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Abstract

We study the integration of functions with respect to an unknown density. Information is available as
oracle calls to the integrand and to the non-normalized density function. We are interested in analyzing the
integration error of optimal algorithms (or the complexity of the problem) with emphasis on the variability
of the weight function. For a corresponding large class of problem instances we show that the complexity
grows linearly in the variability, and the simple Monte Carlo method provides an almost optimal algorithm.
Under additional geometric restrictions (mainly log-concavity) for the density functions, we establish that a
suitable adaptive local Metropolis algorithm is almost optimal and outperforms any non-adaptive algorithm.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction, problem description

In many applications one wants to compute an integral of the form∫
�

f (x) · c�(x)�(dx) (1)

with a density c�(x), x ∈ �, where c > 0 is unknown and � is a probability measure. Of
course we have 1/c = ∫

� �(x)�(dx), but the numerical computation of the latter integral is often
as hard as the original problem (1). Therefore it is desirable to have algorithms which are able
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to approximately compute (1) without knowing the normalizing constant, based solely on n
function values of f and �. In other terms, these functions are given by an oracle, i.e., we assume
that we can compute function values of f and �.

Solution operator. Assume that we are given any class F(�) of input data (f, �) defined on a
set �. We can rewrite the integral in (1) as

S(f, �) =
∫

f (x) · �(x)�(dx)∫
�(x)�(dx)

(f, �) ∈ F(�). (2)

This solution operator is linear in f but not in �. We discuss algorithms for the (approximate)
computation of S(f, �).

Remark 1. This solution operator is closely related to systems in statistical mechanics, which
obey a Boltzmann (or Maxwell or Gibbs) distribution, i.e., when there is a countable number
j = 1, 2, . . . of microstates with energies, say Ej , and the overall system is distributed according
to the Boltzmann distribution, with inverse temperature �, as

P�(j) := e−�Ej

Z�
, j = 1, 2, . . . .

In this case the normalizing constant Z� is the partition function, corresponding to 1/c from (1)

and ��(j) = e−�Ej for j ∈ N.
In this setup, if A is any global thermodynamic quantity, then its expected value 〈A〉� is given

by

〈A〉� := 1

Z�

∑
j

Aj e
−�Ej ,

which can be written as S(A, ��). Observe, however, that we use here slightly different assump-
tions since we use the counting measure on N, not a probability measure.

Randomized methods. Monte Carlo methods (randomized methods) are important numerical
tools for integration and simulation in science and engineering, we refer to the recent special issue
[7]. The Metropolis method, or more accurately, the class of Metropolis–Hastings algorithms
ranges among the most important methods in numerical analysis and scientific computation, see
[6,23].

Here we consider randomized methods Sn that use n function evaluations of f and �. Hence Sn

is of the form as exhibited in Fig. 1.
In all steps, random number generators may be used to determine the consecutive node. If the

nodes xi from Step do not depend on previously computed values of f (x1), . . . , f (xi−1) and
�(x1), . . . , �(xi−1), then the algorithm is called non-adaptive, otherwise it is called adaptive.
Specifically we analyze the procedures S

simple
n and Smh

n , introduced in (3) and (5) below.

Remark 2. The notion of adaption which is used here differs from the one recently used to
introduce adaptive MCMC, see e.g. [1,3]. The Metropolis algorithm which is used in this paper
is based on a homogeneous Markov chain, in our notation this is still an adaptive algorithm since
the used nodes xi depend on �. Hence we use the concept of adaptivity from numerical analysis
and information-based complexity, see [22].
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Fig. 1. Generic Monte Carlo algorithm based on n values of f and �. The final Compute may use any mapping
�n : R2n → R.

For details on the model of computation we refer to [20,21,27]. Here we only mention the
following: We use the real number model and assume that f and � are given by an oracle for
function values. Our lower bounds hold under very general assumptions concerning the available
random number generator. 1

For the upper bounds we only study two algorithms in this paper, described in (3) and (5), below.
Specifically we shall deal with the (non-adaptive) simple Monte Carlo method and a specific
(adaptive) Metropolis–Hastings method. The former can only be applied if a random number
generator for � on � is available. Thus there are natural situations when this method cannot be
used. The latter will be based on a suitable ball walk. Hence we need a random number generator
for the uniform distribution on a (Euclidean) ball. Thus the Metropolis–Hastings methods can
also be applied when a random number generator for � on � is not available. Instead, we need a
“membership oracle” for �: On input x ∈ Rd this oracle can decide with cost 1 whether x ∈ �
or not.

Error criterion. We are interested in error bounds uniformly for classes F(�) of input data. If
Sn is any method that uses (at most) n values of f and � then the (individual) error for the problem
instance (f, �) ∈ F(�) is given by

e(Sn, (f, �)) =
(

E |S(f, �) − Sn(f, �)|2
)1/2

,

where E means the expectation. The overall (or worst case) error on the class F(�) is

e(Sn, F(�)) = sup
(f,�)∈F(�)

e(Sn, (f, �)).

The complexity of the problem is given by the error of the best algorithm, hence we let

en(F(�)) := inf
Sn

e(Sn, F(�)).

The classes F(�) under consideration will always contain constant densities � = c > 0 and all f
with ‖f ‖∞ �1, hence

F1(�) := {(f, �), |f (x)| �1, x ∈ �, and � = c} ⊂ F(�).

1 Observe, however, that we cannot use a random number generator for the “target distribution’’ �� = � ·�/‖�‖1, since
� is part of the input.
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On this class the problem (2) reduces to the classical integration problem for uniformly bounded
functions, and it is well known that the error of any Monte Carlo method can decrease at a rate
n−1/2, at most. Precisely, it holds true that

en(F1(�)) = 1

1 + √
n
,

if the probability � is non-atomic, see [17]. On the other hand we will only consider (f, �) with
S(f, �) ∈ [−1, 1], hence the trivial algorithm S0 = 0 always has error 1.

For the classes FC(�) and F�(�), which will be introduced in Section 2, we easily obtain the
optimal order en(F(�)) � n−1/2. We will analyze how en(F(�)) depends on the parameters C
and �, in case F(�) := FC(�) or F(�) := F�(�), respectively.

We discuss some of our subsequent results and provide a short outline. In Section 2 we shall
specify the methods and classes of input data to be analyzed. The classes FC(�), analyzed first
in Section 3, contain all densities � with sup �/ inf ��C. In typical applications we may face
C = 1020. Then we cannot decrease the error of optimal methods from 1 to 0.7 even with sample
size n = 1015, see Theorem 1 for more details. Hence the classes FC(�) are so large that no
algorithm, deterministic or Monte Carlo, adaptive or non-adaptive, can provide an acceptable
error. We also prove that the simple (non-adaptive) Monte Carlo method is almost optimal, no
sophisticated Markov chain Monte Carlo method can help.

