
Journal of Symbolic Computation 47 (2012) 1297–1308

Contents lists available at SciVerse ScienceDirect

Journal of Symbolic Computation

journal homepage: www.elsevier.com/locate/jsc

Computing Gröbner bases of pure binomial ideals via
submodules of Zn

Giandomenico Boffi a, Alessandro Logar b,1
a Libera Università LUSPIO, Via Cristoforo Colombo 200, 00145 Roma, Italy
b Dipartimento di Matematica e Informatica, Università di Trieste, via Valerio 12/1, 34127 Trieste, Italy

a r t i c l e i n f o

Article history:
Received 4 April 2011
Accepted 14 June 2011
Available online 29 December 2011

Keywords:
Binomial ideal
Gröbner basis
Polyhedral cone
Buchberger algorithm
Smith normal form
Hilbert basis

a b s t r a c t

A binomial ideal is an ideal of the polynomial ring which is gener-
ated by binomials. In a previous paper, we gave a correspondence
between pure saturated binomial ideals of K [x1, . . . , xn] and sub-
modules of Zn and we showed that it is possible to construct a the-
ory of Gröbner bases for submodules of Zn. As a consequence, it
is possible to follow alternative strategies for the computation of
Gröbner bases of submodules of Zn (and hence of binomial ideals)
which avoid the use of Buchberger algorithm. In the present pa-
per, we show that a Gröbner basis of a Z-module M ⊆ Zn of rank
m lies into a finite set of cones of Zm which cover a half-space of
Zm. More precisely, in each of these cones C , we can find a suitable
subset Y (C) which has the structure of a finite abelian group and
such that a Gröbner basis of the module M (and hence of the pure
saturated binomial ideal represented by M) is described using the
elements of the groups Y (C) together with the generators of the
cones.

© 2011 Elsevier Ltd. All rights reserved.

0. Introduction

In Boffi and Logar (2007) we have introduced the notion of Gröbner bases of submodules of Zn.
Themotivation being the attempt to avoid using Buchberger algorithm in the computation of Gröbner
bases of (saturated) pure binomial ideals. It has been known for a long time that the Buchberger algo-
rithm for toric ideals is a purely combinatorial process involving lattice vectors, (Thomas, 1995). And
in fact the combinatorics of Boffi and Logar (2007) partly overlaps with that of Sturmfels et al. (1995).
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But the shift from ideals to lattices (submodules of Zn in our language) has been seen by others as a
way to perform the Buchberger algorithm in a more efficient way, while we aim at computing Gröb-
ner bases of submodules of Zn in a way completely independent of polynomial ideals, and amenable
to new algorithmic strategies.

In this paper we extend to submodules of any rank the strategy sketched in Boffi and Logar (2007),
Section 5 for the computation of the Gröbner bases of rank 2 submodules of Zn. It turns out that a
variety of ingredients is required and that an interesting role is played by some finite abelian groups.

A further inquiry is still necessary (andplanned) in order tomix the ingredients in themost efficient
way, and then weigh the pros and cons of our approach. But we think it useful to make our approach
known, because it offers a different point of view, even though its practical importance has yet to be
ascertained.

An outline of this article goes as follows. Section 1 fixes the notation and recalls some facts,
including the relationship with saturated pure binomial ideals given in Boffi and Logar (2007).
Section 2 deals with cones in Qn and Zn. Readers acquainted with discrete convex geometry may
go over this section in a rather fast way. Section 3 illustrates the general strategy for the computation
of the Gröbner bases of submodules of Zn. Section 4 works out in detail a significant example having
all the features discussed in Section 3. The section ends with some final remarks, opening some vistas
for future work.

We thank the referees for their suggestions.
The computer algebra systemCoCoA (CoCoA Team, 0000) has been used for some examples related

to this article.

1. Preliminaries and recollections

Elements of Zn (or Qn) will be considered as row vectors. If a = (a1, . . . , an) and b = (b1, . . . , bn)
are in Zn (or in Qn), we say that a <Lex b if the first nonzero coordinate (from the left) of a − b is
negative. Let V be an n × n nonsingular matrix V of integers. Then we can define a linear order on Zn

by: a <V b if and only if aV <Lex bV .
If the matrix V is obtained from the n× n identity matrix after a permutation of the columns, then

we say that the corresponding order on Zn is of lexicographic type. Clearly, if V = In, then we get the
order Lex defined above.

If a ∈ Zn, then we have a = a+
− a−, where any component of a+ and of a− is positive or zero; a+

and a− are uniquely determined by a, if we require that they have disjoint support. We associate two
subsets of Zn with the order<V . The first subset is PV (Zn) (or, simply, P(Zn)), defined by:

PV (Zn) = {a ∈ Zn
| a >V 0}.

Clearly PV (Zn) determines the order onZn, for given the set PV (Zn), we can define the order by: a <V b
iff b−a ∈ PV (Zn). If<V is a termorder onNn, then PV (Zn) satisfies the further condition: PV (Zn) ⊇ Nn.

The second subset of Zn, which we associate with the order<V , is the half-space given by
PV = {a ∈ Zn

| aV1 ≥ 0},
where V1 is the first column of the order matrix V . Clearly PV ⊆ PV and PV \ PV is contained in the
hyperplane of Zn of equation aV1 = 0.

