

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 395 (2005) 361-365

www.elsevier.com/locate/laa

Some stability properties of T. Chan's preconditioner

Che-Man Cheng*, Xiao-Qing Jin¹

Department of Mathematics, Faculty of Science & Technology, University of Macau, Macao, China Received 23 April 2004; accepted 9 September 2004

Submitted by E. Tyrtyshnikov

Abstract

A matrix is said to be stable if the real parts of all the eigenvalues are negative. In this paper, for any matrix A_n , we give some sufficient and necessary conditions for the stability of T. Chan's preconditioner $c_U(A_n)$.

© 2004 Elsevier Inc. All rights reserved.

AMS classification: 65F10; 65F15

Keywords: T. Chan's preconditioner; Stability

1. Introduction

In 1988, T. Chan [5] proposed a circulant preconditioner for solving Toeplitz systems. In 1991, R. Chan et al. [3] showed that T. Chan's preconditioner can be defined not only for Toeplitz matrices but also for general matrices. We begin with the general case. Given a unitary matrix $U \in \mathbb{C}^{n \times n}$, define

^{*} Corresponding author.

E-mail addresses: fstcmc@umac.mo (C.-M. Cheng), xqjin@umac.mo (X.-Q. Jin).

 $^{^1}$ The research of this author is supported by the research grant No. RG064/03-04S/JXQ/FST from the University of Macau.

362 C.-M. Cheng, X.-Q. Jin / Linear Algebra and its Applications 395 (2005) 361–365

$$\mathcal{M}_U \equiv \{ U^* \Lambda_n U \mid \Lambda_n \text{ is any } n\text{-by-}n \text{ diagonal matrix } \}.$$
(1)

For any matrix $A_n \in \mathbb{C}^{n \times n}$, T. Chan's preconditioner $c_U(A_n) \in \mathcal{M}_U$ satisfies

$$||c_U(A_n) - A_n|| = \min_{W_n \in \mathscr{M}_U} ||W_n - A_n||,$$

where $\|\cdot\|$ is the Frobenius norm. Let *F* denote the Fourier matrix whose entries are given by

$$(F)_{j,k} = \frac{1}{\sqrt{n}} e^{2\pi i (j-1)(k-1)/n}, \quad i \equiv \sqrt{-1}, \quad 1 \le j, k \le n.$$
 (2)

If U = F in (1), then \mathcal{M}_U is the set of all circulant matrices, see [6].

It has been proved that T. Chan's preconditioner is a good preconditioner for solving a large class of linear systems, see [4,5,9]. In this paper, we will study some stability properties of T. Chan's preconditioner. The stability property is essential in control theory and dynamical systems [1].

Definition 1. A matrix is said to be stable if the real parts of all the eigenvalues are negative.

Now, we introduce some symbols and review some results. For any matrix $E \in \mathbb{C}^{n \times n}$, let $\lambda_j(E)$ be the *j*th eigenvalue of *E* and $\delta(E)$ denote the diagonal matrix whose diagonal is equal to the diagonal of *E*. For T. Chan's preconditioner, we have the following important lemma, see [3,8,9,12].

Lemma 1. Let $A_n \in \mathbb{C}^{n \times n}$, $U \in \mathbb{C}^{n \times n}$ be unitary and $c_U(A_n)$ be T. Chan's preconditioner. Then

(i) $c_U(A_n)$ is uniquely determined by A_n and is given by

 $c_U(A_n) \equiv U^* \delta(UA_n U^*) U.$

(ii) If A_n is Hermitian, then $c_U(A_n)$ is also Hermitian. Moreover, we have

$$\min_{j} \lambda_{j}(A_{n}) \leqslant \min_{j} \lambda_{j}(c_{U}(A_{n})) \leqslant \max_{j} \lambda_{j}(c_{U}(A_{n})) \leqslant \max_{j} \lambda_{j}(A_{n}).$$

From Lemma 1(ii), it is easy to see that if A_n is Hermitian and stable, then so is $c_U(A_n)$. In [11], Jin et al. show that if A_n is normal and stable, then $c_U(A_n)$ is also normal and stable. The result is further generalized in [2] by Cai and Jin. They prove that if A_n is *-congruent to a stable diagonal matrix, i.e., $A_n = Q^*DQ$ where Q is a nonsingular matrix and D is a stable diagonal matrix, then $c_U(A_n)$ is stable.