Thus we face the question whether adaptive algorithms, such as the Metropolis algorithm,
help significantly on “suitable and interesting” subclasses of FC(�). We give a positive an-
swer for the classes F�(�), analyzed in Section 4. Here we assume that � ⊂ Rd is a con-
vex body, and that � is the normalized Lebesgue measure �� on �. The class F�(�) contains
log-concave densities, where � is the Lipschitz constant of log �. We shall establish in Sec-
tion 4.1 that all non-adaptive methods (such as the simple Monte Carlo method) suffer from
the curse of dimension, i.e., we get similar lower bounds as for the classes FC(�). How-
ever, in Section 4.2 we shall design and analyze specific (adaptive) Metropolis algorithms that
are based on some underlying ball walks, tuned to the class parameters. Using such algo-
rithms we can break the curse of dimension by adaption. The main error estimate for this al-
gorithm is given in Theorem 5, and we conclude this study with further discussion in the final
Section 5.

2. Specific methods and classes of input

We consider the approximate computation of S(f, �) for large classes of input data. Since with
deterministic algorithms one cannot improve the trivial zero algorithm (with error 1), we study
randomized or Monte Carlo algorithms.

The methods. The Monte Carlo methods under consideration fit the schematic view from
Fig. 1.

Simple Monte Carlo. Here the random numbers �1, . . . ,�n are identically and independently
distributed according to �, and the routine Step chooses Xi := �i . The final routine Compute is
the quotient of the sample means of the computed function values

S
simple
n (f, �) :=

∑n
j=1 f (Xj )�(Xj )∑n

j=1 �(Xj )
. (3)
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Metropolis–Hastings method. This describes a class of (adaptive) Monte Carlo methods which
are based on the ingenious idea to construct in Step a Markov chain having

�� := � · �∫
�(x)�(dx)

(4)

as invariant distribution without knowing the normalization. Thus, if (X1, X2, . . . , Xn) is a tra-
jectory of such a Markov chain, then we let Compute be given as

Smh
n (f, �) := 1

n

n∑
j=1

f (Xj ). (5)

Hence we use n steps of the Markov chain, the number of needed (different) function values of �
and f might be smaller. We will further specify the Metropolis–Hastings algorithm for the problem
at hand in Section 4.2, see Figs. 2 and 3 for a schematic presentation and Theorem 5 for the choice
of �. Both Monte Carlo methods construct Markov chains, i.e., the point xi depends on xi−1 and
�(xi−1), only. This trivially holds true for simple Monte Carlo, since xi does not at all depend on
earlier computed function values.

Remark 3. Comparisons of different Monte Carlo methods for problems similar to (2) are fre-
quently met in the literature. We mention [5] with a comparison of Metropolis algorithms and
importance sampling, where an error expansion at any instance (f, �) is given in terms of certain
auto-correlations. The simple Monte Carlo method, as introduced below, is also studied there as
�̃I for � = 1.

The (point-wise almost sure) convergence of both methods S
simple
n and Smh

n , as n → ∞, is
ensured by corresponding ergodic theorems, see [14]. But, as outlined above, we are interested
in the uniform error on relatively large problem classes.

The classes. Here we formally describe the classes of input under consideration.
The class FC(�). Let � be an arbitrary probability measure on a set � and consider the set

FC(�) =
{
(f, �)|‖f ‖∞ �1, � > 0,

�(x)

�(y)
�C, x, y ∈ �

}
.

Note that necessarily C�1. If C = 1 then � is constant and we almost face the ordinary integration
problem, since � can be recovered with only one function value.

In many applications the constant C is huge and we will establish that the complexity of the
problem (the cost of an optimal algorithm) is linear in C. Therefore, for large C, the class is too
large. We have to look for smaller classes that contain many interesting pairs (f, �) and have
smaller complexity.

The class F�(�) with log-concave densities. In many applications, we have a weight � with
additional properties and we assume the following:

• The set � ⊂ Rd is a convex body, that is a compact and convex set with non-empty interior.
The probability � = �� is the normalized Lebesgue measure on the set �.

• The functions f and � are defined on �.
• The weight � > 0 is log-concave, i.e.,

�(	x + (1 − 	)y)��(x)	 · �(y)1−	,

where x, y ∈ � and 0 < 	 < 1.
• The logarithm of � is Lipschitz, i.e., | log �(x) − log �(y)|��‖x − y‖2.
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Thus we consider the class of log-concave weights on � ⊂ Rd given by

R�(�) = {�|� > 0, log � is concave, | log �(x) − log �(y)|��‖x − y‖2}. (6)

We study the following class F�(�) of problem elements,

F�(�) = {
(f, �)|� ∈ R�(�), ‖f ‖2,� �1

}
, (7)

where ‖ · ‖2,� is the L2-norm with respect to the probability measure ��, see (4). In some places

we restrict our study to the (Euclidean) unit ball, i.e., � := Bd ⊂ Rd .

Remark 4. Let RC(�) be the class of weight functions that belong to FC(�). Then R�(�) ⊂
RC(�) if C = e�D , where D is the diameter of �. Thus large � correspond to “exponentially large”
values of C. However, the densities from the class R�(�) have some extra (local) properties: they
are log-concave and Lipschitz continuous. These properties can be used for the construction of
fast adaptive methods, via rapidly mixing Markov chains.

3. Analysis for FC(�)

We assume that � is an arbitrary set and � is a probability measure on �, and that the functions
f and � are defined on �.

In the applications, the constant C might be very large, something like C = 1020 is a realistic
assumption. Therefore we want to know how the complexity (the cost of optimal algorithms)
depends on C. Observe that the problem is correctly normalized or scaled such that S(FC(�)) =
[−1, 1], for any C�1. We will prove that the complexity of the problem is linear in C, and hence
there is no way to solve the problem if C is really huge. We start with establishing a lower bound
and then show that simple Monte Carlo achieves this error up to a constant.

3.1. Lower bounds

Here we prove lower bounds for all (adaptive or non-adaptive) methods that use n evaluations
of f and �. We use the technique of Bahvalov, i.e., we study the average error of deterministic
algorithms with respect to certain discrete measures on FC(�).

Theorem 1. Assume that we can partition � into 2n disjoint sets with equal measure (equal to
1/2n). Then for any Monte Carlo method Sn that uses n values of f and � we have the lower bound

e(Sn, FC(�))� 1

6

√
2

⎧⎪⎨⎪⎩
√

C

2n
, 2n�C − 1,

3C

C + 2n − 1
, 2n < C − 1.

(8)

The lower bound will be obtained in two steps.

(1) We first reduce the error analysis for Monte Carlo sampling to the average case error analysis
with respect to a certain prior probability on the class FC(�). This approach is due to Bahvalov,
see [4].