By a cone in Zn we mean the intersection of a cone of Qn with Zn.
Let I ⊆ K [x1, . . . , xn], K a field of characteristic different from 2, be a pure binomial ideal, i.e., an

ideal generated by polynomials of the form: xa = xa
+

− xa
−

(where a ∈ Zn and xα denotes xα11 · · · xαnn
for every α ∈ Nn). Let I be the ideal generated by the binomials xa1 , . . . , xak (where a1, . . . , ak ∈ Zn);
then we can associate with I the submodule of Zn generated by the ai’s. Conversely, if M ⊆ Zn is a
submodule, we can consider the binomial ideal generated by the binomials xa, where a ∈ M . In this
way (see Boffi and Logar, 2007, Theorem 4.13), we get a one to one correspondence between saturated
binomial ideals of K [x1, . . . , xn] and submodules of Zn (I is said saturated if for any monomial m, if
mf ∈ I , then f ∈ I). Moreover, if we start with a pure binomial ideal I , we consider the corresponding
submodule M of Zn and we construct from M the binomial ideal J as said above, then we get that J is
the saturation Sat(I) of I , where

Sat(I) = { f ∈ K [x1, . . . , xn] | ∃m, a monomial, s.t.mf ∈ I}.
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The study of saturated pure binomial ideal is therefore equivalent to the study of submodules of
Zn. In particular, as shown in Boffi and Logar (2007), we can define suitable Gröbner bases for
submodules of Zn in order to study Gröbner bases of saturated pure binomial ideals of K [x1, . . . , xn].
One should realize that the saturated binomial ideals I are exactly those such that I = IL∩ R, where R
stands for the polynomial ring and L is the Laurent polynomial ring K [x±1

1 , . . . , x
±1
n ]. See for instance

(Eisenbud and Sturmfels, 1996), where L is used a lot in order to study the primary decomposition of
the ideals I .

Let M ⊆ Zn be a submodule and let <V be a term order on Zn given by a matrix V as above.
Following the definition given in Boffi and Logar (2007), a finite set g1, . . . , gk ∈ M ∩ P(Zn) is a
Gröbner basis for M (w.r.t. the given term order) if for any a ∈ M ∩ P(Zn) there exists an i s.t. g+

i | a+

(i.e., every coordinate of g+

i is not greater than the corresponding coordinate of a+).
If we define the following partial order on P(Zn):

a, b ∈ P(Zn), a @ b if a ≠ b and a+
| b+,

we can say that g1, . . . , gk ∈ M∩P(Zn) is a Gröbner basis forM if any element ofM∩P(Zn) is preceded
(in the partial order @) by an element gi.

If g1, . . . , gk is a Gröbner basis forM , we say that it isminimal if and only if the following condition
holds: if g+

i | g+

j , then i = j (for all i, j ∈ {1, . . . , k}). If g1, . . . , gk is a minimal Gröbner basis, then
g1, . . . , gk are minimal elements inM ∩ P(Zn)w.r.t. @ (see Boffi and Logar, 2007, Theorem 3.5).

Let m be the rank of M and let a1, . . . , am be a basis of M (as a Z-module). Assume further that
the matrix A = (aij) whose rows are the vectors a1, . . . , am is in Hermite normal form (hence, in
particular, A is in row echelon form).

Let F : Zm
−→ Zn be the homomorphism given by F(λ1, . . . , λm) = λ1a1 +· · ·+λmam. We define

on Zm the order induced by<V , i. e.:

(λ1, . . . , λm) <V (µ1, . . . , µm) if and only if F(λ1, . . . , λm) <V F(µ1, . . . , µm).

Proposition 1. Let T be the matrix obtained by taking the first m linearly independent columns (over Q)
of AV . Then T is the matrix which gives the order on Zm.

Proof. Let C1, . . . , Cn be the columns of AV and suppose that Ci1 , . . . , Cim (1 ≤ i1 < i2 < · · · < im)
are the first m linearly independent columns of AV . If λ = (λ1, . . . , λm) ∈ Zm, then λ >V 0 if and
only if λC1 = 0, . . . , λCs−1 = 0 and λCs > 0. If Cj is a column of AV which is linearly dependent on
C1, . . . , Cj−1 and j < s, then λCj = 0. From this the assertion follows. �

If the term order on Zn is the Lex term order, defined by the matrix V = In, then it is easy to see
(since A is in Hermite normal form) that the induced order on Zm is again the Lex term order induced
by the matrix Im. In general, however, the order induced on Zm is not a term order, since Nm is not
contained in the set of positive elements. An easy computation shows that F (PV (Zm)) ⊆ PV (Zn): if
a ∈ PV (Zm), then aT >Lex 0 gives a(AV ) >Lex 0; hence (aA)V >Lex 0, so F(a) = aA ∈ PV (Zn)).

Given u, v ∈ Zm, u ≠ v, let

u @ v if F(u)+ | F(v)+.

This is a partial order on Zm. Explicitly, it means:
(u1, . . . , um) @ (v1, . . . , vm) if, whenever the i-th component (u1a1 + · · · + umam)i of (u1a1 + · · · +

umam) is positive, then (u1a1 + · · · + umam)i ≤ (v1a1 + · · · + vmam)i.
An immediate consequence is:

Proposition 2. Let M, A, V be as above, and let h1, . . . , hk be a finite number of elements in P(Zm). Then
the following are equivalent:

(1) F(h1), . . . , F(hk) is a Gröbner basis for M;
(2) for any u ∈ P(Zm), there exists i ∈ {1, . . . , k} such that hi @ u.

