)
a (& 1 a & & 1 a e ,C
/dX@ Qd(fsbfb+bdfbfdc ZS dSbSCffb.Fde —128db ffabcfdef
1 1
_ 4Slld beliaﬁf ba]:de _ Zsadsbel{//\l—‘]:—b/\]:de > ,
and after an integration by parts we are left with
S = /dmx —ge ¥ <R + 49" 0,90, ¢ — g“"g”Tgngw,pH (3.54)

/
_Zg'upgyoF “F, po ’iaﬁ - Z.g gyaRuVARpUFKAF> )
where g = ea“s‘_’i’eg” and R = g" Ry,.

This confirms our expectations related to the appearance of the Riemann squared term,
and the absence of kinetic terms for the gauge and Lorentz beins. Modulo the identification

(=)

of (IJN with wy, A the action precisely matches (1.1), the low energy effective action of

the heterotic strlng to order o'.
3.5 Equations of motion
As a final step, we now compute the EOM of the theory. As discussed above, all the EOM
are condensed in (2.12), the generalized EOM that depend on the generalized fluxes
G = (205 — fA)f:'A—i-}—;‘gc‘f]:—ABé = 0, (3.55)
GAB = 20 AFBl 4 6 (Fp — 0p) FPAB L 6 FCPAF, 5B = 0. (3.56)

The non-vanishing components of these equations are

1
G = R+4¢" (V,V,¢ — 0,00,¢) — gwg”gpﬁﬂw,ﬂ (3.57)
/

[0 v VT ~
_Zgﬂﬂg UFuuano’BHoz,B - Zgﬂﬂg UR;LVARpoFHAFy

where we use the convention

V.V, = a,n@ R YAZY (3.58)
T’ = wiale e’ + Ouenea” (3.59)
and
71
Gap = —SaESEJng = iea“ez,'je%AB;w, (3.60)
G = epaez”g“%gw, (3.61)
Gl = —s"l”g,;a = 2\/>s eb ea“Kape 20AA4,°, (3.62)
G'% = —sai)gg,g = Q\FS eb eAAﬁAFeQ¢AcDVF, (3.63)
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where
AB,, = ¢"V, (e—2¢HW) , (3.64)

1
Aguu = R;,LV + 2vuvu¢ - ZgaTg)\éHo)\,uHTﬁu

/ /

(6% o ~ ~
_EQUTFO'/LQFTUB/{O@B - EQUTRG“ARTUFK:AF B (365)
AAyﬁ — a/gp.uv;)-hA) (€—2¢F“y/3> , (366)
AG,S = ol (7R, (3.67)
We have defined

vng?A)FW/B - 8PF#V6 - F,(OZ)UF”Vﬁ o F,E;VF)UFWﬂ + fvaﬁAvauua ) (3.68)
VIR = 0,R" — T R — TR + foa"@, " Ru™,  (3.69)

in terms of a torsionful connection

1

L(HP=T,," + ing”P. (3.70)

(—)A

A , one

If the one-form w," were identified with the torsionful spin connection w
readily identifies the EOM of the heterotic string as anticipated in section 1. The last
equation (3.67) is the result of varying the action with respect to @,'. As we discussed
before, we expect this equation to admit the torsionful spin connection (1.3) as a solution

- 7 Y . 1 _
qu(tA)ab = wfu—z)b = wm—lb(e) — in,pea”g"’"egb. (3.71)

A well known lemma discussed in [23] proves that this is indeed the case. In fact, replacing

w,l = w,(f)r in equation (3.67), after some algebra, one can show that?

a'gp“V£,+’_) (6_2¢RL;2LB> = a’e‘wey‘isga (VE;)QE}J+ Hagégég) + 0(0/2) , (3.74)
where
5 : 1
gal; - g&cség - gal; - —ea'uel;l/ <Agl‘”/ + 262¢ABNV> . (375)

The notation in the covariant derivative in (3.74) indicates that the curved indices of the

torsionful Riemann tensor are covariantized with respect to F,(;)p and the flat Lorentz
indices are covariantized with respect to w,(f)A.