(2) For the chosen prior the average case analysis can be carried out explicitly and will thus yield
a lower bound.
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To construct the prior let m := 2n and �1, . . . ,�m the partition into sets of equal probability, and

�j

the corresponding characteristic functions. Furthermore, let

l :=
⎧⎨⎩
⌈

m

C − 1

⌉
, m�C − 1,

1 else.

DenoteJm
l the set of all subsets of {1, . . . , m}of cardinality equal to l, and�m,l the equi-distribution

on Jm
l , while Em,l denotes the expectation with respect to the prior �m,l . Let (�1, . . . , �m) be

independent and identically distributed with P(�j = −1) = P(�j = 1) = 1
2 , j = 1, . . . , m. The

overall prior is the product probability on Jm
l × {±1}m. For any realization � = (I, �1, . . . , �m)

we assign

f� :=
∑
j∈I

�j
�j
and �� := C

∑
j∈I


�j
+
∑
j �∈I


�j
.

The following observation is useful.

Lemma 1. For any subset N ⊂ {1, . . . , m} of cardinality at most n it holds

Em,l#(I \ N)� l

2
.

Proof. Clearly, for any fixed k ∈ {1, . . . , m} we have �m,l(k ∈ I ) = l/m, thus

Em,l#(I \ N) =
∑
r∈Nc

Em,l
I (r) = #(Nc)
l

m
� l

2
,

where we denoted by Nc the complement of N. �

Proof Theorem 1. Given the above prior let us denote

e
avg
n (FC(�)) := inf

q

(
Em,lE� |S(f, �) − q(f, �)|2

)1/2
, (9)

where the inf is taken with respect to any (possibly adaptive) deterministic algorithm which uses
at most n values from f and �.

For any Monte Carlo method Sn we have, using Bahvalov’s argument [4], the relation

e(Sn, FC(�))�e
avg
n (FC(�)). (10)

We provide a lower bound for e
avg
n (FC(�))2. To this end note that for each realization (f�, ��)

the integral
∫

�� d� is constant. In the first case m�C − 1, and we can bound the integral by the
choice of l as

cm,l :=
∫

��(x) �(dx) = 1

m
(lC + (m − l)1) �3. (11)

In the other case m < C − 1, we obtain cm,1 = (C − 1 + m)/m. Now, to analyze the average
case error, let qn be any (deterministic) method, and let us assume that it uses the set N of nodes.
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We have the decomposition

S(f�, ��) − qn(f�, ��) =
⎛⎝ C

mcm,l

∑
j∈I\N

�j

⎞⎠ −
⎛⎝ C

mcm,l

∑
j∈I∩N

�j − qn(f�, ��)

⎞⎠ .

Given I, the random variables in the brackets are conditionally independent, thus uncorrelated.
Hence we conclude that

Em,lE�
∣∣S(f�, ��) − qn(f�, ��)

∣∣2 � Em,lE�

∣∣∣∣∣∣ C

mcm,l

∑
j∈I\N

�j

∣∣∣∣∣∣
2

= C2

m2c2
m,l

Em,l#(J \ N)� C2l

2m2c2
m,l

,

by Lemma 1. In the case m�C − 1 we obtain l�m/C and have cm,l �3, such that

Em,l |S(f, �) − qn(f, �)|2 � C

36n
,

which in turn yields the first case bound in (8). In the other case m < C − 1 the value of l = 1
yields the second bound in (8). �

3.2. The error of the simple Monte Carlo method

The direct approach to evaluate (1) would be to use the method S
simple
n from (3). We will prove

an upper bound for the error of this method, and we start with the following:

Lemma 2. If the function � obeys the requirements in FC(�), then

(1) 0 < infx∈� �(x)� supx∈� �(x) < ∞.
(2) For every probability measure � on � we have ‖�‖2,� �

√
C‖�‖1,�.

Proof. To prove the first assertion, fix any y0 ∈ �. Then the assumption on � yields �(x)�C�(y0),
and reversing the roles of x and y also the lower bound. Now both, the assumption on � as well
as the second assertion, are invariant with respect to multiplication of � by a constant. In the
light of the first assertion we may and do assume that 1��(x)�C, x ∈ �, and we derive, using
1�

∫
� �(x) �(dx), that∫

�
�2(x) �(dx)�C

∫
�

�(x) �(dx)�C

(∫
�

�(x) �(dx)

)2

,

completing the proof of the second assertion and of the lemma. �

We turn to the bound for the simple Monte Carlo method.

Theorem 2. For all n ∈ N we have

e(S
simple
n , FC(�))�2 min

{
1,

√
2C

n

}
. (12)
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Proof. The upper bound 2 is trivial, it even holds deterministically. Fix any pair (f, �) of in-
put. For any sample (X1, . . . , Xn) and function g we denote the sample mean by Smean

n (g) :=
1/n

∑n
j=1 g(Xj ). It is well known that e(Smean

n , g)�‖g‖2/
√

n. With this notation we can bound∣∣∣S(f, �) − S
simple
n (f, �)

∣∣∣ �
∣∣∣∣S(f, �) − Smean

n (f �)∫
�(x)�(dx)

∣∣∣∣ + ∣∣∣∣ Smean
n (f �)∫
�(x)�(dx)

− Smean
n (f �)

Smean
n (�)

∣∣∣∣
� 1

‖�‖1

(∣∣∣∣∫ f (x)�(x)�(dx) − Smean
n (f �)

∣∣∣∣
+
∣∣∣∣Smean

n (f �)

Smean
n (�)

∣∣∣∣ ∣∣∣∣∫ �(x)�(dx) − Smean
n (�)

∣∣∣∣)
� 1

‖�‖1

(∣∣∣∣∫ f (x)�(x)�(dx) − Smean
n (f �)

∣∣∣∣
+‖f ‖∞

∣∣∣∣∫ �(x)�(dx) − Smean
n (�)

∣∣∣∣) ,

where we used
∣∣Smean

n (f �)/Smean
n (�)

∣∣ �‖f ‖∞, which holds true since the enumerator and de-
nominator use the same sample. This yields the following error bound:

e(S
simple
n , (f, �)) �

√
2

‖�‖1

(
e(Smean

n , f �) + ‖f ‖∞e(Smean
n , �)

)
�

√
2

‖�‖1
√

n
(‖f �‖2 + ‖f ‖∞‖�‖2) � 2

√
2‖f ‖∞√

n

‖�‖2

‖�‖1
� 2

√
2C√
n

,

where we use Lemma 2. Taking the supremum over (f, �) ∈ FC(�) allows to complete
the proof. �

4. Analysis for F�(�)

In this section we impose restrictions on the input data, in particular on the density, in order
to improve the complexity. This class is still large enough to contain many important situations.
Monte Carlo methods for problems when the target (invariant) distribution is log-concave proved
to be important in many studies, we refer to [10]. One of the main intrinsic features of such classes
of distributions are isoperimetric inequalities, see [2,13], which will also be used here in the form
as used in [29]. Recall that here we always require that � ⊂ Rd is a convex body, as introduced
in Section 2.