Since the image of F is the module M , any Gröbner basis of M is of the form F(h1), . . . , F(hk), for
suitable h1, . . . , hk ∈ P(Zm).
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2. Subdivision of Qm into cones

Hereinafter, it will be convenient to consider Zm and Zn embedded in Qm and Qn, respectively.
The map F can be extended to a map F : Qm

−→ Qn given again by F(u) = uA. Moreover, we shall
consider Qm as an affine space, with coordinates u1, . . . , um. From thematrix A = (aij)we get n linear
forms l1, . . . , ln in Q[u1, . . . , um], by means of:

li(u1, . . . , um) = a1iu1 + · · · + amium. (1)

In other words, l1(u), . . . , ln(u) are the components of F(u). The linear forms l1, . . . , ln identify n
hyperplanes in Qm, all passing through the origin. Given li, let l

≥0
i be the linear half-space of Qm given

by the points u = (u1, . . . , um) such that li(u1, . . . , um) ≥ 0; l≤0
i is defined similarly. Hence for any

point u ∈ l≥0
i ∩ Zm, it holds: F(u)i ≥ 0, where F(u)i stands for the i-th coordinate of F(u).

The hyperplanes l1, . . . , ln subdivide Qm into polyhedral cones (each of them with vertex in the
origin). One way to describe them is the following: let u ∈ C, where

C = Qm
\


i

{li = 0},

then consider:

Cu =


i, l≥0

i ∋u

l≥0
i ∩


i, l≥0

i ∌u

l≤0
i . (2)

Note that the same Cu can be obtained by many other v ∈ C. Indeed: v ∈ Cu ∩ C if and only if Cu = Cv .

Proposition 3. For any v ∈ Cu, and for any i = 1, . . . , n, it holds: if F(v)i ≠ 0, then F(u)i and F(v)i have
the same sign.

Proof. Immediate, from the definition of Cu and the hyperplanes li. �

Let

C = {Cu | u ∈ C} . (3)

Proposition 4. The set C is a finite set of polyhedral cones and

Qm
=


C∈C

C .

Proof. We can associate with any cone Cu (u ∈ C) an n-tuple given by the signs of F(u)i, i = 1, . . . , n;
if Cu and Cv (u, v ∈ C) have the same n-tuple of signs, then Cu = Cv . Therefore the number of elements
of C is bounded by 2n, the number of different n-tuples of signs. �

If we define the dimension of a cone of Qm as the dimension of the linear space generated by the
cone itself, we have:

Proposition 5. Any cone C ∈ C has dimension m.

Proof. Let u ∈ C be such that C = Cu and let i ∈ {1, . . . ,m}. Then F(u)i > 0 (or F(u)i < 0). Hence
there exists ϵi > 0 such that F(v)i > 0 (or F(v)i < 0) for all v ∈ B(u, ϵi), where B(u, ϵi) denotes the
ball of center u and radius ϵi. Therefore it follows from Proposition 3 that there exists ϵ > 0 such that
B(u, ϵ) ⊆ C . Since the ball B(u, ϵ) contains a basis of Qm, we are done. �

Any polyhedral cone is finitely generated (see Schrijver, 1986, Corollary 7.1 a); the generators of a
cone Cu (as expressed in (2)) can be obtained from intersections of some of the hyperplanes {li = 0}:
if the vector p ∈ Qm is a generator of Cu, there exist indexes i1, . . . , ik such that ∩

k
j=1{lij = 0} is a

line and p is on this line. Since the hyperplanes li have integer coefficients, it is possible to choose
on each of these lines the vector p with integer coordinates and with no common factors, so that
in particular p ∈ Zm. In this way we can obtain that the generators of Cu are in Zm. Moreover,
if ℓ is a line obtained from an intersection ∩

k
j=1{lij = 0}, then ℓ contains two vectors, p and −p,
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which have integer coordinates with no common factors, and which are among the generators of
the cones of C. Let us consider therefore the set W of all the above vectors p and −p. W is a finite
set.

Recall that the (integral) Hilbert basis of a cone is a finite set of integral vectors such that each
integral vector of the cone is a nonnegative integral combination of them. By Schrijver (1986),
Theorem 16.4, each cone Cu has a Hilbert basis, uniquely determined. Hence we may suppose that
W contains the Hilbert bases of the cones Cu.

Example. Let M ⊆ Z3 be the module generated by the two vectors a1 = (2, 1, 4), a2 = (0, 3,−1).
The matrix A whose rows are a1 and a2 is in Hermite normal form and the map F : Z2

−→ Z3 is
given by: F(u1, u2) = (2u1, u1 + 3u2, 4u1 − u2). The hyperplanes l1, l2, l3 are therefore l1 = 2u1,
l2 = u1 + 3u2, and l3 = 4u1 − u2. The set W is given by the six points: p1 = (0, 1), p2 = (0,−1),
p3 = (3,−1), p4 = (−3, 1), p5 = (1, 4), p6 = (−1,−4). Take for instance u = (1, 1); then
F(1, 1) = (2, 4, 3); here the coordinates are all nonzero (and all positive), hence the corresponding
cone Cu is: l

≥0
1 ∩ l≥0

2 ∩ l≥0
3 . This cone is also described by the generators p3, p5. Analogously we get the

cones: l≥0
1 ∩ l≤0

2 ∩ l≥0
3 (generators: p2, p3); l

≤0
1 ∩ l≤0

2 ∩ l≥0
3 (generators: p2, p6); l

≤0
1 ∩ l≤0

2 ∩ l≤0
3 (generators:

p4, p6); l
≤0
1 ∩ l≥0

2 ∩ l≤0
3 (generators: p1, p4); l

≥0
1 ∩ l≥0

2 ∩ l≤0
3 (generators: p1, p5).

Suppose now that the setW is known (indeed, it can be computed by taking suitable intersections
of the hyperplanes li). Then it is possible to reconstruct all the cones Cu from W and from the map F ,
in the following way. Given two points p, q ∈ W , we say that p and q are tied if there exists a cone Cu
such that they are among the generators of it.

Proposition 6. Two points p, q ∈ W are tied if and only if F(p)iF(q)i ≥ 0 for all i = 1, . . . , n.