Now, the problem we are facing is that for any given matrix A_n , how to judge its T. Chan's preconditioner $c_U(A_n)$ is stable? In this paper, we try to give some sufficient and necessary conditions for the stability of $c_U(A_n)$.

C.-M. Cheng, X.-Q. Jin / Linear Algebra and its Applications 395 (2005) 361–365

2. Main results

Let $A_n \in \mathbb{C}^{n \times n}$. A well-known fact [7] is that A_n can be decomposed as

$$A_n = H + \mathrm{i}K,$$

where H and K are Hermitian matrices given by

$$H \equiv \frac{1}{2}(A_n + A_n^*), \quad K \equiv \frac{1}{2i}(A_n - A_n^*)$$

and are called the Hermitian part and skew-Hermitian part of A_n , respectively. We have the following main results.

Theorem 1. Let $A_n \in \mathbb{C}^{n \times n}$ and suppose that $A_n = H + iK$ where H and K are Hermitian. Then T. Chan's preconditioner $c_U(A_n)$ is stable for any unitary matrix $U \in \mathbb{C}^{n \times n}$ if and only if H is negative definite.

Proof. For any unitary matrix U, we have by Lemma 1(i),

 $c_U(A_n) = U^* \delta(UA_n U^*) U.$

With $A_n = H + iK$, we obtain

$$c_U(A_n) = U^* \delta(U(H + iK)U^*)U$$

= $U^* \delta(UHU^* + iUKU^*)U$
= $U^*[\delta(UHU^*) + i\delta(UKU^*)]U$.

As UHU^* and UKU^* are Hermitian matrices, their diagonal elements are real. Thus, we see that the real parts of the eigenvalues of $c_U(A_n)$ are just the diagonal elements of UHU^* . Now if H is negative definite, then, for any unitary matrix U, UHU^* has all the diagonal elements being negative and consequently $c_U(A_n)$ is stable.

Conversely, if *H* has a nonnegative eigenvalue, by choosing a unitary matrix *V* such that VHV^* is diagonal, we see that VHV^* has a nonnegative diagonal element and consequently, $c_V(A_n)$ is not stable. \Box

Theorem 2. Let $A_n \in \mathbb{C}^{n \times n}$ and suppose that $A_n = H + iK$ where H and K are Hermitian. Then there exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ such that $c_U(A_n)$ is stable if and only if

 $\operatorname{tr}(H) = \operatorname{Re}[\operatorname{tr}(A_n)] < 0,$

where $\operatorname{Re}[\cdot]$ denotes the real part of a complex number and $\operatorname{tr}(\cdot)$ denotes the trace of a matrix.

Proof. " \Rightarrow ": Suppose $c_U(A_n)$ is stable. Then we see from the proof of Theorem 1 that UHU^* has all the diagonal elements being negative and so

363

C.-M. Cheng, X.-Q. Jin / Linear Algebra and its Applications 395 (2005) 361–365

$$\operatorname{Re}[\operatorname{tr}(A_n)] = \operatorname{tr}(H) = \operatorname{tr}(UHU^*) < 0.$$

" \Leftarrow ": In view of the proof of Theorem 1, it suffices to show that there exists a unitary matrix V such that VHV^* has all diagonal entries being negative, as these diagonal entries are the real parts of the eigenvalues of $c_V(A_n)$.