2To derive (3.74) we have used

+
R =R +0(o), (3.72)
and the BI (3.41) which can be rewritten as
() p(x)  _ ()
Vie Rigas = THiea Ry (3.73)

after suitable replacements.
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Equation (3.74) is expressed in terms of the EOM of the bein and two-form, so on-
shell the extra EOM (3.67) is satisfied by the solution (3.71). This means that although
we have been treating (IJMA as an independent component of the generalized frame from the
beginning, we could have as well considered some dependent quantity (well behaved under
T-dualities) that reduces to the torsionful spin connection wy, A When the strong constraint
is solved in the supergravity frame. In that case, although DFT forces one to consider an
extra EOM (3.74), such equation would be trivially satisfied to O(«’). Notice that wi A
is a solution of (3.74) where the strong constraint was already imposed and solved. If
one chose a different solution to the strong co?sgf\aint, then the dependent quantity to be

considered would be a T-duality rotation of w . We will show in the next section that

there exists a field-dependent quantity, well behaved under T-dualities, that reduces to
w7 when the strong constraint is solved in the standard space-time coordinates. This
will allow us to promote this formulation to a consistent second order formalism.

4 Generalized metric formulation

An alternative formulation of GDFT can be performed in terms of the generalized metric.
The inverse generalized metric is given by

Hyuw Hup Hur Hy”
Hau Hoz,B Hal" HQV
Haw Hap Har Ha” |
HH, HFE g HE HMY

HMN — p MGABE N _

and it is straightforward to compute its components
HW = g — 66#5&5651/,
Hy" = —cpug™
Hyw = G + 9" CppCov + &' A, AP kg + o/ 0, 0, "kpr |
H. = —\/ngpAp’Bliaﬁ,
HyY = —Valg"a, kr
Hup = Valkga (Au® + 97 couds®) (4.2)
Hur = Valkra (&)#A —i—gp”cp#d)g/\) ,
Hop = Kap + a/ﬁannﬁwngAp”AUV,
Har = Far + o' kaskrng” @, 0,
Haor = a’maﬁﬁpAgp”ApﬁdzaA.
The action of GDFT was given in terms of the generalized metric in [6] and it has the
following form

1 1
S = / dXe 2d (8’HMN8MHKL8N’HKL — §HMN6NHKL0LHMK — 20y dONHMN
1 1
+ AHMN Oy rdond — ngNKfMNK - ZfMNKfNMLHKL (4.3)

1 1
- §fMNK7'lNPHKQ3P’HQM - meKPfNLQHMNHKLHPQ> -
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One can check that this action is equivalent (up to strong constraint violating terms)
to (2.10), and one can equally compute the BI and EOM in terms of the generalized metric.
Since the results agree with those obtained in previous sections through the generalized flux
formulation, we do not pursue this analysis here. However, the generalized metric is more
convenient than the generalized frame formulation to discuss duality symmetries. This
is because the generalized metric is H-invariant, and therefore, the action of the duality
group G must not be compensated by gauge-fixing H-transformations. We make use of
this advantage in the following subsection to compute the o'-corrections to the heterotic
Buscher rules induced by factorized T-dualities.

4.1 T-duality, o/ corrected Buscher rules and O(d, d, R)

We are now in a good position to compute the o/ corrections to the Buscher rules, and more
generally to discuss the role of the O(d, d, R) symmetry. In the absence of o’ corrections, the
Buscher rules were derived by Buscher [39, 40] from the sigma model formulation of string
theory, and they determine how the metric and two-form degrees of freedom mix ¢'(g, B)
and B'(g, B) under factorized T-dualities. Other derivations can be found in [41-43] and
o/ corrections were explored in [44-49], and references therein.

Here we apply a different, more direct, strategy. We have seen that the generalized
metric takes values in a big duality group G, which contains the continuous O(d, d) as a
subgroup. Starting from the generalized metric (4.1), one can then perform an O(d, d,R)
rotation that preserves its form. The dual fields are then extracted from the components
of the transformed generalized metric.