Proof. If p and q are tied, let u ∈ Qm be a point such that p and q are among the generators of Cu,
and let li be one of the hyperplanes. The condition F(p)i < 0 and F(q)i > 0 contradicts Proposition 3.
To see the converse, let us suppose (to simplify the notation) that the first s hyperplanes {li = 0},
i = 1, . . . , s, are linearly independent (s ≤ m). Let v ∈ Qm and let i0 be an index such that F(v)i0 = 0.
We can find a point v′

∈ Qm sufficiently close to v, in such a way that:

• F(v′)i0 is positive;
• for each j ≠ i0, F(v)j and F(v′)j have the same sign, i.e.,, either they are both positive, or both

negative, or both zero.

To see this, let i1, . . . , ik be all the other indices in {1, . . . , s} such that F(v)ij = 0. Let ϵ > 0 and let
Bϵ = B(v, ϵ) be the ball centered in v of radius ϵ. Then

Aϵ = Bϵ ∩ {li1 = 0} ∩ · · · ∩ {lik = 0} ∩ {li0 > 0} ≠ ∅,

since li0 is linearly independent of li1 , . . . , lik .We can choose a sufficiently small ϵ such that Bϵ does not
meet any of the hyperplanes {lj = 0}, j ∉ {i1, . . . , ik}, so that any v′

∈ Aϵ satisfies the two conditions
above.
(Clearly, we can also substitute the first of the two conditions above with the condition ‘‘F(v′)i0 is
negative’’.)
Suppose now that p and q are such that F(p)iF(q)i ≥ 0 for all i. If the inequality is always strict, then
F(p)i and F(q)i always have the same sign. Otherwise there exists an index, i0, such that F(p)i0F(q)i0 =

0. Then we have essentially two possibilities: either F(p)i0 > 0 and F(q)i0 = 0, or both are zero. In
the first case, choose p′

= p and q′
∈ Qm such that F(q′)i0 > 0, and such that F(q′)j and F(q)j have the

same sign for all j ≠ i0. In the second case, choose q′ as above, and also p′
∈ Qm such that F(p′)i0 > 0,

and F(p′)j and F(p)j have the same sign for all j ≠ i0. Hence p′ and q′ are such that F(p′)iF(q′)i ≥ 0 for
all i and, moreover, F(p′)i0F(q

′)i0 > 0. Repeating this procedure, we can find two points p′′
∈ Qm and

q′′
∈ Qm such that F(p′′) and F(q′′) have all the coordinates different from zero and of the same sign.

So Cp′′ = Cq′′ and p, q ∈ Cp′′ . �
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Now we can construct all the cones. We consider the elements of W as the vertices of a graph
GW , and we connect two vertices of GW precisely when the corresponding points of W are tied.
The problem of finding the cones is translated into the problem of finding the maximal complete
subgraphs of GW . This is the maximal clique problem and can be solved with the Bron–Kerbosch
algorithm (with pivoting). See, for instance, (Cazals andKarande, 2008) and the references given there.

An alternative approach to construct the cones could be based on the fact that, if C is a polyhedral
cone ofQm defined by a finite set S of inequalities, and if {l = 0} is a hyperplane ofQm, then S∪{l ≥ 0}
and S ∪ {l ≤ 0} define two other polyhedral cones (one contained in the half-space l≥0 and the other
contained in l≤0). Hence, if we start with the cone l≥0

1 , where l1 is defined as in (1), and we take the
hyperplane {l2 = 0}, we construct two cones: l≥0

1 ∩ l≥0
2 and l≥0

1 ∩ l≤0
2 . Similarly, we can construct two

more cones if we start with the cone l≤0
1 . Using all the hyperplanes given by (1), we can inductively

obtain all the cones of C, described in terms of inequalities. Further work is necessary to obtain their
generators.

3. Cones in PT (Zm)

We keep the notation of the previous sections. In particular, letM ⊆ Zm be a submodule generated
by the rows of a matrix A, let V be a nonsingular matrix which gives a term order on Zn, and let T be
thematrix obtained from the firstm linearly independent columns of AV , so that T gives a linear order
on Zm, denoted by<T (see Proposition 1). Furthermore, PT (Zm) (= iPT ) denotes the set of elements of
Zm which are positive w.r.t.<T , and PT (=PT (Zm)) is the half-space T≥0

1 = {u ∈ Zm
| uT1 ≥ 0}, where

T1 stands for the first column of T . If C is a finitely generated cone of Qm, γ (C) denotes the finite set
{q1, . . . , qs} of its generators. We can assume that the generators are in Zm and the gcd of the entries
of each qi is 1, i.e., γ (C) stands for the Hilbert basis of C . Furthermore, let:

X(C) =


i

λiqi | λi ∈ Q, 0 ≤ λi < 1


; Y (C) = X(C) ∩ Zm.

The set X(C) is bounded and Y (C) is finite.

Proposition 7. It holds:

C =

 
q∈γ (C)

(q + C)


∪ X(C); (4)

hence

C ∩ Zm
=

 
q∈γ (C)

(q + (C ∩ Zm))


∪ Y (C). (5)

Proof. Let u ∈ C; then u =

λiqi, where λi ≥ 0. If λi < 1 for all i, then u ∈ X(C). Otherwise, there

exists j such that λj ≥ 1; hence u = qj +


i µiqi, whereµi = λi if i ≠ j, andµj = λj −1 ≥ 0. Thus (4)
holds. �

The proposition above can be seen as a restatement of (a special case of) Bruns and Gubeladze
(2009), Proposition 2.43 d.

The cones considered so far are in the whole space Zm (or Qm). In order to use the cones for the
construction of a Gröbner basis ofM we need to consider cones which have trace in PT (Zm).