We start with a lower bound for all non-adaptive algorithms to exhibit that simple Monte Carlo
cannot take into account the additional structure of the underlying class of input data and adaptive
methods should be used. This bound, together with Theorem 5, will show that adaptive methods
can outperform any non-adaptive method, if we consider S on F�(Bd). Indeed, we also show
that specific Metropolis algorithms, based on local underlying Markov chains are suited for this
problem class.

4.1. A lower bound for non-adaptive methods

Here we prove a lower bound for all non-adaptive methods (hence in particular for the simple
Monte Carlo method) for the problem on the classes F�(�). Again, this lower bound will use
Bahvalov’s technique.
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We start with a result on sphere packings. The Minkowski–Hlawka theorem, see [25], says that
the density of the densest sphere packing in Rd is at least �(d) · 21−d �21−d . It is also known,
see [11], that the density (by definition of the whole Rd ) can be replaced by the density within a
convex body �, as long as the radius r of the spheres tends to zero. Hence we obtain the following
result.

Lemma 3. There is n� ∈ N such that for all m�n� there are points y1, . . . , ym ∈ � such that
with

r := r(�, m) := 2−1m−1/d

(
vol(�)

vol(Bd)

)1/d

the closed balls Bi := B(yi, r) ⊂ � are disjoint.

Our construction will use such points y1, . . . , ym ∈ � and the corresponding balls B1, . . . , Bm

as follows.
For i ∈ {1, . . . , m} we assign

�i (y) := ci exp (−�‖y − yi‖2) , y ∈ � and

fi(y) := c̃i
Bi
(y), y ∈ �,

with constants ci and c̃i chosen such that

1 =
∫

�
�i (y) dy = ci

∫
�

exp(−�‖y − yi‖)dy and

1 = ‖fi‖2,�i
= c̃2

i ci

∫
Bi

exp(−�‖y − yi‖) dy.

The corresponding values of the mapping S are computed as

S(fi, �i ) =
∫

�
fi�i dy = c̃ici

∫
Bi

exp(−�‖y − yi‖) dy

=
(

ci

∫
Bi

exp(−�‖y − yi‖) dy

)1/2

=
(

ci

∫
B(0,r)

exp(−�‖y‖) dy

)1/2

=
( ∫

B(0,r)
exp(−�‖y‖) dy∫

� exp(−�‖y − yi‖) dy

)1/2

. (13)

Again we turn to the average case setting, this time with probability measure �2n being the
equidistribution on the set

F2n := {(
�ifi, �i

)
, i = 1, . . . , 2n, �i = ±1

} ⊂ F�(�).

Similar to (10) we have for any non-adaptive Monte Carlo method Sn(f, �) the relation

e(Sn, F�(�))� min
{
eavg(qn, �

2n), qn is deterministic and non-adaptive
}

,

where eavg(qn, �2n) denotes the average case error of the deterministic non-adaptive method qn

with respect to the probability �2n. Thus let qn be any non-adaptive (deterministic) algorithm for
S on the class F�(�) that uses at most n values.
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The average case error can then be bounded from below as

E�2n |S(f, �) − qn(f, �)|2 = 1

2n

2n∑
i=1

E�
∣∣S(�ifi, �i ) − qn(�ifi, �i )

∣∣2
� 1

2
min

i=1,...,2n
E�

∣∣S(�ifi, �i )
∣∣2 � 1

2
min

i=1,...,2n
S(fi, �i )

2.

Above, E� denotes the expectation with respect to the independent random variables �i = ±1.
Together with (13) we obtain

e(Sn, F�(�))� 1

2

√
2 min

i=1,...,2n

( ∫
B(0,r)

exp(−�‖y‖) dy∫
� exp(−�‖y − yi‖) dy

)1/2

.

We bound the enumerator from below and the denominator from above. For �r � log 2 we can
bound∫

B(0,r)

exp(−�‖y‖) dy� 1

2
vol(B(0, r)) = 1

2
rd vol(Bd).

For the denominator we have∫
�

exp(−�‖y − yi‖) dy �
∫

Rd
exp(−�‖y − yi‖) dy

= �−d

∫
Rd

exp(−‖y‖) dy = �−d�(d) vol �Bd,

such that we finally obtain, using the well known formula vol(�Bd) = d vol(Bd), that

e(Sn, F�(�))� 1

2

√
2

(
�drd

2d!
)1/2

= 1

2

(
�drd

d!
)1/2

.

Using the value for r = r(�, 2n) from Lemma 3 we end up with

Theorem 3. Assume that Sn is any non-adaptive Monte Carlo method for the class F�(�). Then,
with n� from Lemma 3, we have for all

2n� max

{
n�, (�/log 4)d · vol �

vol Bd

}
that

e(Sn, F�(�))�2−d/2−3/2 ·
(

vol �

vol Bd

)1/2

· �d/2

√
d! n−1/2. (14)

Remark 5. For fixed d this is a lower bound of the form e(Sn)�c��d/2n−1/2. It is interesting
only if � is “large”, otherwise the already mentioned lower bound (1 + √

n)−1 is better.

We stress that in the above reasoning we essentially used the non-adaptivity of the method Sn.
Indeed, if Sn were adaptive, then by just one appropriate function value �(x), we could identify
the index i, since the functions �i are global. Then, knowing i, we could ask for the value of �i
and would obtain the exact solution to S(f, �) for this small class F2n for all n�2.
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4.2. Metropolis method with local underlying walk

The Metropolis algorithm we consider here has a specific routine Step in Fig. 1, whereas the
final step Compute is exactly as given in (5). It is based on a specific ball walk and this version
is sometimes called ball walk with Metropolis filter, see [29]. Two concepts from the theory of
Markov chains turn out to be important, reversibility and uniform ergodicity. We recall these
notions briefly, see [24] for further details. A Markov chain (K, ) is reversible with respect to ,
if for all measurable subsets A, B ⊂ � the balance∫

A

K(x, B)(dx) =
∫

B

K(x, A)(dx) (15)

holds true. Notice that in this case necessarily  is an invariant distribution.
A Markov chain is uniformly ergodic if there are n0 ∈ N, a constant c > 0 and a probability

measure � on � such that

Kn0(x, A)�c�(A) for all A ⊂ � and x ∈ �. (16)

Markov chains which are uniformly ergodic have a unique invariant probability distribution.
Our analysis will be based on conductance arguments and we recall the basic notions, see

[12,16]. If (K, ) is a Markov chain with transition kernel K and invariant distribution  then we
assign the

(1) local conductance at x ∈ � by lK(x) := K(x, � \ {x}),
(2) and the conductance as

�(K, ) := inf
0<(A)<1

∫
A

K(x, Ac)(dx)

min {(A), (Ac)} , (17)

where Ac = � \ A.

