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Abstract

In this work, we discuss the interaction between anti-symmetric rank-two tensor matter and topological Yang–Mills field
The matter field considered here is the rank-2 Avdeev–Chizhov tensor matter field in a suitably extendedNT = 2 SUSY. We
start off from theNT = 2, D = 4 superspace formulation and we go over to Riemannian manifolds. The matter field is c
to the topological Yang–Mills field. We show that both actionsare obtained asQ-exact forms, which allows us to express t
energy–momentum tensor asQ-exact observables.
 2004 Published by Elsevier B.V.

1. Introduction

Topological field theories such as Chern–Simons and BF-type gauge theories probe space–time in its glo
structure, and this aspect has a considerable relevance in quantum field theories. On the other hand, there
deal of interest in anti-symmetric rank-2 tensor fields that can be put into two categories: gauge fields o
fields. Some years ago, Avdeev and Chizhov [1–3] proposed a model where the antisymmetric tensor beh
matter field.

In a recent work [4], Geyer and Mülsch presented a formulation, until then unknown in the literature, which is
construction of the Avdeev–Chizhov action described in the topological formalism [5]. This was built forNT = 1
and generalized forNT = 2. Known the properties of the anti-symmetric rank-two tensor matter field theory
referred to as Avdeev–Chizhov field [6], its supersymmetric properties and characteristics are presented in
following this formalism, we shall write down this action in superfield formalism, in the way presented by H
[8] in topological theories, as a Donaldson–Witten topological theories [5,9].
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Our goal in this work is to discuss the interaction between matter and topological Yang–Mills fields as presen
by Geyer–Mülsch [4] forNT = 1 and NT = 2. The matter field considered here is the rank-2 tensor matter
formulated in terms of a complex self-duality condition [6]. Thus, we nowwrite this field asan anti-symmetric
rank-two tensor matter superfield inNT = 2-SUSY in the superspace formalism, discussed also in [7]. The m
field is coupled to the topological Yang–Mills connection by means of the Blau–Thompson action. We express
Yang–Mills superconnection as a 2-superform in a superspace with four bosonic space–time coordinates and
fermionic dimensions described by Grassmann coordinates, and then construct the action in a superfield forma
following the definitions by Horne [8]. Next, we go over to Riemannian manifolds duely described in ter
the vierbein and the spin connection, where we take the gravitation as a background. We introduce and
the Wess–Zumino gauge condition induced by the shift supersymmetry, better detailed in [10]. Finally, we arri
at a topological-invariant action as the sum of the Avdeev–Chizhov‘s action coupled to the topological
Yang–Mills action; both actions are obtained asQ-exact forms, and the energy–momentum tensor is shown
Q-exact.

2. The NT = 2 superconnection, supercurvature and shift algebra

Let us now consider the Donaldson–Witten theory, whose space of solutions is the space of self-dual instanto
F = ∗F . To follow our superfield formulation, we shall proceed with the definition of the action of Horne [8
Blau–Thompson [13,14]. TheNT = 2 superfield conventions are the ones of [10]. The superfields superconn
and its associated superghosts are given as below:

(2.1)Â = ÂaTa, Ĉ = ĈaTa,with [Ta,Tb] = ifab
cTc.

Before the presentation of our superaction formulation, we provide a few results regarding our conv
on the Grassmann coordinates. Thus the topological fermionic index:I = 1,2, is lowered and raised by th
anti-symmetric Levi-Civita tensor:εIJ , εIJ , with ε12 = −ε12 = 1. The θ -coordinate definitions:θI = εIJ θJ ,
θI = εIJ θJ , and the quadratic forms are:

θ2 = θI θI = −1

2
εIJ θ2, θI θJ = 1

2
εIJ θ2,

with εIKεKJ = δI
J . The derivatives are:

(2.2)∂I = ∂

∂θI
, ∂I = ∂

∂θI

and ∂I θ
J Def= δI

J .

We still have the integration definition, such that
∫

dθI Def= ∂I . This result is applied to a superfunctionf (x, θ), so
that the volume element isQ2f (x, θ) = ∫

d2θ f (x, θ) = 1
4εIJ ∂I ∂J f (x, θ). A superfield in the topological theor

of Witten’s type obeys the equation:QIF(x, θ)
Def= ∂IF (x, θ).