An immediate consequence of Proposition 4 is:

Proposition 8. It holds:

PT (Zm) =


C∈C

C ∩ PT (Zm) and PT (Zm) =


C∈C

C ∩ PT (Zm).
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If C is a cone of C, we distinguish three cases, according to the position of the generators of C w.r.t.
PT :

• γ (C) ⊆ PT .
• γ (C) ∩ PT ≠ ∅ and γ (C) ∩


Zm

\ PT


≠ ∅.
• γ (C) ⊆ Zm

\ PT .

In the first case, C = C ∩ PT . In the last case C ∩ PT = {0}. In the second case, C ∩ PT is a cone,
contained in C , given by C ∩ T≥0

1 .
In all cases, the set P(C) = C ∩ PT (Zm) can be obtained by the formula:

C ∩ PT (Zm) = {a ∈ C ∩ PT | a >T 0}. (6)

Hence, in order to find C∩PT (Zm), it is enough to compute C∩PT and then select the positive elements
w.r.t. >T . Note that P(C) is a cone of Zm, but it is not necessarily described by a finite number of
inequalities: as we see from the above formula, it can be obtained from a cone of PT after omitting
some of its faces.

According to Proposition 3, F(u) ‘‘does not change the sign’’ on all the elements u ∈ P(C).
We can define two partial orders on the set P(C):

• the partial order @ induced by P(Zm), i.e., if u, v ∈ P(C), u ≠ v, then u @ v if F(u)+ | F(v)+;
• the partial order ≺+ defined by: if u, v ∈ P(C), u ≠ v, then u ≺+ v if v ∈ u + C .

Proposition 9. Let u, v ∈ P(C); if u ≺+ v, then u @ v.

Proof. We have: F(v) = F(u)+ F(v − u), where v, u and v − u are in C , hence have the same signs.
In particular, if the i-th component F(u)i of F(u) is positive, then F(v)i ≥ 0 and F(v − u)i ≥ 0. Hence
F(u)+ | F(v)+ follows from F(v)i = F(u)i + F(v − u)i. �

Proposition 10. Let u ∈ P(Zm) be minimal among the elements of P(Zm)w.r.t. @. Assume that u ∈ P(C).
Then u is a minimal element of P(C) w.r.t. ≺+.

Proof. Immediate. �

As a consequence, the set of minimal elements of P(Zm)w.r.t. @ is contained in the set of minimal
elements of P(C)w.r.t. ≺+, as C varies in C.

Applying the decomposition (5) to the cones C ∩ PT , we obtain some information regarding the
minimal elements of (P(C),≺+):

Proposition 11. Let C ′ be the cone C ∩ PT . The minimal elements of P(C) w.r.t. ≺+ are contained in the
finite set


γ (C ′) ∪ Y (C ′)


∩ P(Zm).

Proof. Since the generators q1, . . . , qs of C ′ are in PT , then qiT1 ≥ 0 for all i. Here qiT1 denotes the
product of the line vector qi with the column vector given by the first column of T . Assume first
that there exists j such that qjT1 > 0. Let u ∈ P(C). Hence u =


i µiqi with µi ≥ 0 (µi ∈ Q). If

µi < 1 for all i, then u ∈ Y (C ′) ∩ P(Zm). Otherwise, there exists k such that µk ≥ 1. Then u − qk
= µ1q1 + · · · + (µk − 1)qk + · · · + µsqs. If u − qk = 0, we are done. Else, we have: (u − qk)T1 =

µ1q1T1 + · · · + (µk − 1)qkT1 + · · · + µsqsT1 > 0, since all the summands are nonnegative and
at least one of them is positive. Thus (u − qk) ∈ P(Zm) and u − qk ≺+ u. Repeating the process,
we construct an element of Y (C ′) ∩ P(Zm) which precedes u. Next assume that qiT1 = 0 for all i,
and again let u ∈ P(C) be such that u =


i µiqi with µi ≥ 0. Then uT1 = 0 and, by the defini-

tion of P(Zm), we have that uT2 ≥ 0. If uT2 > 0, then there exists j such that qjT2 > 0 and we can
proceed as above. Otherwise, uT2 = 0, hence uT3 ≥ 0 . . . . After a finite number of steps, we are
through. �

Let CT be the set of the cones C ∩ PT (with C ∈ C). By Proposition 8, CT covers PT .
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As a consequence of the above, and of Proposition 2, we have the following:

Proposition 12. The (finite) set:
C∈CT

(γ (C) ∪ Y (C))


∩ P(Zm)

is a Gröbner basis for M w.r.t. the term order<V .

Since any cone C ∈ CT has dimension m, γ (C) has at least m elements. If γ (C) has precisely m
elements, they must be linearly independent; if γ (C) has more thanm elements, we can find subsets
X1, . . . , Xt of γ (C) such that:

(1) each Xi has m linearly independent elements;
(2) if Ci denotes the cone, whose generators are the vectors of Xi, then ∪iCi = C;
(3) if i ≠ j, then Ci ∩ Cj is a common face of Ci and Cj.

The construction of the sets X1, . . . , Xt can be done using the results of Schrijver (1986), Chapter 7
and in particular Theorem 7.1. Any cone C ∈ CT , such that γ (C) has more than m elements, can be
replaced by a finite collection of new cones, each one of them having m generators. In this way we
obtain a new collection of cones C ′

T . Clearly it holds:

Proposition 13. The union of all (γ (C ′) ∪ Y (C ′)) ∩ P(Zm), C ′
∈ C ′

T , is a Gröbner basis for M w.r.t.<V .