Below we call l > 0 a lower bound for the local conductance, if lK(x)� l for all x ∈ �.
The ball walk and some of its properties. Here we gather some properties of the ball walk,

see [16,29], which will serve as ingredients for the analysis of Metropolis chains using this as
the underlying proposal. In particular we prove that on convex bodies in Rd the ball walk is
uniformly ergodic and we bound its conductance from below, in terms of bounds l > 0 for the
local conductance.

We abbreviate B(0, �) = �Bd . Let Q� be the transition kernel of a local random walk having
transitions within �-balls of its current position, i.e., we let

Q�(x, {x}) := 1 − vol(B(x, �) ∩ �)

vol(�Bd)
, (18)

and

Q�(x, A) :=
⎧⎨⎩

vol(B(x, �) ∩ A)

vol(�Bd)
, A ⊂ � and x /∈ A,

Q�(x, A \ {x}) + Q�(x, {x}), A ⊂ � and x ∈ A.

(19)

Schematically, the transition kernel may be viewed as in Fig. 2.



P. Mathé, E. Novak / Journal of Complexity 23 (2007) 673–696 685

Fig. 2. Schematic view of ball walk step.

Clearly we may restrict to ��D, the diameter of �. The following observation is important
and explains why we restrict ourselves to convex bodies..

Lemma 4. If � ⊂ Rd is a convex body, then the ball walk Q� has a (non-trivial) lower bound
l > 0 for the local conductance.

Proof. It is well-known that convex bodies satisfy the cone condition (see [9, Section 3.2, Lemma
3]). Therefore we obtain that for each � > 0 there is l > 0 such that for each x ∈ � we have
lQ�(x)� l. �

Remark 6. Observe however, that l might be very small. For � = [0, 1]d , for example, we get
l = 2−d , even if � is very small. In contrast, we will see that a large l is possible for � = Bd and
��1/

√
d + 1, see Lemma 7.

Notice that lQ�(x) = vol(B(x, �) ∩ �)/vol(�Bd), hence in the following we use the inequality:

vol(B(x, �) ∩ �)� l vol(�Bd), (20)

where l > 0 is a lower bound for the local conductance of the ball walk.
The following result is folklore, but for a lack of reference we sketch a proof.

Proposition 1. The ball walk Q� is reversible with respect to the uniform distribution �� and
uniformly ergodic.

The crucial tool for proving this is provided by the notion of small and petite sets, where we
refer to [19, Sections 5.2 and 5.5] for details and properties. To this end we introduce a sampled
chain, say (Q�)a , where a is some probability a = (a0, a1, . . .) on {0, 1, 2, . . .} and (Q�)a is
defined by (Q�)a(x, C) := ∑∞

j=0 ajQ
j

�(x, C). We recall that a (measurable) subset C ⊂ � is
petite (for Q�), if there are a probability a and a probability measure � on � such that

(Q�)a(y, A)���(A), A ⊂ �, y ∈ C. (21)

A set C ⊂ � is small, if the same property holds true for some Dirac probability a := �n, such
that obviously small sets are petite. We first show that certain balls are small.

Lemma 5. The sets B(x, �/2) ∩ �, x ∈ � are small for Q�.
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Proof. First, we note that y ∈ B(x, �/2) implies B(x, �/2) ⊂ B(y, �). Let l > 0 be a lower
bound for the local conductance of Q�/2. Using (20) for Q�/2, we obtain for any set A ⊂ � that

Q�(y, A) � Q�(y, A \ {y}) = vol(B(y, �) ∩ A)

vol(B(y, �))
�2−d vol(B(x, �/2) ∩ A)

vol(�/2Bd)

� l · 2−d vol(A ∩ B(x, �/2) ∩ �)

vol(B(x, �/2) ∩ �)
.

Hence estimate (21) holds true with n0 := 1, � := l · 2−d and

�(A) := vol(A ∩ B(x, �/2) ∩ �)

vol(B(x, �/2) ∩ �)
, A ⊂ �.

This completes the proof. �

Proof Proposition 1. We first prove reversibility with respect to ��. Notice that it is enough to
verify (15) for disjoint sets A, B ⊂ �. Furthermore we observe that for any pair A, B ⊂ � of
measurable subsets the characteristic function of the set

{(x, y) ∈ � × �, x ∈ A, y ∈ B, ‖x − y‖��}
can equivalently be rewritten as


B(y)
B(y,�)∩A(x) or 
A(x)
B(x,�)∩B(y).

Hence, letting temporarily c := vol(�) vol(�Bd) we obtain∫
A

Q�(x, B) ��(dx) = 1

c

∫
A

vol(B(x, �) ∩ B) dx

= 1

c

∫
�

∫
�


A(x)
B(x,�)∩B(y) dy dx

= 1

c

∫
�

∫
�


B(y)
B(y,�)∩A(x) dx dy =
∫

B

Q�(y, A)��(dy),

proving reversibility.
By Lemma 5 each set B(x, �/2) ∩ � is small, thus also petite. Petiteness is inherited by taking

finite unions. Since �, being compact, can be covered by finitely many sets B(x, �/2) ∩ �, this
implies that � is petite. By [19, Theorem 16.2.2] this yields uniform ergodicity of the ball walk
(see [19, Theorem 16.0.2(v)]). �

We mention the following conductance bound of the ball walk, which is a slight improvement
of [29, Theorem 5.2]. This will be a special case of Theorem 4, below, and we omit the proof.

Proposition 2. Let (Q�, ��) be the ball walk from above, and let �(Q�, ��) be its conductance.
Let D be the diameter of � and let l be a lower bound for the local conductance. Then

�(Q�, ��)�
√



2

l2�

8D
√

d + 1
. (22)

The local conductance may be arbitrarily small if the domain � has sharp corners. For specific
sets � we can explicitly provide lower bounds for the local conductance, and this will be used in
the later convergence analysis. In the following we mainly discuss the case � = Bd .
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We start with a technical result, related to the Gamma function on R+. We use the well-known
formula

vol(Bd) = d/2/�(d/2 + 1). (23)

Lemma 6. For any z > 0 we have

�(z + 1/2)

�(z)
�

√
z. (24)

Consequently,

vol(Bd−1)

vol(Bd)
�
√

d + 1

2
. (25)

Proof. By [8, Chapter VII, Eq. (11)] we know that the function z �→ log �(z) is convex for z > 0.
Thus we conclude

log �(z + 1/2) � 1
2 (log �(z + 1) + log �(z))

= 1
2 (log z + 2 log �(z)) = log

√
z + log �(z),

from which the proof of assertion (24) can be completed. Using the representation for the volume
from (23) and applying the above bound with z := (d + 1)/2 we obtain

vol(Bd−1)

vol(Bd)
� �(d/2 + 1)√

�((d + 1)/2)
�
√

d + 1

2
,

and the proof is complete. �

Using Lemma 6, we can prove the following lower bound for the local conductance of the ball
walk on Bd .