Any element of the group O(d, d, R) can be factorized as products of GL(d) transforma-
tions, B-shifts and factorized T-dualities [57]. The first two act trivially on the components
of the generalized metric, but the factorized T-dualities require a special treatment. We
have considered so far the space-time indices u,v, ..., and we now select a particular di-
rection z, such that pu = (z,4). A factorized T-duality transformation in the z-direction
(not necessarily an isometry in DFT) acts as

HMN =T pHCT g, (4.4)
where
8y — 6767 % 0 6207
0 60 0
TN = N €qG. 4.5
&N 0 0 0 (4:5)

LSV 0 0 o — 85

leading to the following large system of equations

W — i : ng = Hyj, %/ia _ Hia ’ H'iy = Hin :
HZ =H', M, = Hi*, H = Hea Ho\ =M,

W — .. W, =M, Hip = Hia Hin = Hin, (4.6)
H =M, HP =H.", Hey =M, Hip =HA,

Hi® = Hiz, H =N, Haop = Hap Hir = Har,

HixA = Han
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that can be solved to order o/. Once these expressions are evaluated on the particular
components of the generalized metric (4.2), to order o/ the system admits a unique solution.
The computation is long but straightforward, so we simply state the result. The first order
o’ corrected Buscher rules are given by

1 ,Az'Az‘i‘sz'sz
(6

A 7 4.7
9z Gzz g2, (4.7)
B.; o TA A A, - A
g,lzi =-——=+ D) [z . (Ai + i(Bzi - gzi)> + ZQZBzi] (4.8)
9zz 9zz 2z P
o [ N w Wy W
5 [gz : (Wi + —=(B.i — gzi)) + == ZBzi:| ;
zz A zzZ
Gyi — BB, o [A A
gij = gij — £ P — -5 [gz : (Ai + gi(Bzi - gzi)) B:j (4.9)
zzZ zZZ zzZ
w N w . .
+gji . (wi + jzz(BZZ — g;ﬂ)) sz + (Z — ]):| ,
4 PUA AL DG A A DO
B;iz—g“+§< R S WZ>, (4.10)
gZZ gzz gZZ
iB.i — B,ig,i o [A, A+ @, - @
Bvlij _ Bij _ Gzibzj 21923 + 5 |: z z . 2 Wz (Bizgjz B szgiz) (4‘11)
gZZ gZZ
A, A:B. A:B: W 0. B.: ;B
+;'(ij_ j zz)"";'(wz jz T Wy zz)
A;a _ _Aza +2/A2Az—2i-a)za)zAza’ (412)
Gzz 2 9%
A o A A
A;a = Aia + gz (Bzi - gzi) - 5 (Az + J(Bzi - gzz)) : JAza (4'13)
2z 2z 22
o (. @ %
Y <Wi + —=(B.i — gzi)) A,
zZZ zz

where we have used the following notation for the gauge (Lorentz) trace A, - A, =
Aua/ﬁagA,,ﬁ (O - @y = (ZJMAKAF(DVF). Regarding the dilaton, using that d’ = d and the
definition of d in terms of the dilaton and the determinant of the metric, one finds

1 /
¢ =¢— 3 log (gzz — %(AZ AL+ @, - LDZ)> . (4.14)

Finally, due to the symmetry (1.6) between gauge and torsionful gravitational connections,
one also finds

oA A A 4G

z 9zz 2 ggz : ( )
~ A ’

B ~ w [0 A A ~

ot = o™ + = (Bui — g2i) — > (Ai + —=(Bzi — gzz‘)) Lt (4.16)
zZZ zZZ zz
o [ @ W, -
5 ( i+ —(Bui — gzi)) ==
zZZ zz
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The one-form gauge and Lorentz fields enter in the action always in O(«) terms. Therefore,
the o corrections to their T-duality transformations (4.12)—(4.13) and (4.15)—(4.16) are
negligible to O(a’). We just included the corrections as they result from the transformation
because they might be useful when trying to extend this construction to higher orders.

We have seen that the EOM for cDMA (with the strong constraint solved in the super-
gravity frame) is solved to O(a/) by the torsionful spin connection (1.3), which depends on
the bein and the two-form. These latter fields have concrete transformation rules under the
factorized T-dualities. Then, one must check explicitly that these transformation rules are
consistent with the transformations (4.15) and (4.16). This computation was performed
in [49] assuming an isometry in the dualized direction, namely the transformation rules
of the torsionful spin connection were computed directly from the transformation of its
components, and the result is in precise agreement with (4.15) and (4.16).

