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Abstract
In this paper, we prove the existence of a new periodic solution for N + 2-body
problems with N + 1 fixed centers and strong-force potentials. In this model, N
particles with equal masses are fixed at the vertices of a regular N-gon and the
(N + 1)th particle is fixed at the center of the N-gon, the (N + 2)th particle winding
around N particles.
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1 Introduction andmain results
In the eighteenth century, the -fixed center problem was studied by Euler [–]. Here,
let us consider the N + -fixed center problem: We assume N particles q,q, . . . ,qN with
equal masses  are fixed at the vertices e

√
– πN j = (cos π j

N , sin π j
N ) (j = , . . . ,N ) of a regular

polygon and the (N+)th particle qN+ is fixed at the origin (, ), the (N+)th particlewith
mass mN+ is attracted by the other particles, and moves according to Newton’s second
law and a more general power law than the Newton’s universal gravitational square law.
In this system, the position q(t) for the (N + )th particle satisfies the following equation:

mN+q̈(t) =
N+∑
i=

mimN+(q(t) – qi)
|q(t) – qi|α+ . (.)

Equivalently,

q̈(t) =
N∑
i=

(q(t) – qi)
|q(t) – qi|α+ +

mN+(q(t) – qN+)
|q(t) – qN+|α+ , (.)

q̈(t) =
∂U(q)

∂q
, (.)

where

α >  and U(q) =
N∑
i=


|q(t) – qi|α +

mN+

|q(t) – qN+|α .

The type of system (.) is called a singular Hamiltonian system which attracts many re-
searchers (see [–] and [–]).
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Specially, Gordon [] proved the Keplerian elliptical orbits are the minimizers of
Lagrangian action defined on the space for non-zero winding numbers.
In this paper, we use a variational minimizing method to look for a periodic solution for

the (N + )th particle which winds around the qi (i = , . . . ,N + ).

Definition . [] Let C : x(t) : [a,b] → R be a given oriented closed curve, and p /∈ C.
Define ϕ : C → S:

ϕ(t) =
x(t) – p
|x(t) – p| .

When some point on C goes around the curve once, its image point ϕ(x(t)) will go around
S a number of times. This number is defined as thewinding number of the curveC relative
to the point p and is denoted by deg(x(t) – p).

Let

f (q) =
∫ 



[


∣∣q̇(t)∣∣ +U(q)

]
dt, (.)

q ∈ � =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q ∈W ,(R/Z,R), q(t) �= qi, for i = , . . . ,N + ,

q(t + k
N ) =

(
cos( kπN ) – sin( kπN )

sin( kπN ) cos( kπN )

)
q(t),

deg(q(t) – qi) = , for i = , . . . ,N , deg(q(t) – qN+) = –

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (.)

q ∈ � =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q ∈W ,(R/Z,R), q(t) �= qi, for i = , . . . ,N + ,

q(t + k
N ) =

(
cos( kπN ) – sin( kπN )

sin( kπN ) cos( kπN )

)
q(t),

deg(q(t) – qi) = , for i = , . . . ,N , deg(q(t) – qN+) = 

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (.)

q ∈ � =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q ∈W ,(R/Z,R), q(t) �= qi, for i = , . . . ,N + ,

q(t + k
N ) =

(
cos( kπN ) – sin( kπN )

sin( kπN ) cos( kπN )

)
q(t),

deg(q(t) – qi) = , for i = , . . . ,N , deg(q(t) – qN+) = 

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (.)

q ∈ � =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q ∈W ,(R/Z,R), q(t) �= qi, for i = , . . . ,N + ,

q(t + k
N ) =

(
cos( kπN ) – sin( kπN )

sin( kπN ) cos( kπN )

)
q(t),

deg(q(t) – qi) = , for i = , . . . ,N , deg(q(t) – qN+) =N – 

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (.)

We have the following theorem.

Theorem . For α ≥ , the minimizer of f (q) on �i (i = , , , ) exists and it is a non-
collision periodic solution of (.) or (.)-(.) (please see Figures - for N = ).

2 The proof of Theorem 1.1
We recall the following famous lemmas, which we need to prove Theorem ..

Lemma . [] If x ∈ W ,(R/Z,R), α ≥ , a > , and there exists t ∈ [, ] such that
x(t) = , then

∫ 
 [


 |ẋ(t)| + a

|x(t)|α ]dt = +∞.
If xn ⇀ x in W ,(R/Z,R) and ∃t, s.t. x(t) = , α ≥ , then

∫ 



|xn(t)|α dt → +∞.
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Figure 1 q ∈ �1.

Figure 2 q ∈ �2.

Figure 3 q ∈ �3.

Lemma . (Palais’s symmetry principle []) Let σ be an orthogonal representation of a
finite or compact group G on a real Hilbert space H , and let f : H → R be such that for
∀σ ∈ G, f (σ · x) = f (x). Set HG = {x ∈ H : σ · x = x,∀σ ∈ G}. Then the critical point of f in
HG is also a critical point of f in H .

Lemma . [] If X is a reflexive Banach space, M is a weakly closed subset of X, and
f :M → R ∪ {+∞}, f �≡ +∞ is weakly lower semi-continuous and coercive, then f attains
its infimum on M.
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Figure 4 q ∈ �4.

Lemma . (Poincare-Wirtinger inequality) Let q ∈ W ,(R/ZT,Rd) and
∫ T
 q(t)dt = ,

then
∫ T
 |q̇(t)| dt ≥ ( πT )

∫ T
 q(t) dt. And the inequality takes the equality if and only if

q(t) = α cos π
T t + β sin π

T t, α,β ∈ Rd .

We now prove Theorem ..

Proof By the symmetry of �i, we know for ∀x ∈ �i,∫ T


q(t)dt = . (.)

If qn(t) ⇀ q(t) in�i, then by Sobolev’s compact embedding theorem, we have qn(t) → q(t)
in C[, ].

(i) If q(t) ∈ �i, then limn→+∞
∫ 
 U(qn(t))dt =

∫ 
 U(qn(t))dt. Since

∫ 
 qn dt = ,



∫ 
 |q̇n| dt can be regarded as the square of an equivalent norm forW ,, so it is

weakly lower semi-continuous, so limf (qn(t))≥ f (q).
(ii) If q(t) ∈ ∂�i, then by Lemma ., f (q) = +∞, we have

∫ 
 U(qn(t))dt → +∞. So,

limn→+∞f (qn) = +∞ ≥ f (q). Hence f is w.l.s.c.
Using (.), we know that f (q) is coercive on �i. Lemma . guarantees that f (q) attains

its infimum on �i. Let the minimizer be q̃, then

f (̃q) = inf
q∈�i

f (q) < +∞. (.)

If q̃ is a collision periodic solution, then there exist t ∈ [, ] and j ∈ {, , . . . ,N ,N + }
such that q̃(t) = qj. Let x(t) = q̃(t) – qj and note x(t) = . By Lemma ., we have

f (̃q) =
∫ 



[


∣∣ ˙̃q(t)∣∣ + mj

|̃q(t) – qj|α +
N+∑
i�=j

mi

|̃q(t) – qi|α
]
dt

≥
∫ 



[


∣∣ẋ(t)∣∣ + mj

|x(t)|α
]
dt = +∞, (.)

which contradicts the inequality in (.). By Lemma ., q̃(t) is the critical point of f in
W ,(R/Z,R); therefore, q̃(t) is a non-collision periodic solution.
This completes the proof of Theorem .. �
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