We start our topological SUSY formalism by expanding the superforms (2.1) in component superfie
have:

(2.3)Â = A(xµ, θI ) + EI (xµ, θI ) dθI , Ĉ = C(xµ, θI ),

with I = 1,2; in component fields, it comes out as below:

(2.4)A(x, θ) = a(x) + θIψI (x) + 1

2
θ2α(x),

(2.5)EI(x, θ) = χI (x) + θIφIJ (x) + 1

2
θ2ηI (x),

(2.6)C(x, θ) = c(x) + θI cI (x) + 1
θ2cF (x).
2
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The associated supercurvature is defined asF̂ = d̂Â + Â2 = F + ΨI dθI + ΦIJ dθI dθJ , whose components rea
as follows:

(2.7)F = f − θIDaψI + 1

2
θ2

(
Daα + 1

2
εIJ [ψI ,ψJ ]

)
,

(2.8)

ΨI = ψI + DaχI + θJ
(
εIJ α − θJ DaφIJ + θJ [ψJ ,χI ]

) + θ2
(

1

2
DaηI − 1

2
εKJ [ψK,φIJ ] + 1

2
[α,χI ]

)
,

(2.9)

ΦIJ = 1

2

{
φIJ + φJI + [χI ,χJ ] + θK

(
εKIηJ + εJKηI + [χI ,φJK ] + [φIK,χJ ])

+ 1

2
θ2([χI , ηJ ] + [ηI ,χJ ] − εKL[φIK,φJL])

}
,

wheref = da + a2 and the covariant derivatives ina being given byDa(·) = d(·) + [a, (·)]; the symbol(·)
represents any field which the derivative act upon. This formalism withNT = 2, it can be found as an example
the work [11].

The SUSY weight is defined by attributing−1 to θ. Thus, the supersymmetry generators,Q, exhibit weight 1.
The BRST-transformation of the superconnection (2.3) issÂ = −d̂Ĉ − [Â, Ĉ] = −D̂

Â
Ĉ, and, in componen

superfields, it is given by

(2.10)sA = −dC − [A,C] = −DAC, sEI = −∂IC − [EI ,C] = −DIC, sC = −C2;
the supercovariant derivative is:D̂

Â
= DA + dθIDI , whereDI (·) = ∂I (·) + [EI , (·)].

The supersymmetry transformations or shift symmetry transformations are defined as:

(2.11)QIA = ∂IA, QIEJ = ∂IEJ , QI C = ∂IC.

Next, we believe it is interesting to introduce and discuss a sort of Wess–Zumino gauge choice associat
shift symmetry above, which is the topological BRST-transformation. The Wess–Zumino2 gauge seen in [10,12
is here defined by the condition

(2.12)χI = 0 and φ[IJ ] = 0,

due to the linear shift in the transformations (2.11) for scalar fieldsχI and φIJ respectively, with paramete
given by the ghost fields,cI andcF . There exists now only the symmetric fieldφ(IJ ), that we write from now on
simply asφIJ . This condition is not SUSY-invariant underQI , and it can be defined in terms of the infinitesim
fermionic parameterεI as:Q̃ = εI Q̃I . This operator leaves the conditions (2.12) invariant, and it is built up by
combinations ofQ with the BRST-transformations in the Wess–Zumino gauge, such that

(2.13)Q̃ = (s + Q)
∣∣
cI =εJ φIJ , cF = 1

2εJ ηJ
.

The results in terms of component fields are displayed below:

Q̃a = −Dac + εIψI , Q̃ψI = −[c,ψI ] − εJ DaφIJ + εI α,

Q̃α = −[c,α] + εIJ εK [φIk,ψJ ] − 1

2
εIDaηI , Q̃φIJ = −[c,φIJ ] + 1

2
(εI ηJ + εJ ηI ),

(2.14)Q̃ηI = −[c, ηI ] + εJKεM [φJM,φIK ], Q̃c = −c2 + εI εJ φIJ ,

2 This name is given since we are dealing with a linear gauge and scalar ghost field.



146 W. Spalenza et al. / Physics Letters B 587 (2004) 143–149

own

of this
t its
ality

to

ir

pace

ith the

action
se

ge
in agreement with the transformation found in the works of [14,15]; the nilpotency reads as

(2.15)(Q̃)2 ∝ δφIJ ,

that is, an infinitesimal transformation ofφIJ . With the result of the previous section, we are ready to write d
the Blau–Thompson action, which is the invariant Yang–Mills action for the topological theory.

3. The Blau–Thompson action

The associated action forNT = 2, D = 4 is the Witten’s action [8,15,16], described inNT = 2 by the Blau–
Thompson action [13,14], with gauge completely fixed in terms of the superfield. For the construction
action, we need a Lagrange multiplier that couples to the topological super-Yang–Mills sector, so as to manifes
self-duality:F = ∗F . We then define a 2-form-superfield Lagrange multiplier, with the property of anti-self-du
and supergauge covariant:sK = −[C,K], such that

K(x, θ) = k(x) + θI kI (x) + 1

2
θ2κ(x).