In order to have a genuinely O(d, d,R) invariant formulation, one should not rely on
the presence of an isometry. In the general case, since the torsionful spin connection is
derivative dependent, after a T-duality it will transform into a dual derivative dependent
object. Then, one must find some quantity that, under factorized T-dualities, transforms
as in (4.15)—(4.16) to O(a’), and that reduces to the torsionful spin connection only after
implementing and solving the strong constraint in the supergravity frame. We now show
that such an object exists, and corresponds to a particular component of the generalized
coefficients of anholonomy introduced in [1-3, 14].

4.1.1 T-duality covariant Lorentz connection

We would like to show that there is a field-dependent object that transforms under factor-
ized T-dualities, to O(a’?), as @,

A
(Bzi — gzi) y (417)

gZZ gZZ

and reduces to w ™ when the strong constraint is solved in the supergravity frame.

We will now work in the usual double space, so we consider the invariant O(d,d,R)
metric Ny, with m,n,--- = 1,...,2d, and the generalized double frame &3, where the
indices m,n,--- = 1,...,2d are flat O(1,d — 1)? indices. While the O(d,d,R) indices split
as m = (*, ), the flat indices split as m = (%, 3), and we have

0 &*, e, 0
= = # . 4.18
Timn (5;11/ 0 ) m <_€&pou 65“) ( )

The generalized frame transforms as follows
ELT = Ay "ERPT,™ (4.19)
where T,," is a global element of O(d, d,R), i.e.

Tmpnqunq = Nmn » (4‘20)
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and Az" is a local double Lorentz transformation that satisfies

- _(o 5%) —— _<sa50>
AnPnpgAr? = mma = : . ARPSpgAR? = Spn = (4.21)
(5@ 0 0 Sab
with sz; the Minkowski metric.

We now explore how the components of the generalized frame transform under
O(d,d,R). The elements of this group factorize in GL(d) transformations, B-shifts, and
factorized T-dualities. The first two preserve the triangular form of the generalized frame,
but the latter do not. Then, in order to restore the gauge one has to compensate with a
local double Lorentz transformation. A factorized T-duality in the z direction has the form

5V — 575V SHev
T — [T ptz s UET2 . 4.22
m < 505 ol — 5555) (4.22)

Acting with this element on the space-time index of the generalized frame takes it away
from the triangular parameterization. However, compensating with the following double
Lorentz transformation

(5@ — 3, e-%e;’ ezaezb
_n o __ b C Gzz_ gzz _
Mt = (T ) (4.23)
ac®pd G2z a ac G2z
one finds the following transformation rules for the components of the generalized frame
ra _ e.” 'a _ _a e.”
ei= 2 ;" =" — —(9i- — Biz) (4.24)
gZZ zz
e%z = eazgzz + eaz(giz - Bzz) ; e%z = eél 5 (425)
B, = —&, Blfj = B;j — 920z 29z (4.26)
gZZ gZZ

The transformations for the bein are only defined up to the diagonal part of the double
Lorentz group. One can check that they reproduce the transformations (4.7)—(4.11) for the
metric and two form to lowest order in o/.

On the other hand, one can define the O(d, d) generalized fluxes (also called generalized
coefficients of anholonomy) in terms of the generalized frame

Finnp = Epm) " Oméln" Egln - (4.27)

The components of these fluxes are detailed in [34]. Under a global T-duality these objects
are manifestly invariant, but after the compensating double Lorentz transformation they
transform in a non-trivial way [34]

/
Fmnp

To understand the impact of these transformations, it is convenient to perform an
SO(2,2d — 2) rotation on flat indices through the element

- 1 a _ qab
On = — <5b > ) . (4.29)

_ b
Sap O
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This rotation connects the frame formalism in [1-3] and [14] with that in [34]. Under this
rotation, the quantities defined above become

R - —5%

i = O Orngg = 7 (4.30)
0 sa

A o ab

i = Ol O0r1855 = (8 0 ) 7 (4.31)

0 sz

o o o (80— 2sp et

An" = ORPAA(O07H " = ( b Sobc 9% ;) ; (4.32)

and the rotated generalized coefficients of anholonomy are given by
ﬁmﬁp - quOﬁFOpEFQF§ . (433)

Now, they transform under hatted compensating double Lorentz transformations after a
factorized T-duality as

