Some stability properties of T. Chan's preconditioner

Che-Man Cheng*, Xiao-Qing Jin ${ }^{1}$
Department of Mathematics, Faculty of Science \& Technology, University of Macau, Macao, China
Received 23 April 2004; accepted 9 September 2004

Submitted by E. Tyrtyshnikov

Abstract

A matrix is said to be stable if the real parts of all the eigenvalues are negative. In this paper, for any matrix A_{n}, we give some sufficient and necessary conditions for the stability of T. Chan's preconditioner $c_{U}\left(A_{n}\right)$. © 2004 Elsevier Inc. All rights reserved. AMS classification: 65F10; 65F15 Keywords: T. Chan's preconditioner; Stability

1. Introduction

In 1988, T. Chan [5] proposed a circulant preconditioner for solving Toeplitz systems. In 1991, R. Chan et al. [3] showed that T. Chan's preconditioner can be defined not only for Toeplitz matrices but also for general matrices. We begin with the general case. Given a unitary matrix $U \in \mathbb{C}^{n \times n}$, define

[^0]0024-3795/\$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2004.09.010

$$
\begin{equation*}
\mathscr{M}_{U} \equiv\left\{U^{*} \Lambda_{n} U \mid \Lambda_{n} \text { is any } n \text {-by- } n \text { diagonal matrix }\right\} \tag{1}
\end{equation*}
$$

For any matrix $A_{n} \in \mathbb{C}^{n \times n}$, T. Chan's preconditioner $c_{U}\left(A_{n}\right) \in \mathscr{M}_{U}$ satisfies

$$
\left\|c_{U}\left(A_{n}\right)-A_{n}\right\|=\min _{W_{n} \in M_{U}}\left\|W_{n}-A_{n}\right\|
$$

where $\|\cdot\|$ is the Frobenius norm. Let F denote the Fourier matrix whose entries are given by

$$
\begin{equation*}
(F)_{j, k}=\frac{1}{\sqrt{n}} \mathrm{e}^{2 \pi \mathrm{i}(j-1)(k-1) / n}, \quad \mathrm{i} \equiv \sqrt{-1}, \quad 1 \leqslant j, k \leqslant n \tag{2}
\end{equation*}
$$

If $U=F$ in (1), then \mathscr{M}_{U} is the set of all circulant matrices, see [6].
It has been proved that T. Chan's preconditioner is a good preconditioner for solving a large class of linear systems, see $[4,5,9]$. In this paper, we will study some stability properties of T. Chan's preconditioner. The stability property is essential in control theory and dynamical systems [1].

Definition 1. A matrix is said to be stable if the real parts of all the eigenvalues are negative.

Now, we introduce some symbols and review some results. For any matrix $E \in$ $\mathbb{C}^{n \times n}$, let $\lambda_{j}(E)$ be the j th eigenvalue of E and $\delta(E)$ denote the diagonal matrix whose diagonal is equal to the diagonal of E. For T. Chan's preconditioner, we have the following important lemma, see $[3,8,9,12]$.

Lemma 1. Let $A_{n} \in \mathbb{C}^{n \times n}, U \in \mathbb{C}^{n \times n}$ be unitary and $c_{U}\left(A_{n}\right)$ be T. Chan's preconditioner. Then
(i) $c_{U}\left(A_{n}\right)$ is uniquely determined by A_{n} and is given by

$$
c_{U}\left(A_{n}\right) \equiv U^{*} \delta\left(U A_{n} U^{*}\right) U
$$

(ii) If A_{n} is Hermitian, then $c_{U}\left(A_{n}\right)$ is also Hermitian. Moreover, we have

$$
\min _{j} \lambda_{j}\left(A_{n}\right) \leqslant \min _{j} \lambda_{j}\left(c_{U}\left(A_{n}\right)\right) \leqslant \max _{j} \lambda_{j}\left(c_{U}\left(A_{n}\right)\right) \leqslant \max _{j} \lambda_{j}\left(A_{n}\right)
$$

From Lemma 1(ii), it is easy to see that if A_{n} is Hermitian and stable, then so is $c_{U}\left(A_{n}\right)$. In [11], Jin et al. show that if A_{n} is normal and stable, then $c_{U}\left(A_{n}\right)$ is also normal and stable. The result is further generalized in [2] by Cai and Jin. They prove that if A_{n} is $*$-congruent to a stable diagonal matrix, i.e., $A_{n}=Q^{*} D Q$ where Q is a nonsingular matrix and D is a stable diagonal matrix, then $c_{U}\left(A_{n}\right)$ is stable.