We still wish a quadratic term in the last component field ofK. For that, we still need a 0-form-superfield
complete the gauge-fixing forΨI , which is defined as:

(3.1)HI(x, θ) = hI (x) + θJ hJI (x) + 1

2
θ2ρI (x).

To fix the super-Yang–Mills gauge, we define an anti-ghost superfield forC, being a 0-form-superfield and the
Lagrange multiplier

(3.2)C̄(x, θ) = c̄(x) + θI c̄I (x) + 1

2
θ2c̄F (x), B(x, θ) = b(x) + θI bI (x) + 1

2
θ2β(x).

Their BRST-transformations aresC̄ = B, sB = 0. Therefore, the complete Blau–Thompson action in supers
takes the form

(3.3)SBT =
∫

d2θ
√

g Tr
{
K ∗ F + ζK ∗ D2

θK + εIJ HIDA ∗ ΨJ + s(C̄d ∗ A)
}
,

with ζ being constant andg is the background metric of the Riemannian manifold.
In the next section, we shall discuss the Avdeev–Chizhov action in a general Riemannian manifold w

same background metric.

4. Tensorial matter in a general Riemannian manifold

To couple the theory above to the Avdeev–Chizhov model, we start by describing the Avdeev–Chizhov
through the complex self-dual fieldϕ [6], initially written in the 4-dimensional Minkowskian manifold, who
indices are:m,n, . . . . We write this action, according to the work of [6], as

(4.1)Smatter=
∫

d4x
{(

Dmϕmn

)†(
Dpϕpn

) + q
(
ϕ†

mnϕ
pnϕ†mqϕpq

)}
.

Here,q is a coupling constant for the self-interaction, and the covariant derivativeDm
a ϕmn = ∂mϕmn − [am,ϕmn];

am is the Lie-algebra-valued gauge potential and we assumeϕmn to belong a given representation of the gau
groupG. This action is invariant under the following transformations:

(4.2)δG(ω)am = Dmω, δG(ω)ϕmn = ϕmnω, δG(ω)ϕ†
mn = −ωϕ†

mn,
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(4.3)ϕmn = Tmn + iT̃mn,

which exhibit the propertiesϕmn = iϕ̃mn, ˜̃ϕmn = −ϕmn, where the duality is defined bỹϕmn = 1
2εmnpqϕpq .

To formulate this theory on a general Riemannian manifold as a topological theory, Geyer–Mülsch [4]
it in a four-dimensional Riemannian manifold, endowed of the vierbeineµ

m and a spin-connectionωmn
µ , i.e., the

tensorial matter read asϕµν = eµ
meν

nϕmn, where the action (4.1) is given in terms of theϕµν andϕ†
µν now. In this

4-dimensional Riemannian manifold, we find the following properties:

(4.4)
√

g εµνρλε
mnpq = e[µmeν

neρ
peλ]q, eµ

meν
ngµν = ηmn, eµ

meν
nηmn = gµν.

The covariant derivative in the Riemannian manifold is now written in terms of the spin-connection:

(4.5)∇µ = Dµ + ωµ,

where ωµ = 1
2ωµ

mnσmn, being σmn the generator of the holonomy Euclidean groupSO(4), also we have
Dµ = (Da)µ, where,a, is the Yang–Mills connection.

5. Supersymmetrization of the Avdeev–Chizhov action

From now on, we can write the action (4.1) in a Riemannian manifold in terms of superfields, mention
conventions of the works [8,10]. The superfield that accommodates the rank-two anti-symmetric tensorial ma
field is similar to the one defined in [7], being now expressed as a linear fermionic supermultiplet. This is
as a rank-two anti-symmetric tensor in the 4-dimensional Riemannian manifold, with the topological fer
index,I , referring to the topological SUSY index:

(5.1)ΣI
µν(x, θ) = λI

µν(x) + θI ϕµν(x) + 1

2
θ2ζ I

µν(x),

whereϕµν(x) is the Avdeev–Chizhov field. The supermanifold is composed by Riemannian manifold a
NT = 2 topological manifold.

The superfield is defined under the SUSY transformations:QIΣµνJ = ∂IΣµνJ , and in components:

(5.2)QIλµνJ = εIJ ϕµν, QIϕµν = −ζµνI , QI ζµνJ = 0.