Proposition 13 leads to study cones (contained in Qm or Zm) generated bym linearly independent
elements. Hence we focus our attention on this case. Let q1, . . . , qm be m elements of Zm linearly
independent over Q and let

Y =


i

λiqi | λi ∈ Q, 0 ≤ λi < 1


∩ Zm. (7)

We can define a sum on the set Y , in the following way. If a =


i λiqi and b =


i µiqi are
elements of Y , we set: a +Y b =


i{λi + µi}qi, where {x} denotes the fractional part of x. Since

a + b =


i(λi + µi)qi =


i(ni + {λi + µi})qi, where ni ∈ N, we have that indeed a +Y b ∈ Zm. It is
not hard to check that:

Proposition 14. The set Y , endowed with the above operation +Y , is a finite abelian group. Moreover, it
is isomorphic to Zm/⟨q1, . . . , qm⟩.

Proof. Let ψ : Y −→ Zm/⟨q1, . . . , qm⟩ be defined by: φ(a) = [a]. It is easy to see that ψ is a group
isomorphism. �

We can use this last isomorphism to compute explicitly the elements of Y , i.e., the integer
elements of the set


i λiqi | λi ∈ Q, 0 ≤ λi < 1


. Let Q be the matrix whose columns are the

vectors q1, . . . , qm. It can be put in Smith normal form, i.e., we can compute two nonsingular integer
matrices, U1 and U2, such that U1QU2 = diag (d1, . . . , dm), where d1, . . . , dm ∈ N are such that
d1 | d2, . . . , dm−1 | dm. From this, it follows that:

Zm/⟨q1, . . . , qm⟩ ≃ Z/⟨d1⟩ ⊕ · · · ⊕ Z/⟨dm⟩,

and the columns of U−1
1 give generators of Zm/⟨q1, . . . , qm⟩, or of Y , as an abelian group (the first is

of order d1, . . . , the last is of order dm). The above construction allows us to describe explicitly the
elements of the group Y . In particular, if C ′

∈ C ′

T , then Y (C ′) is a finite abelian group, whose elements
can be described according to the above procedure.

Summarizing the claims of this section we have:

Theorem 15. Given a term order<V on Zn and a module M ⊆ Zn of rank m, we can construct a finite set
of vectors {p1, . . . , pk} in PT (Zm) and a collection J of m-tuples of indices j = (j1, . . . , jm), ji ∈ {1, . . . , k},
such that:
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(1) to each j ∈ J we can associate a finite group Yj obtained from the vectors pj1 , . . . , pjm as in (7);
(2) a Gröbner basis of M w.r.t. the term order<V is given by the image, via the map F , of {p1, . . . , pk} ∩

PT (Zm) and of suitable elements of Yj ∩ PT (Zm), j ∈ J .

Ideally, the suitable elements mentioned in the theorem should be thoseminimal w.r.t. @, because
the corresponding Gröbner basis of M would be minimal. But a (big) Gröbner basis is also obtained
just taking thewhole Yj∩PT (Zm), for every j ∈ J . An intermediate Gröbner basis is obtained, if suitable
element is intended to mean minimal w.r.t. ≺+, that is, belonging to the appropriate Hilbert basis. In
our view, an interesting feature of the theorem lies in the fact that each set Yj can be investigated by
means of an algebraic structure. Unfortunately, we have been unable so far to exploit such a structure
in a satisfactory way. We have only gotten partial results in some special cases.

4. An example and some remarks

Let us consider the submoduleM of Z5, whose generators are:

a1 = (2, 1, 3,−3,−1), a2 = (0, 5, 2,−3, 0), a3 = (0, 0, 4,−1, 9).

We want to compute a Gröbner basis ofM w.r.t. the term order given by the matrix:

V =


1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
2 0 0 0 0

 .
The order induced on Z3 (or Q3) by V is given by the matrix T , which is obtained from AV by taking
the first three linearly independent columns, i.e.:

T =


−1 2 1
4 0 5
26 0 0


.

The planes, defined as in (1), are: l1, . . . , l5 = 2x, 5y + x, 4z + 2y + 3x,−z − 3y − 3x, 9z − x. Let
F(x, y, z) = (2x, 5y+ x, 4z + 2y+ 3x,−z − 3y− 3x, 9z − x). The setW , formed by the vectors which
are generators of the cones, is given by the vectors:

(0, 0, 1), (0, 2,−1), (0, 1,−3), (0, 1, 0), (20,−4,−13),
(5,−1,−12), (45,−9, 5), (10,−9,−3), (18,−31, 2), (27,−28, 3),

and by their opposites. We denote these ten elements by q1, . . . , q10. In order to compute the set C of
the cones which cover Q3, we have to compute the signs of F(q) for all q ∈ W . For instance, the signs
of F(q1) are (0, 0,+,−,+), those of F(q4) are (0,+,+,−, 0), hence q1 and q4 are tied. The signs of
F(q7) are (+, 0,+,−, 0), hence q1, q4 and q7 are tied as well. Moreover, this latter set is maximal. The
collection of all the maximal cliques (as given by the Bron–Kerbosch algorithm) is:

{q1, q4, q7}, {q1, q4,−q6,−q8,−q9}, {q1, q7, q10,−q3}, {q1,−q3,−q6},
{q2, q3, q5, q6}, {q2, q3,−q9,−q10}, {q2, q4, q5, q7}, {q2, q4,−q9}, {q3, q6,−q1},

{q3,−q1,−q7,−q10}, {q5, q6, q8}, {q5, q7, q8,−q10}, {q6, q8, q9,−q1,−q4},
{q8, q9,−q10}, {q9,−q10,−q2,−q3}, {q9,−q2,−q4}, {−q1,−q4,−q7},

{−q2,−q3,−q5,−q6}, {−q2,−q4,−q5,−q7}, {−q5,−q6,−q8},
{−q5,−q7,−q8,−q10}, {−q8,−q9,−q10}.