Now, the problem we are facing is that for any given matrix A_{n}, how to judge its T. Chan's preconditioner $c_{U}\left(A_{n}\right)$ is stable? In this paper, we try to give some sufficient and necessary conditions for the stability of $c_{U}\left(A_{n}\right)$.

2. Main results

Let $A_{n} \in \mathbb{C}^{n \times n}$. A well-known fact [7] is that A_{n} can be decomposed as

$$
A_{n}=H+\mathrm{i} K
$$

where H and K are Hermitian matrices given by

$$
H \equiv \frac{1}{2}\left(A_{n}+A_{n}^{*}\right), \quad K \equiv \frac{1}{2 \mathrm{i}}\left(A_{n}-A_{n}^{*}\right)
$$

and are called the Hermitian part and skew-Hermitian part of A_{n}, respectively. We have the following main results.

Theorem 1. Let $A_{n} \in \mathbb{C}^{n \times n}$ and suppose that $A_{n}=H+\mathrm{i} K$ where H and K are Hermitian. Then T. Chan's preconditioner $c_{U}\left(A_{n}\right)$ is stable for any unitary matrix $U \in \mathbb{C}^{n \times n}$ if and only if H is negative definite.

Proof. For any unitary matrix U, we have by Lemma 1(i),

$$
c_{U}\left(A_{n}\right)=U^{*} \delta\left(U A_{n} U^{*}\right) U
$$

With $A_{n}=H+\mathrm{i} K$, we obtain

$$
\begin{aligned}
c_{U}\left(A_{n}\right) & =U^{*} \delta\left(U(H+\mathrm{i} K) U^{*}\right) U \\
& =U^{*} \delta\left(U H U^{*}+\mathrm{i} U K U^{*}\right) U \\
& =U^{*}\left[\delta\left(U H U^{*}\right)+\mathrm{i} \delta\left(U K U^{*}\right)\right] U .
\end{aligned}
$$

As $U H U^{*}$ and $U K U^{*}$ are Hermitian matrices, their diagonal elements are real. Thus, we see that the real parts of the eigenvalues of $c_{U}\left(A_{n}\right)$ are just the diagonal elements of $U H U^{*}$. Now if H is negative definite, then, for any unitary matrix U, $U H U^{*}$ has all the diagonal elements being negative and consequently $c_{U}\left(A_{n}\right)$ is stable.

Conversely, if H has a nonnegative eigenvalue, by choosing a unitary matrix V such that $V H V^{*}$ is diagonal, we see that $V H V^{*}$ has a nonnegative diagonal element and consequently, $c_{V}\left(A_{n}\right)$ is not stable.

Theorem 2. Let $A_{n} \in \mathbb{C}^{n \times n}$ and suppose that $A_{n}=H+\mathrm{i} K$ where H and K are Hermitian. Then there exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ such that $c_{U}\left(A_{n}\right)$ is stable if and only if

$$
\operatorname{tr}(H)=\operatorname{Re}\left[\operatorname{tr}\left(A_{n}\right)\right]<0,
$$

where $\operatorname{Re}[\cdot]$ denotes the real part of a complex number and $\operatorname{tr}(\cdot)$ denotes the trace of a matrix.

Proof. " \Rightarrow ": Suppose $c_{U}\left(A_{n}\right)$ is stable. Then we see from the proof of Theorem 1 that $U H U^{*}$ has all the diagonal elements being negative and so

$$
\operatorname{Re}\left[\operatorname{tr}\left(A_{n}\right)\right]=\operatorname{tr}(H)=\operatorname{tr}\left(U H U^{*}\right)<0
$$

" $\Leftarrow ":$ In view of the proof of Theorem 1, it suffices to show that there exists a unitary matrix V such that $V H V^{*}$ has all diagonal entries being negative, as these diagonal entries are the real parts of the eigenvalues of $c_{V}\left(A_{n}\right)$.