‘Fflhﬁp == BA[m‘q QAM'FA[?}F + AquﬁFAﬁgqug . (434)

Let us pay particular attention to the component F%;,. Under a compensating double
Lorentz transformation, it varies as

.F,al;é == Aﬁ(i QAEFAE* + qu QAEF/A\&f + qu q/A\&FAE,,—, + AanBFAég qrs - (435)
Replacing (4.32), we see that the first three terms cancel, and one is left with

o ~ ezéeza =
Fle = <53 — 23de> Fe. (4.36)

zZz

Then, if we define
_ 1 -
W= ——euasmzsce}"dl;é, (4.37)

ub V2
we find that under a factorized T-duality it transforms as

¢ ~ _E

- W,z - S W

~! c __ _ *zb ~! € __ ~ _C zb
Wy = ) Wi = wg +

Gzz 2z

(e

Moreover, one can check [14] that under the definition (4.37), ©,;° exactly reduces to Wp

defined in (1.3), when the strong constraint is solved in the supergravity frame.

4.2 Comparison with double o/-geometry

Having computed the generalized metric, it is instructive to compare our approach with that
of the double o/-geometry presented in [19]. There, it was realized that o’ corrections can
be obtained from a duality covariant CFT construction. In that approach, the generalized
Lie derivative receives an o’ correction, T-dualities are not corrected, and the tangent space
is the usual double tangent space. In contrast, here we preserve the form of the generalized
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Lie derivative and extend the duality group by enhancing the generalized tangent space.
It is then natural to ask if these two seemingly different approaches can be reconciled.

In [19], both the inner product and the generalized Lie derivative receive higher deriva-
tive corrections (we introduce o’ explicitly to make the comparison with our results clearer)

(EV) = €M V" — &/ 0 70, V™, (4.39)
(LeV)™ = EPOV™ + (™ 1ipgOn €T — 9p€™)VP — o/ 0,V 10,,04EP . (4.40)
Here, we use the same convention of the previous subsection, namely m,n,---=1,...,2d

are O(d,d) indices, which are raised and lowered with the O(d,d) invariant metric 7,y,.
With this convention, the strong constraint reads n™"0,,9,¢ = 0.
Now consider an extended tangent space with generalized vectors

VM = (Vm,\/a(tm”)pqaqvp) , (4.41)

where the extended directions are not independent from the original ones and take values
in the adjoint of O(d,d). The O(d,d) generators (which coincide with the O(d,d) Killing
metric)

1
(tp")m" = 5 (6505 = 1" 1pm) = (tm")p? (4.42)
can be used to define an invariant metric in the extended space
_ (e O 4.43

The key observation is that the usual inner product and gauged generalized Lie deriva-
tive in the extended space

<§7 V> = §M77MNVN )
(LM = ePapV™M + (MNnpgone? — apeM) VP — fpMel Ve, (4.44)

where the gaugings correspond to the O(d,d) gaugings in the extra directions, exactly
reduce to the above equations (4.39) and (4.40) on the usual double tangent space

(&V) = "pnV" — /08" 0, V™ (4.45)
(LV)™ = EPOV™ + (™ 1ipgOn&? — Bp€™) VP — o/ ™0,V 90,,04EP (4.46)

after implementing the strong constraint. In particular, when the constraint is solved in

the frame in which everything depends only on the supergravity coordinates, one finds

(&, V) = "V, + € VH —d9,£P0,VH,
(LV)H = €P0,VH = VPOEH, (4.47)
(ﬁgV)# = £P0,V,, + V,0u8° = 2VPO 6, — o0,V 70,0," .
Then, we see that the o corrections to the O(d, d) inner product and generalized Lie
derivative of [19] can be encoded in an extended space in which the inner product and

generalized Lie derivative take the usual expressions. This parallelism, while promising in
order to reconcile both approaches, deserves a better understanding.
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5 Conclusions