Some of these cones (such as the first one, for instance) are already contained in PT (Z3). Other cones
(such as {q2, q3, q5, q6} and {−q1,−q4,−q7}, for instance) have all their generators outside of PT (Z3),
and hence we do not need to consider them. Further cones (like {q3,−q1,−q7,−q10}, say) are not
contained in PT (Z3), but do have a nontrivial trace in it, which has to be computed. For instance,
the trace of {q3,−q1,−q7,−q10} in PT (Z3) is the cone generated by: −q10, (−74, 79,−15) and
(−36, 17,−4)).
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Finally, we need to decompose the cones of PT (Z3), which are generated by more then 3
vectors, into cones with precisely three (linearly independent) generators. For instance, the cone
{q1, q4,−q6,−q8,−q9} can be split into the following three cones: {q1, q4,−q6}, {q4,−q6,−q8} and
{q4,−q8,−q9} (clearly, there are other possible choices).
In order to express all the cones thus obtained, we need to add fivemore vectors to the list q1, . . . , q10.
Namely: q11 = (74,−79, 15), q12 = (−36, 17,−4), q13 = (130,−26, 9), q14 = (0, 13,−2) and
q15 = (18,−41, 7). The set C ′

T of cones with 3 generators, able to cover PT (Z3), is summarized by
the table in Fig. 1. Let us see an example of computation of the generators of the group Y (C). Take for
instance C = C7, whose generators are −q3,−q5,−q6. The Smith normal form of the 3 × 3 matrix,
whose columns are the three vectors above, yields: 0 −20 −5

−1 4 1
3 13 12


=

 0 −1 0
−1 0 0
3 −4 −1


·

 1 0 0
0 5 0
0 0 35


·

 1 −4 −1
0 4 1
0 −3 −1


.

From this equality we get that:

Y (C7) = {λ(0,−1, 3)+ µ(−20, 4, 13)+ ν(−5, 1, 12) | 0 ≤ λ,µ, ν < 1} ∩ Z3

is (isomorphic to) the group Z5 ⊕ Z35. Moreover, let y1 = (−1, 0, 4) and y2 = (0, 0,−1) be the
last two columns of the matrix which multiplies the diagonal matrix diag(1, 5, 35) on the left. If we
express y1 and y2 as linear combinations of −q3, −q5 and −q6, the corresponding weights λ,µ, ν are
recorded by the triplets x1 = (1/5, 1/5, 2/5) and x2 = (0, 1/35, 31/35), respectively. x1 and x2 are
the generators of Y (C7); the former has order 5, the latter has order 35. Therefore

Y (C7) =


i
5


(−q3)+


i
5

+
j
35


(−q5)+


2i
5

+
31j
35


(−q6)


,

where it is enough to take i = 0, . . . , 4 and j = 0, . . . , 34.
In conclusion, a Gröbner basis of the moduleM is already given by the generators of the cones, and

by those elements of each of the groups of Fig. 1,which turn out to lie in PT (Zm). A smaller basis is given
by selecting in each group the elements lying in PT (Zm) and minimal with respect to ≺+ (they relate
to the appropriate Hilbert bases). A minimal Gröbner basis is given by further selecting the elements
which are minimal with respect to @. Just to give an idea of the huge selection process that can take
place, we record that a minimal Gröbner basis of this example is given by the following 29 vectors
of Z3:

(-1, 0, 0) (-1, 1, 0) (0, 1, 0) (0, -1, 1) (-1, 0, 1) (0, 0, 1)
(1, -1, 1) (1, -2, 1) (-2, 1, 1) (2, -3, 1) (2, -2, 1) (3, -4, 1)
(3, -3, 1) (4, -5, 1) (4, -4, 1) (-5, 6, -1) (5, -5, 1) (-6, 6, -1)
(-5, 6, -1) (5, -5, 1) (-6, 6, -1) (6, -5, 1) (-7, 6, -1) (-7, 5, -1)
(7, -4, 1) (-8, 5, -1) (8, -4, 1) (-9, 5, -1) (9, -4, 1).

Several different strategies can be devised to reduce the number of elements. For instance, given
C ∈ C ′

T , we can try to use the group structure of Y (C) to collect theminimal elements of the cone P(C)
with respect to the partial orders. A good selection strategy is clearly crucial if wewant to improve the
efficiency of the algorithm. At this stage, we are nowhere near competitive with algorithms such as
4ti2 (see 4ti2 team, 0000),which is based onHemmecke andMalkin (2009), orNormalizBruns et al.
(0000), which already deals with Hilbert bases via triangulation and enumeration of the fundamental
parallelotope. And even if we find a good selection strategy, and streamline the whole procedure, it is
not clear whether the end result is competitive. Nevertheless, since the knowledge of a Gröbner basis
of a Z-module, and hence of a saturated pure binomial ideal, although far from minimal, is sufficient
to solve several computational problems, such as the membership problem, it could be interesting to
see how to use the peculiar structure of the Gröbner bases of Theorem 15 in order to decide some
of those problems, e.g., whether a polynomial belongs to a binomial ideal. As a further comment,
we note that there are submodules of Zn (which come from special classes of binomial ideals) for
which the hyperplanes given by (1) have many symmetries, so that the construction of the cones can
be simplified. Use of symmetries has already proven effective in the literature, see for instance the
recent (Bruns et al., 0000).
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cone generators abelian group group generators
C1 q1, q4, q7 Z45 ( 89 ,

1
5 ,

1
45 )

C2 q4, q1,−q6 Z5 ( 45 ,
3
5 ,

1
3 )