Note that if

$$
D=\operatorname{diag}\left(\mu_{1}, \cdots, \mu_{n}\right)
$$

is a diagonal matrix and U is any unitary matrix, then the diagonal of $U D U^{*}$, say

$$
\left[d_{11}, d_{22}, \cdots, d_{n n}\right]^{\mathrm{T}}
$$

is given by

$$
\left[\begin{array}{c}
d_{11} \\
\vdots \\
d_{n n}
\end{array}\right]=(U \circ \bar{U})\left[\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{n}
\end{array}\right],
$$

where "o" denotes the Hadamard product. We remark that for $P=\left[p_{i j}\right] \in \mathbb{C}^{m \times n}$, $Q=\left[q_{i j}\right] \in \mathbb{C}^{m \times n}$, their Hadamard product is given by

$$
P \circ Q=\left[p_{i j} q_{i j}\right] \in \mathbb{C}^{m \times n} .
$$

As H is Hermitian, let W be a unitary matrix that diagonalizes H, i.e.,

$$
W H W^{*}=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right) .
$$

Let $V=F W$ where F is the Fourier matrix given by (2), and let

$$
\left[h_{11}, h_{22}, \cdots, h_{n n}\right]^{\mathrm{T}}
$$

be the diagonal of $V H V^{*}$. Then

$$
\begin{aligned}
{\left[\begin{array}{c}
h_{11} \\
\vdots \\
h_{n n}
\end{array}\right] } & =(F \circ \bar{F})\left[\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{n}
\end{array}\right]=\frac{1}{n}\left[\begin{array}{ccc}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{n}
\end{array}\right] \\
& =\frac{\sum_{j=1}^{n} \lambda_{j}}{n} \mathbf{1}_{n}=\frac{\operatorname{tr}(H)}{n} \mathbf{1}_{n},
\end{aligned}
$$

where $\mathbf{1}_{n}=[1,1, \ldots, 1]^{\mathrm{T}}$. As $\operatorname{tr}(H)<0$, we see that

$$
c_{V}\left(A_{n}\right)=V^{*}\left[\delta\left(V H V^{*}\right)+\mathrm{i} \delta\left(V K V^{*}\right)\right] V
$$

is stable.
We include here an application of Theorem 1. The details can be found in [2]. When solving by a boundary value method scheme the initial value problem associated to a system of first order linear differential equations

$$
\mathbf{y}^{\prime}(t)=J \mathbf{y}(t)+\mathbf{g}(t)
$$

one needs to solve a linear system $M y=b$. A preconditioner S for the system $M y=b$ is defined in term of $c_{F}(J)$. This preconditioner S is invertible when $c_{F}(J)$ is stable. In [2], J is assumed to be $*$-congruent to a stable normal matrix to assure the stability of $c_{F}(J)$. Here, by Theorem 1 , one obtains the stability of $c_{F}(J)$ by assuming negative the eigenvalues of the Hermitian part of J, which is a simplier condition. For the asymptotically stable solution of some system of functional differential equations [10], it is known that the Hermitian part of the system has negative eigenvalues and consequently we may use the preconditioner S to speed up the computation.

References

[1] R. Bellman, Introduction to Matrix Analysis, SIAM Press, Philadelphia, 1995.
[2] M. Cai, X. Jin, A note on T. Chan's preconditioner, Linear Algebra Appl. 376 (2004) 283-290.
[3] R. Chan, X. Jin, M. Yeung, The circulant operator in the banach algebra of matrices, Linear Algebra Appl. 149 (1991) 41-53.
[4] R. Chan, M. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev. 38 (1996) 427-482.
[5] T. Chan, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Statist. Comput. 9 (1988) 766-771.
[6] P. Davis, Circulant Matrices, second ed., Chelsea Publishing, New York, 1994.
[7] R. Horn, C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
[8] T. Huckle, Circulant and skew circulant matrices for solving Toeplitz matrix problems, SIAM J. Matrix Anal. Appl. 13 (1992) 767-777.
[9] X. Jin, Developments and Applications of Block Toeplitz Iterative Solvers, Kluwer Academic Publishers and Science Press, Dordrecht and Beijing, 2002.
[10] X. Jin, S. Lei, Y. Wei, Circulant preconditioners for solving differential equations with multi-delays, Comput. Math. Appl. 47 (2004) 1429-1436.
[11] X. Jin, Y. Wei, W. Xu, A stability property of T. Chan's preconditioner, SIAM J. Matrix Anal. Appl. 25 (2003) 627-629.
[12] E. Tyrtyshnikov, Optimal and super-optimal circulant preconditioners, SIAM J. Matrix Anal. Appl. 13 (1992) 459-473.

[^0]: * Corresponding author.

 E-mail addresses: fstcmc@umac.mo (C.-M. Cheng), xqjin@umac.mo (X.-Q. Jin).
 ${ }^{1}$ The research of this author is supported by the research grant No. RG064/03-04S/JXQ/FST from the University of Macau.