In this paper we have extended the generalized flux formulation of DFT to include the O(a/)
corrections to the low energy effective heterotic string theory. This includes the gauge and
Lorentz Chern-Simons terms contained in the field strength of the Kalb-Ramond field, as
well as the Yang-Mills and Riemann squared terms in the action. The gauge and Lorentz
connections neatly fit together with the d-dimensional bein and two-form field into an
enlarged generalized frame that transforms covariantly under a large duality group, part
of which is gauged. The Lorentz connections included in the generalized frame can either
be treated as dependent quantities on the other fields or as independent connections which
are finally related to the torsionful spin connection on-shell. An important outcome of
this enhancement is that the Riemann curvature tensor with torsion appears as one of the
components of the generalized fluxes. In this way, being quadratic in fluxes, the generalized
action successfully reproduces the curvature squared term of the heterotic effective theory.
Hence, the construction allows to circumvent the issue raised in [38] about the absence of a
T-duality invariant four-derivative object, built from the generalized metric, that reduces
to the square of the Riemann tensor.

The gauging preserves a remnant O(d,d) global symmetry that allowed us to com-
pute the explicit o/ corrections to the Buscher rules. Indeed, acting on the extended
generalized metric with factorized T-duality transformations, we have found the first order
o’ corrections to the transformation rules of the massless bosonic heterotic fields. These
transformations serve as a solution generating mechanism, as new solutions of the heterotic
EOM can be found by applying these rules to known solutions.

Several subsequent directions to extend these results suggest themselves. One obvious
course of future action is the construction of higher derivative terms. The ultimate goal
is to incorporate all order o’ corrections in a duality invariant formulation. This is clearly
a difficult problem and a more modest target would be to understand these corrections
order by order. Using duality symmetries to determine higher derivative corrections to
supergravity has been a prolific area of research in recent years (for example, see [58—
62] and references therein). It is possible that higher order corrections require further
enhancements of the duality group and additional extensions of the tangent space, in order
to allow for more degrees of freedom into a yet larger generalized bein.

The supersymmetric extension is another direction of interest. Supersymmetric DF'T
was constructed in [1-3, 10-12] and more recently in gauged DFT in [63]. As explained
in [23], the symmetry between the gauge and gravitational connections extends to the
fermionic sector as well (more specifically the symmetry interchanges the gauginos with
the curvature of the gravitinos), and this can be useful in the construction of the super-
symmetric extension of our work.

It would also be interesting to explore o’ corrections in the bosonic string and Type
II superstring theories and see if they can be cast in a duality invariant form, similar to
the one considered here. One can already make contact with Type II theories by letting
the heterotic gauge group be embedded in the holonomy group. In this case, due to the
symmetry between gauge and gravitational connections, the order o/ terms in the action
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cancel each other, in concordance with the fact that Type II theories only receive corrections
of order o’® and higher. The bosonic case will be discussed in a separate work [64].

From a more phenomenological perspective, compactifying this theory to lower dimen-
sions would allow to study the quantum corrections to the low energy effective couplings
and scalar potential. Compactifications in manifolds with SU(3) structure were performed
in [65], and it is also of interest to study supersymmetry preserving generalized Scherk-
Schwarz compactifications along the lines of [51, 52] in this context. The deformations of
the moduli space induced by o/ corrections may have important consequences in the search
of vacua and the construction of sensible cosmological models in string theory. Moreover, it
would allow to explore the relation between o’ corrections and non-geometry, particularly
the duality orbits of non-geometric fluxes discussed in [66], where the non-geometric effects
are expected to be of order o'.

Note 1. At early stages of this work we received a preliminary version of [33], which
contains some of the building blocks of our paper. This includes the extended tangent space,
inner product and generalized Lie derivative. We would like to emphasize that a similar
discussion on the relation between this formalism and the one in [19] was first posed in [33].

Note 2. Soon after our work was posted, the papers [67, 68] appeared, which aim to
describe bosonic and heterotic o/ corrections following the approach in [19].
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A Conventions and comments on the equations of motion

A.1 Conventions

All through the paper we have used conventions that are useful to highlight the symmetry
between the gauge and gravitational sectors. In this appendix we would like to discuss
these conventions. Regarding the gauge sector, given the generators of the gauge group t,
we use the convention

[ta, tg] = —fapty, Kag = t?“(tatg) . (A.1)

The gauge vectors are one forms in the adjoint of the gauge group A, = A,%t, which is
embedded in the fundamental of G. We then have for example that

F = 20,4, — 24,4, (A.2)
Fu®FoPliap = tr (FuFpy) (A.3)