Note that if

$$D = \operatorname{diag}(\mu_1, \cdots, \mu_n)$$

is a diagonal matrix and U is any unitary matrix, then the diagonal of UDU^* , say

 $[d_{11}, d_{22}, \cdots, d_{nn}]^{\mathrm{T}},$

is given by

$$\begin{bmatrix} d_{11} \\ \vdots \\ d_{nn} \end{bmatrix} = (U \circ \overline{U}) \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_n \end{bmatrix},$$

where "o" denotes the Hadamard product. We remark that for $P = [p_{ij}] \in \mathbb{C}^{m \times n}$, $Q = [q_{ij}] \in \mathbb{C}^{m \times n}$, their Hadamard product is given by

 $P \circ Q = [p_{ij}q_{ij}] \in \mathbb{C}^{m \times n}.$

As H is Hermitian, let W be a unitary matrix that diagonalizes H, i.e.,

 $WHW^* = \operatorname{diag}(\lambda_1, \cdots, \lambda_n).$

Let V = FW where F is the Fourier matrix given by (2), and let

$$[h_{11}, h_{22}, \cdots, h_{nn}]^{\mathrm{T}}$$

be the diagonal of VHV^* . Then

$$\begin{bmatrix} h_{11} \\ \vdots \\ h_{nn} \end{bmatrix} = (F \circ \overline{F}) \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix} = \frac{1}{n} \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix}$$
$$= \frac{\sum_{j=1}^n \lambda_j}{n} \mathbf{1}_n = \frac{\operatorname{tr}(H)}{n} \mathbf{1}_n,$$

where $\mathbf{1}_{n} = [1, 1, ..., 1]^{T}$. As tr(*H*) < 0, we see that

$$c_V(A_n) = V^*[\delta(VHV^*) + i\delta(VKV^*)]V$$

is stable. \Box

We include here an application of Theorem 1. The details can be found in [2]. When solving by a boundary value method scheme the initial value problem associated to a system of first order linear differential equations

$$\mathbf{y}'(t) = J\mathbf{y}(t) + \mathbf{g}(t),$$

364

C.-M. Cheng, X.-Q. Jin / Linear Algebra and its Applications 395 (2005) 361–365 365

one needs to solve a linear system My = b. A preconditioner *S* for the system My = b is defined in term of $c_F(J)$. This preconditioner *S* is invertible when $c_F(J)$ is stable. In [2], *J* is assumed to be *-congruent to a stable normal matrix to assure the stability of $c_F(J)$. Here, by Theorem 1, one obtains the stability of $c_F(J)$ by assuming negative the eigenvalues of the Hermitian part of *J*, which is a simplier condition. For the asymptotically stable solution of some system of functional differential equations [10], it is known that the Hermitian part of the system has negative eigenvalues and consequently we may use the preconditioner *S* to speed up the computation.

References

- [1] R. Bellman, Introduction to Matrix Analysis, SIAM Press, Philadelphia, 1995.
- [2] M. Cai, X. Jin, A note on T. Chan's preconditioner, Linear Algebra Appl. 376 (2004) 283–290.
- [3] R. Chan, X. Jin, M. Yeung, The circulant operator in the banach algebra of matrices, Linear Algebra Appl. 149 (1991) 41–53.
- [4] R. Chan, M. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev. 38 (1996) 427-482.
- [5] T. Chan, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Statist. Comput. 9 (1988) 766–771.
- [6] P. Davis, Circulant Matrices, second ed., Chelsea Publishing, New York, 1994.
- [7] R. Horn, C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
- [8] T. Huckle, Circulant and skew circulant matrices for solving Toeplitz matrix problems, SIAM J. Matrix Anal. Appl. 13 (1992) 767–777.
- [9] X. Jin, Developments and Applications of Block Toeplitz Iterative Solvers, Kluwer Academic Publishers and Science Press, Dordrecht and Beijing, 2002.
- [10] X. Jin, S. Lei, Y. Wei, Circulant preconditioners for solving differential equations with multi-delays, Comput. Math. Appl. 47 (2004) 1429–1436.
- [11] X. Jin, Y. Wei, W. Xu, A stability property of T. Chan's preconditioner, SIAM J. Matrix Anal. Appl. 25 (2003) 627–629.
- [12] E. Tyrtyshnikov, Optimal and super-optimal circulant preconditioners, SIAM J. Matrix Anal. Appl. 13 (1992) 459–473.