C3 q4,−q6,−q8 Z105 ( 13 ,
61
105 ,

1
105 )

C4 q4,−q8,−q9 Z74 ( 12 ,
1
37 ,

3
74 )

C5 q1,−q3,−q6 Z5 (0, 1
5 ,

1
5 )

C6 −q3,−q2,−q5 Z5 ⊕ Z20 ( 25 ,
1
5 ,

1
5 ), (

7
10 ,

1
4 ,

1
20 )

C7 −q3,−q5,−q6 Z5 ⊕ Z35 ( 15 ,
1
5 ,

2
5 ), (0,

1
35 ,

31
35 )

C8 −q5,−q6,−q8 Z35 ⊕ Z35 ( 3335 ,
34
35 ,

1
35 ), (

34
35 ,

4
35 , 0)

C9 −q8,−q9,−q10 Z37 ⊕ Z37 ( 1
37 , 0,

1
37 ), (

36
37 ,

17
37 , 0)

C10 −q10,−q11, q12 Z61 ⊕ Z61 ( 1861 ,
1
61 ,

59
61 ), (

42
61 , 0,

60
61 )

C11 q4,−q9,−q15 Z90 ( 12 ,
83
90 ,

1
45 )

C12 q4 − q15, q14 Z36 ( 34 ,
17
18 ,

7
36 )

C13 −q2, q15,−q14 Z9 ⊕ Z18 ( 5
18 ,

17
18 ,

1
18 ), (

7
9 , 0,

1
9 )

C14 −q9,−q10,−q11 Z2257 ( 3
37 ,

1950
2257 ,

1
61 )

C15 −q9,−q11,−q15 Z5580 ( 4390 ,
1

124 ,
5519
5580 )

C16 q4, q7, q13 Z245 ( 15 ,
236
245 ,

1
49 )

C17 q4, q13, q14 Z260 ( 14 ,
129
130 ,

251
260 )

C18 q7, q13,−q12 Z49 ⊕ Z49 ( 1
49 , 0,

11
49 ), (0,

48
49 ,

39
49 )

C19 −q2,−q3, q11 Z370 ( 25 ,
49
370 ,

1
74 )

C20 −q2, q11, q15 Z1116 ( 1118 ,
69
124 ,

485
1116 )

C21 −q2,−q5,−q13 Z2 ⊕ Z1870 ( 12 ,
1
2 , 0), (

3
5 ,

61
1870 ,

1
374 )

C22 −q2,−q13,−q14 Z1170 ( 1718 ,
57
130 ,

293
585 )

C23 −q5,−q8,−q10 Z1295 ( 9
35 ,

1182
1295 ,

1
37 )

C24 −q5,−q10, q12 Z8357 ( 100137 ,
1

8357 ,
1021
8357 )

C25 −q5, q12,−q13 Z18326 ( 101374 ,
43
49 ,

1
18326 )

C26 q1, q7,−q12 Z441 ( 19 ,
424
441 ,

1
49 )

C27 q1,−q12, q11 Z1586 ( 2326 ,
835
1586 ,

1
1586 )

C28 q1, q11,−q3 Z74 (0, 59
74 ,

1
74 )

Fig. 1. An example.

Acknowledgements

This research was partly supported by MIUR (Italian Government PRIN ‘‘Algebra commutativa
e combinatorica con applicazioni alla geometria algebrica’’), by the universities UdA (Pescara) and
LUSPIO (Rome) (first author) and by the university of Trieste (second author).



1308 G. Boffi, A. Logar / Journal of Symbolic Computation 47 (2012) 1297–1308

References

4ti2 team 4ti2—a software package for algebraic, geometric and combinatorial problems on linear spaces. Available at
www.4ti2.de.

Boffi, G., Logar, A., 2007. Gröbner bases for submodules of Zn . Rend. Istit. Mat. Univ. Trieste XXXIX, 43–62.
Bruns, W., Gubeladze, J., 2009. Polytopes, Rings and K -theory. In: Springer Monographs in Mathematics, Springer.
Bruns, W., Hemmecke, R., Ichim, B., Köppe, M., Söger, C., Challenging computations of Hilbert bases of cones associated with

algebraic statistics. arXiv:1001.4145v1 [math.CO].
Bruns, W., Ichim, B., Söger, C., Normaliz. Available at www.mathematik.uni-osnabrueck.de/normaliz/.
Cazals, F., Karande, C., 2008. A note on the problem of reporting maximal cliques. Theoretical Computer Science 407, 564–568.
CoCoA Team. CoCoA: a system for doing Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it.
Eisenbud, D., Sturmfels, B., 1996. Binomial ideals. Duke Math. J. 84, 1–45.
Hemmecke, R., Malkin, P., 2009. Computing generating sets of lattice ideals and Markov bases of lattices. Journal of Symbolic

Computation 1463–1476.
Schrijver, A., 1986. Theory of Linear and Integer Programming. John Wiley and Sons.
Sturmfels, B., Weismantel, R., Ziegler, G., 1995. Gröbner bases of lattices, corner polyhedra, and integer programming. Beiträge

Algebra Geom. 36 (2), 281–298.
Thomas, R., 1995. A geometric Buchberger algorithm for integer programming. Math. Oper. Res. 4, 864–884.

http://www.4ti2.de
http://arxiv.org/1001.4145v1
http://www.mathematik.uni-osnabrueck.de/normaliz/
http://cocoa.dima.unige.it

	Computing Gröbner bases of pure binomial ideals via submodules of  Zn 
	Introduction
	Preliminaries and recollections
	Subdivision of Qm into cones
	Cones in PT(Zm)
	An example and some remarks
	Acknowledgements
	References