Lemma 7. Let (Q�, ��) be the local ball walk on Bd ⊂ Rd . If ��1/
√

d + 1, then its local
conductance obeys l�0.3.

Proof. The proof is based on some geometric reasoning. It is clear that the local conductance l(x)

is minimal for points x at the boundary of Bd , and in this case its value equals the portion, say Ṽ , of
the volume of B(x, �) inside Bd . If H is the hyperplane at x to Bd , then this cuts off B(x, �) exactly
one half of its volume. Thus we let Z(h) be the cylinder with base being the (d −1)-ball around x
in the hyperplane H of radius �. Its height h is the distance of H to the hyperplane determined by
the intersection of Bd ∩B(x, �). This height h is exactly determined from the quotient h/� = �/2,
by similarity, hence h := �2/2. By construction we have Ṽ � 1

2 − vol(Z(h))/vol(B(x, �)) and
we can lower bound the local conductance l(x) by

l(x)� 1

2
− vol(Z(h))

vol(B(x, �))
.

We can evaluate vol(Z(h)) as vol(Z(h)) = h�d−1 vol(Bd−1), and we obtain

l(x)� 1

2
− �d+1 vol(Bd−1)

2�d vol(Bd)
= 1

2

(
1 − � vol(Bd−1)

vol(Bd)

)
.
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The bound (25) from Lemma 6 implies

l(x)� 1

2

(
1 − �

√
d + 1√
2

)
.

For ��1/(
√

d + 1) we get l(x)� 1
2 (1 − 1/

√
2)�0.3, completing the proof. �

We close this subsection with the following technical lemma, which can be extracted from the
unpublished seminar note [28]. For the convenience of the reader we present its proof. In addition
we will slightly improve the statement.

Lemma 8. Let l > 0 be a lower bound for the local conductance of the ball walk (Q�, ��). For
any 0 < t < l and any set A ⊂ � with related sets

A1 :=
{
x ∈ A, Q�(x, Ac) <

l − t

2

}
⊂ A, (26)

A2 :=
{
y ∈ Ac, Q�(y, A) <

l − t

2

}
⊂ Ac, (27)

we have d(A1, A2) > t�
√

2/ (d + 1).

For its proof we need the following:

Lemma 9. Let � > 0. If x, y ∈ Rd are two points with distance t�
√

2/ (d + 1) at most, then

vol(B(x, �) ∩ B(y, �))�(1 − t) vol(�Bd). (28)

Proof. Let u := ‖x − y‖2. If u < � then the volume of the intersection of B(x, �) and B(y, �) is
exactly the same as the volume of the ball �Bd minus the volume of the middle slice with distance
u as thickness. The volume of this slice is bounded from above by the volume of the cylinder with
base �Bd−1 and thickness u. Thus we obtain

vol(B(x, �) ∩ B(y, �))�vol(�Bd) − u vol(�Bd−1) = vol(�Bd)

(
1 − u

vol(�Bd−1)

vol(�Bd)

)
.

Applying Lemma 6 we obtain

vol(�Bd−1)

vol(�Bd)
= vol(Bd−1)

�vol(Bd)
� 1

�

√
d + 1

2
,

thus by the choice of u�
√

2t�/
√

d + 1 we conclude that

u
vol(�Bd−1)

vol(�Bd)
�

√
2t�

√
d + 1

�
√

2
√

d + 1
� t,

and the proof is complete. �

We turn to the

Proof of Lemma 8. Let x ∈ A1 and y ∈ A2 be in �, and suppose that their distance is at most
t�

√
2/ (d + 1). Simple set theoretic reasoning shows that

vol(B(x, �) ∩ B(y, �) ∩ �) � vol(B(x, �) ∩ �) − vol(B(x, �) \ B(y, �))

� vol(B(x, �) ∩ �) − vol(B(x, �) \ (B(x, �) ∩ B(y, �)))

= vol(B(x, �) ∩ �) − vol(�Bd) + vol(B(x, �) ∩ B(y, �)).
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Since l is a lower bound for the conductance l(x) we have that

vol(B(x, �) ∩ �)� l vol(B(x, �)) = l vol(�Bd).

Taking this into account and using (28) we end up with

vol(B(x, �) ∩ B(y, �) ∩ �) � l vol(�Bd) − vol(�Bd) + (1 − t) vol(�Bd)

= (l − t) vol(�Bd).

In probabilistic terms this rewrites as Q�(x, B(x, �) ∩ B(y,

�) ∩ �)� l − t , and similarly Q�(y, B(x, �) ∩ B(y, �) ∩ �)� l − t . Now, if A ⊂ � is any
measurable subset with complement Ac then for x ∈ A and y ∈ Ac we obtain

B(x, �) ∩ B(y, �) ∩ � ⊂ (
B(x, �) ∩ Ac ∩ �

)⋃
(B(y, �) ∩ A ∩ �) ,

which in turn yields Q�(x, Ac) + Q�(y, A)� l − t , but this contradicts the definition of the sets
A1 and A2. Hence any two points from A1 and A2, respectively, must have distance larger than
t�

√
2/ (d + 1), and the proof is complete. �

Properties of the related Metropolis method. We analyze Metropolis Markov chains which are
based on the ball walk, introduced above, for some appropriately chosen �. As it will turn out,
the related Metropolis chains are perturbations of the underlying ball walk, and its properties, as
established in Propositions 1 and 2 extend in a natural way.

For � ∈ R�(�) we define the acceptance probabilities as

�(x, y) := min

{
1,

�(y)

�(x)

}
. (29)

The corresponding Metropolis kernel is given by

K�,�(x, dy) := �(x, y)Q�(x, dy) + (1 −
∫

�(x, y)Q�(x, dy))�x(dy). (30)

Note that for x /∈ A we obtain

K�,�(x, A) =
∫

A

�(x, y)Q�(x, dy) = 1

vol(�Bd)

∫
A∩B(x,�)

�(x, y) dy.

Below we sketch a single Metropolis Step from the present position x ∈ � with kernel K�,�(x, ·)
(Fig. 3). The procedure Ball-walk-step was described in Fig. 2.

We start with the following observation.

Lemma 10. Let � be the Lipschitz constant in R�(�) and � := exp(−��). Uniformly for � ∈
R�(�) the following bound for the related Metropolis chain holds true:

K�,�(x, dy)��Q�(x, dy). (31)

Proof. Let A ⊂ �. If dist(x, A) > � then there is nothing to prove. Otherwise, for y ∈ A∩B(x, �)

we find from (6) and (29) that

�(x, y)� exp(−�‖x − y‖2)�e−�� = �.
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Fig. 3. Schematic view of the Metropolis step. Note that the Acceptance step results in an acceptance probability of
�(x, y) = min {1, �(y)/�(x)}.