« 1 « 2
8[#"41’ Ap]’B/{ag + gfa/B’YAlJ AVfBAp'Y =1ir <A[N&,Ap} — 3A[MAZ,A/)]> . (A4)
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Similarly, given the generators of the Lorentz group tp we use the convention

[ta tr] = —far~ts,  mar = —tr(tatr). (A.5)

The spin connection (with torsion) is a one-form in the adjoint of the Lorentz group @, =
@MAtA which is embedded in the fundamental of G as well. For this sector we then find

R,ul, = 28@(:} ] — 2(,0[“ V] (AG)
RWAR[)UF/{AF = —tr( ) , (A.7)

- A~ 1 ~ A~ T~ o~ 2
a[MwVAwp}F/{AF + ngFEquwyrwa = —tr ((JJ[uaywp] — 3w[uw,,wp}> . (A8)

Note the different conventions used for the Killing metrics in the gauge (A.1) and
Lorentz (A.5) sectors.

A.2 Comments on the equations of motion

In this appendix we outline the procedure to obtain the equations of motion to O(a/),
i.e. (1.10)—(1.13). For further details we refer to [23]-[28] and references therein. Specifically
we only focus on the EOM for the two-form and the bein, since their derivation is subtle
due the fact that they are both implicitly contained in the torsionful spin connection.

We consider first the equation of motion for the two-form. Explicitly, the Lagrangian
does not depend on B,,,, but on its derivatives. Implicitly, it depends on first and second
derivatives of By, through the torsionful spin connection and its derivatives. Therefore,
the full variation of the action is

5BS—/dx

5L dwly)?

c
0% so\B,, + —F
5078, "B 5 )b 60\,

5L (60,0 50w 7
_ 5OABpy + — et 50:05 B,
50,03 ( 00BN 0:0\B,, © S TP

+

)

which can be rewritten, after integrating by parts, as
oL oL oL ()%
opS = /daz [ 8,\58/\pr53 v+ (5%&&)1) a"aanwlﬁa)b> dpw,a ] . (A.9)

It is straightforward to compute the expression multiplying 6 gw(~) in (A.9), that we denote
6 (- L, and the result is

w

/
0, L= %\/—gvp (6_2¢H”‘“’) wg)& + o/ =gV i) ( —20 R, “) . (A.10)
Using
(=) _ 5“’( & A ] b
— _ _p, V| C /
0BW,g 58/\pr dO\B,w 30, ea’ez" 800\ By + o), (A.11)
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replacing in (A.9) and integrating by parts, we get
opL = /=g Vx (e72PHM") 0By, — 30'0; (V;gvn(e—mmu[*)wﬂl (A.12)
4 /_g vl(j-,_) <6—¢RM[/\VP]> > 5pr + O(O/Q).

Here, the first term is what we denoted AB in (1.12) and the second one is proportional
to both AB and Ag defined in (1.11) (see for example (3.74)). This is a very useful and
well known result obtained in [23]. However, because of the complete antisymmetry in the
indices A, p, v, the dependence on Ag (which is symmetric) vanishes. One ends with

55 = /=g (AB” + o'O"[AB] + O(a)) 6By, (A.13)

where the linear differential operator is defined by
3
2y/~g

We then see from (A.13) that the EOM for the B-field takes the following schematic form

OP'[AB] =

8A(\/_—9ABH[AWIS—)pu]+\/jggu[AvL+)ABpV]) . (A.14)

(1 v o/@) AB = 0(a?). (A.15)
Remarkably, since the operator 1 + o O is invertible to O(d'), one ends with
AB,, = 0(a?) . (A.16)

Using this equation and implementing the same strategy for the EOM of the bein, one
finds an identical equation to (A.15) with a different operator

(1 + o/@) Ag = 0(a) . (A.17)

Again, the details of this operator are not important in this calculation, and the only thing
that matters is that to O(a’) the operator 14 o/O is invertible, so that one finally obtains

Ag, = 0(a?) . (A.18)

We then see that the EOM for the bein and two-form, properly computed from the
full variation of the action, are equivalent (to O(a’)) to the EOM that one would obtain by
only varying the action with respect to the explicit dependence of the fields, and treating
the torsionful spin connection as an independent field.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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