Based on the work of Ref. [6], we rewrite the BRST-transformations, referring the non-Abelian Av
Chizhov model. We wish to write the BRST-transformation for a supergauge transformation, generalizing
transformations for the Avdeev–Chizhov fields, according to

(5.3)s
(
ΣI

µν

) = iC
(
ΣI

µν

)
, s

(
ΣI

µν

)† = iC
(
ΣI

µν

)†
.

The superderivative of (5.1) is covariant under the BRST-transformation. This new covariant derivative r
below:

Dµ(·) = (DA)µ(·) + ωµ(·) = ∇µ(·) + θI [ψI µ, (·)] + 1

2
θ2[αµ, (·)],

according to (4.5), this yields

s
(
DµΣI

µν

) = C
(
DµΣI

µν

)
and s

(
DIΣ

I
µν

) = C
(
DIΣ

I
µν

)
,

where we have chosen here,sωµ = 0.
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By now performing BRST-transformations on the components that survive in theNT = 2 Wess–Zumino gaug
(2.13), we find:

Q̃λµνI = εJ εJ Iϕµν + icλµνI , Q̃λ
†
µνI = εJ εJ Iϕ

†
µν − icλ

†
µνI ,

Q̃ϕµν = icϕµν + iεI ζµνI + iεIφIJ λJ
µν, Q̃ϕ†

µν = −icϕ†
µν − iεI ζ

†
µνI − iεIφIJ λ†J

µν ,

(5.4)Q̃ζµνI = icζµνI − iεJ φJIϕµν + iεJ ηJ λµνI , Q̃ζ
†
µνI = −icζ

†
µνI + iεJ φJI ϕ

†
µν − iεJ ηJ λ

†
µνI ,

in agreement to (2.15).
We build up rank-two anti-symmetric tensorial matter field in a superspace formulation, leaving the sup

with the same properties as shown in [7]; this is invariant under gauge transformations (5.4) and
transformations. The total action is finally expressed by the equation that follows:

(5.5)SAC = −
∫

d2θ
√

g
{
εIJ

(
DµΣ

µν
I

)†(DρΣρ
νJ

) + qεIJ εLM(ΣµνI )
†DK

(
Σ

ρν
J

)(
Σ

µλ
L

)†
DK(ΣρλM)

}
,

whereq is a quartic coupling constant. It is invariant under conformal transformations.
Therefore, the total gauge-invariant action can be written as:SAC + SBT. We could also have replacedSBT by

the super-BF action described in the work of Ref. [11].
TheQ-exactness of the total action above is also true forNT = 2 SUSY, as in [4]; this isso because the fermion

volume element reads asQ2 ∝ Q1Q2, which means the exactness in the chargesQ1, Q2 of this action. This proo
is true forNT = 1 and it can be extended to a generalNT , as it can be seen in the works of Ref. [10], where
total action is alsos-exact. According to Blau–Thompson in their review [17], the energy–momentum tensoΘµν

is alsoQ-exact,

(5.6)O = 〈0|Θµν |0〉 = 〈0| 2√
g

δ

δgµν
(SBT + SAC)|0〉 = 〈0|QΥµν |0〉,

ensuring the topological nature of the theory, where we shall just use the Avdeev–Chizhov kinetic term, beca
the interaction term carries the coupling constantq , which is irrelevant for the attainment of the observables of
theory [4].

6. Concluding remarks

The main goal of this Letter is the settlement of a topological superspace formulation for the investigatio
the coupling between the rank-two Avdeev–Chizhov matter field and Yang–Mills fields. It comes out that th
tensor isQ-exact. This opens us the way for the identification of a whole class of observables that we are t
classify [19].

It is worthwhile to draw the attention here to the shift symmetry that allows us to detect the ghost ch
of the Avdeev–Chizhov field. On the other hand, it is known that there appears a ghost mode in the spe
excitations of our tensor matter field [1]. The connection between these two observations remain to be c
The fact that the Avdeev–Chizhov field manifests itself as a ghost guides future developments in the qu
consistent mechanism to systematically decouple the unphysical mode mentioned above.

We are also trying to embed the tensor field in the framework of a gauge theory with Lorentz symmetry b
[18]. We expect that this breaking may identify the right ghost mode present among the two spin-1 compo
the Avdeev–Chizhov field.

A relevant question which remains to be answered concerns the eventual appearance of new to
observables, once the Avdeev–Chizhov matter field is coupled to the Yang–Mills sector. In this coupled mo
an inspection of the Witten’s descent equations would reveal the emergence of new observables, which w
even more legitimacy to the coupling we have written down. We should seek, in the Avdeev–Chizhov s
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ent

useful
BRST-invariant field which would correspond to the Donaldson–Witten theory. This is the subject of a pres
investigation and it will be reported on in a forthcoming paper [20].
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