By definition of the transition kernel K�,� from (30) we can use � to bound

K�,�(x, A)� min {�(x, y), y ∈ A ∩ B(x, �)} Q�(x, A)��Q�(x, A).

The proof is complete. �

The assertion of Proposition 1 extends to the family of Metropolis chains as follows.

Proposition 3 (cf. Mathé [18, Proposition 1]). Let Q� be the ball walk from (19) on �. For each
� ∈ R�(�) and ��D the corresponding Metropolis chains from (30) are uniformly ergodic and
reversible with respect to the related ��.

Proof. Reversibility with respect to �� is clear by the choice of the function �. To prove uniform
ergodicity, let � be from Lemma 10 and c from (16). As established in Lemma 10 we have
K�,�(x, dy)��Q�(x, dy). It is easy to see, and was established in [18, Proof of Theorem 2], that
this extends to all iterates as

Kn
�,�(x, dy)��nQn

�(x, dy).

Recall that under the assumptions made, the ball walk is uniformly ergodic, and from Proposition
1 we obtain n0 such that for all x ∈ � we have

K
n0
�,�(x, A)��n0c�(A), A ⊂ �, (32)

proving uniform ergodicity. �

Remark 7. Notice that (32) is obtained with right-hand side uniformly for all � ∈ R�(�), a fact
which will prove useful later.

Finally we prove lower bounds for the conductance of the Metropolis chains.

Theorem 4. Let (K�,�, ��) be the Metropolis chain based on the local ball walk (Q�, ��) and
let �(K�,�, ��) be its conductance, where � ∈ R�(�). Let l be a lower bound for the local
conductance of Q�. For � ∈ R�(�) we have

�(K�,�, ��)�
le−��

8
min

{√


2

l�

D
√

d + 1
, 1

}
, (33)

where D is the diameter of �.
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Remark 8. As mentioned above, Proposition 2 is a special case of Theorem 4 for � = 0.

The proof of Theorem 4 will be based on Lemma 8 for the underlying ball walk, specifying
t := l/2. This extends to the Metropolis walk as follows.

Lemma 11. Let � from (6) and l be the local conductance of the ball walk. We let � := exp(−��).
For A ⊂ � we assign

T1 :=
{
x ∈ A, K�,�(x, Ac) <

�l

4

}
⊂ A, (34)

T2 :=
{
y ∈ Ac, K�,�(y, A) <

�l

4

}
⊂ Ac. (35)

Then d(T1, T2) > �l
√

/ (2d + 2).

Proof. It is enough to prove T1 ⊂ A1 and T2 ⊂ A2. If x ∈ T1 then Lemma 10 implies
K�,�(x, Ac) < �l/4, hence

Q�(x, Ac)� 1

�
K�,�(x, Ac)� l

4
.

The other inclusion is proved similarly. �

We turn to the

Proof of Theorem 4. Let A ⊂ � be the set for which the conductance is attained. We assign sets
T1 and T2 as in Lemma 11 and distinguish two cases. If ��(T1) < ��(A)/2 or ��(T2) < ��(A

c)/2,
then the estimate (33) follows easily. For instance, if ��(T1) < ��(A)/2 then∫

A

K�,�(x, Ac)��(dx) �
∫

A\T1

K�,�(x, Ac)��(dx)

� �l

4
��(A \ T1)�

�l

8
��(A)� �l

8
min

{
��(A), ��(A

c)
}
,

thus �(K�,�, ��)��l/8 in this case, which proves (33).
Otherwise we have ��(T1)���(A)/2 and ��(T2)���(A

c)/2. In this case we apply an isoperi-
metric inequality, see [29, Theorem 4.2] to the triple (T1, T2, T3) with T3 := � \ (T1 ∪ T2) to
conclude that

��(T3)�
2d(T1, T2)

D
min

{
��(T1), ��(T2)

}
, (36)

hence under the size constraints in this case it holds true that

��(T3)�
d(T1, T2)

D
min

{
��(A), ��(A

c)
}
. (37)

Using the reversibility of the Metropolis chain (K�,�, ��) we have∫
A

K�,�(x, Ac)��(dx) =
∫

Ac

K�,�(y, A)��(dy),
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which implies∫
A

K�,�(x, Ac)��(dx) = 1

2

(∫
A

K�,�(x, Ac)��(dx) +
∫

Ac

K�,�(y, A)��(dy)

)
� 1

2

(∫
A∩T3

K�,�(x, Ac)��(dx) +
∫

Ac∩T3

K�,�(y, A)��(dy)

)
� 1

2

(
�l

4
��(A ∩ T3) + �l

4
��(A

c ∩ T3)

)
= �l

8

(
��(A ∩ T3) + ��(A

c ∩ T3)
) = �l

8
��(T3).

Since by Lemma 11 we can bound d(T1, T2)��l
√

/ (2d + 2) we use (37) to complete
the proof. �

If we restrict ourselves to Metropolis chains on Bd , then Lemma 7 provides a lower bound
for the local conductance which is independent of the dimension d. As a simple consequence of
Theorem 4 we then obtain the following:

Corollary 1. Assume that � ∈ R�(Bd) and ��(d + 1)−1/2. Then we obtain

�(K�,�, ��)�
√



2

9�

1600
√

d + 1
e−��.

To maximize � we define �∗ = min
{
1/

√
d + 1, 1/�

}
and obtain

�(K�,�∗ , ��)�0.0025
1√

d + 1
min

{
1√

d + 1
,

1

�

}
.

Error bounds. For the class F�(�) the above lower conductance bound (33) will yield an error
estimate for the problem (2).

Let S�
n be the estimator based on a sample of the local Metropolis Markov chain with transition

K�,�, starting at zero. To estimate its error we combine the estimates of the conductance of K�,�
with two results, partially known from the literature. To formulate the results we note the following.
The Markov kernel K�,� is reversible with respect to �� and hence induces a self-adjoint operator

K�,� : L2(�, ��) → L2(�, ��).

The spectrum �(K�,�) is contained in [−1, 1] and 1 ∈ �(K�,�) and we are interested in the second
largest eigenvalue

��,� := sup{� ∈ �(K�,�)|� �= 1}
of K�,�. This is motivated by the extension of a result from [18, Corollary 1] about the worst case

error of S�
n , uniformly for (f, �) ∈ F�(�).

Lemma 12.

lim
n→∞ sup

(f,�)∈F�(�)

e(S�
n, (f, �))2 · n = sup

�∈R�(�)

1 + ��,�

1 − ��,�
.
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The proof is given in the Appendix. For Markov chains which start according to the invariant
distribution �� the bound is similar, but more explicit and was given in [26] and [16, Theorem
1.9].

The relation of the second largest eigenvalue ��,� to the conductance is given in

Lemma 13 (Cheeger’s Inequality, see [12,15,16]).

	�,� := 1 − ��,� ��2(K�,�, ��)/2.

We are ready to state our main result for the Metropolis algorithm S�
n , based on the Markov

chain K�,�, for the class F�(Bd), i.e., when � ⊂ Rd is the Euclidean unit ball.

Theorem 5. Let S�
n = 1/n

∑n
j=1 f (Xj ) be the estimator based on a sample (X1, . . . , Xn) of

the local Metropolis Markov chain with transition K�,�, where ��(d + 1)−1/2. Then

lim
n→∞ sup

(f,�)∈F�(Bd)

e(S�
n, (f, �))2 · n� 8 · 16002

81
(d + 1) · e2��

�2
. (38)

Again we may choose �∗ = min
{
(d + 1)−1/2, �−1

}
and obtain

lim
n→∞ sup

(f,�)∈F�(Bd)

e(S�∗
n , (f, �))2 · n�594700 · (d + 1) max

{
d + 1, �2

}
. (39)

Proof. This follows from Corollary 1, and Lemmas 12 and 13. �

5. Summary

Let us discuss our findings. The results from Section 3 clearly indicate that the superiority
of Metropolis algorithms upon simpler (non-adaptive) Monte Carlo methods does not hold in
general. Specifically, it does not hold for the large classes FC(�) of input without additional
structure.

On the other hand, for the class F�(Bd), specific Metropolis algorithms that are based on
local underlying walks are superior to all non-adaptive methods. Even more, on Bd the cost of the
algorithm S�∗

n , roughly given by the number n of evaluations of � and f, increases like a polynomial
in d and �. More precisely, according to (39), the asymptotic constant limn→∞ e(S�∗

n , F�(Bd))2· n
is bounded by a constant times max

{
d2, d�2

}
, i.e., the complexity grows polynomially in d and

� and, for fixed d, increases (at most) as �2. If we only allow non-adaptive methods then this
asymptotic constant, again for fixed d, increases at least as �d , see (14).

We believe that this problem is tractable in the sense that the number of function values to
achieve an error � can be bounded by

n(�, F�(Bd))�C�−2 d max(d, �2). (40)

We did not prove (40), however, since Theorem 5 is only a statement for large n.
Notice that according to Theorem 5 the size �∗ of the underlying balls walk needs to be adjusted

both to the spatial dimension d and the Lipschitz constant �.
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The analysis of the Metropolis algorithm is based on properties of the underlying ball walk;
in particular we establish uniform ergodicity of the ball walk for convex bodies � ⊂ Rd . Also,
based on conductance arguments, we provide lower bounds for the spectral gap of the ball walk.

As a consequence, in the case � = 0 the estimate (38) provides an error bound for the ball walk
(Q�, �), which is asymptotically of the form e(S�

n, L2(B
d, �))�C�−1(d/n)1/2.

The results extend in a similar way to any family �d ⊂ Rd for which the underlying local ball
walk Q� has (for ���d ) a non-trivial lower bound for the local conductance that is independent
of the dimension.

Finally, from the results of Section 3 we can conclude that adaption does not help much for
the classes FC(�). Hence we have new results concerning the power of adaption, see [22] for a
survey of earlier results, in particular that it may help to break the curse of dimensionality for the
classes F�(Bd).

Acknowledgment

We thank two anonymous referees and Daniel Rudolf for their comments.

Appendix A. Proof of Lemma 12

Lemma 12 extends the bound from [18, Theorem 1], which deals with a single uniformly
ergodic chain. It was obtained from on a contraction property, as stated in [18, Proposition 1].
The goal of the present analysis is to establish this asymptotic result uniformly for all Metropolis
chains with density from R�(�), by showing that this contractivity holds true uniformly.
Contractivity of the Markov operator. We assign to each transition kernel K on � with corre-
sponding invariant distribution � the bounded linear mapping P, given by

(Pf )(x) :=
∫

f (y)K(x, dy). (41)

Also we let E denote the mapping which assigns any integrable function its expectation as a
constant functionE(f ): = ∫

� f (x)�(dx).For each K the mappingP−E is bounded inL∞(�, �),
with norm less than or equal to one and we shall strengthen this uniformly for kernels K�,� with
� ∈ R�(�). Within this operator context uniform ergodicity is equivalent to a specific form of
quasi-compactness, namely there are 0 < � < 1 and n0 ∈ N for which

‖P n − E: L∞(�) → L∞(�)‖�� for n�n0. (42)

We first show that reversibility allows to transfer this to the spaces L1(�, ��).

Lemma 14. Suppose that the transition kernel K with corresponding mapping P is reversible.
Then for all n ∈ N we have

‖P n − E: L1(�, �) → L1(�, �)‖�‖P n − E: L∞(�, �) → L∞(�, �)‖. (43)

Proof. If K is reversible, then so are all iterates Kn. Thus for arbitrary functions f ∈ L1(�, �)

and h ∈ L∞(�, �) we have, using the scalar product on L2(�, �), that

〈(P n − E)f, h〉 = 〈f, (P n − E)h〉.
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Consequently, for any f ∈ L1(�, �) we have

‖(P n − E)f ‖1 = sup
‖h‖∞ �1

∣∣〈(P n − E)f, h〉∣∣ = sup
‖h‖∞ �1

∣∣〈f, (P n − E)h〉∣∣
� ‖f ‖1 sup

‖h‖∞ �1
‖(P n − E)h‖∞,

from which the proof can be completed. �

Proposition 4. For any convex body � ⊂ Rd there are an integer n0 and a constant 0 < � < 1
such that uniformly for � ∈ R�(�) we have

‖P n0
�,� − E: L1(�, ��) → L1(�, ��)‖��. (44)

Proof. This is an immediate consequence of the bound (32). As mentioned in Remark 7 uniform
ergodicity was established uniformly for � ∈ R�(�). It is well known (see [19, Theorem 16.2.4])
that this implies that there is an � < 1 such that uniformly for � ∈ R�(�) we have

‖P n0
�,� − E: L∞(�) → L∞(�)‖�� for n�n0. (45)

In the light of Lemma 14 this yields (44). �

Finally we sketch the

Proof of Lemma 12. Using Proposition 4 we can extend the proof of [18, Theorem 1]. In par-
ticular, the bounds from Eqs. (13)–(15) in [18] tend to zero uniformly for � ∈ R�(�). Moreover,
starting at zero, after one step according to the underlying ball walk, the (new) initial distribution
is uniformly bounded with respect to the uniform distribution on �, hence also with respect to
��, such that we establish the asymptotics in Lemma 12. �
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