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1. Introduction

In some cases and real world problems, fractional-order models are found to be more
adequate than integer-order models as fractional derivatives provide an excellent tool for
the description of memory and hereditary properties of various materials and processes.
The mathematical modelling of systems and processes in the fields of physics, chemistry,
aerodynamics, electro dynamics of complex medium, polymer rheology, and so forth,
involves derivatives of fractional order. In consequence, the subject of fractional differential
equations is gaining much importance and attention. For details and examples, see [1–14]
and the references therein.

Antiperiodic boundary value problems have recently received considerable attention
as antiperiodic boundary conditions appear in numerous situations, for instance, see
[15–22].

Differential inclusions arise in the mathematical modelling of certain problems in
economics, optimal control, and so forth. and are widely studied by many authors, see [23–
27] and the references therein. For some recent development on differential inclusions, we
refer the reader to the references [28–32].
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2 Boundary Value Problems

Chang and Nieto [33] discussed the existence of solutions for the fractional boundary
value problem:

c
0D

δ
t y(t) ∈ F

(
t, y(t)

)
, t ∈ [0, 1], δ ∈ (1, 2),

y(0) = α, y(1) = β, α, β /= 0.
(1.1)

In this paper, we consider the following fractional differential inclusions with
antiperiodic boundary conditions

cDqx(t) ∈ F(t, x(t)), t ∈ [0, T], T > 0, 1 < q ≤ 2,

x(0) = −x(T), x′(0) = −x′(T),
(1.2)

where cDq denotes the Caputo fractional derivative of order q, F : [0, T] × R → 2R \ {∅}.
Bohnenblust-Karlin fixed point theorem is applied to prove the existence of solutions of (1.2).

2. Preliminaries

Let C([0, T]) denote a Banach space of continuous functions from [0, T] into R with the norm
‖x‖ = supt∈[0,T]{|x(t)|}. Let L1([0, T],R) be the Banach space of functions x : [0, T] → R

which are Lebesgue integrable and normed by ‖x‖L1
=
∫T
0 |x(t)|dt.

Now we recall some basic definitions on multivalued maps [34, 35].
Let (X, ‖ · ‖) be a Banach space. Then a multivalued map G : X → 2X is convex

(closed) valued if G(x) is convex (closed) for all x ∈ X. The map G is bounded on bounded
sets ifG(B) =

⋃
x∈BG(x) is bounded inX for any bounded set B ofX (i.e., supx∈B{sup{|y| : y ∈

G(x)}} < ∞). G is called upper semicontinuous (u.s.c.) on X if for each x0 ∈ X, the set G(x0)
is a nonempty closed subset ofX, and if for each open set B ofX containingG(x0), there exists
an open neighborhood N of x0 such that G(N) ⊆ B. G is said to be completely continuous
if G(B) is relatively compact for every bounded subset B of X. If the multivalued map G is
completely continuous with nonempty compact values, then G is u.s.c. if and only if G has a
closed graph, that is, xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗). In the following study,
BCC(X) denotes the set of all nonempty bounded, closed, and convex subset of X. G has a
fixed point if there is x ∈ X such that x ∈ G(x).

Let us record some definitions on fractional calculus [8, 11, 13].

Definition 2.1. For a function g : [0,∞) → R, the Caputo derivative of fractional order q > 0
is defined as

cDqg(t) =
1

Γ
(
n − q

)
∫ t

0
(t − s)n−q−1g(n)(s)ds, n − 1 < q < n, n =

[
q
]
+ 1, (2.1)

where [q] denotes the integer part of the real number q and Γ denotes the gamma function.
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Definition 2.2. The Riemann-Liouville fractional integral of order q > 0 for a function g is
defined as

Iqg(t) =
1

Γ
(
q
)
∫ t

0

g(s)

(t − s)1−q
ds, q > 0, (2.2)

provided the right-hand side is pointwise defined on (0,∞).

Definition 2.3. The Riemann-Liouville fractional derivative of order q > 0 for a function g is
defined by

Dqg(t) =
1

Γ
(
n − q

)
(

d

dt

)n∫ t

0

g(s)

(t − s)q−n+1
ds, n =

[
q
]
+ 1, (2.3)

provided the right-hand side is pointwise defined on (0,∞).
In passing, we remark that the Caputo derivative becomes the conventional nth

derivative of the function as q → n and the initial conditions for fractional differential
equations retain the same form as that of ordinary differential equations with integer
derivatives. On the other hand, the Riemann-Liouville fractional derivative could hardly
produce the physical interpretation of the initial conditions required for the initial value
problems involving fractional differential equations (the same applies to the boundary value
problems of fractional differential equations). Moreover, the Caputo derivative for a constant
is zero while the Riemann-Liouville fractional derivative of a constant is nonzero. For more
details, see [13].

For the forthcoming analysis, we need the following assumptions:

(A1) let F : [0, T] × R → BCC(R); (t, x) → f(t, x) be measurable with respect to t for
each x ∈ R, u.s.c. with respect to x for a.e. t ∈ [0, T], and for each fixed x ∈ R, the
set SF,y := {f ∈ L1([0, T],R) : f(t) ∈ F(t, x) for a.e. t ∈ [0, T]} is nonempty,

(A2) for each r > 0, there exists a function mr ∈ L1([0, T],R+) such that ‖F(t, x)‖ =
sup{|v| : v(t) ∈ F(t, x)} ≤ mr(t) for each (t, x) ∈ [0, T] × R with |x| ≤ r, and

lim inf
r→+∞

⎛

⎝
∫T
0mr(t)dt

r

⎞

⎠ = γ < ∞, (2.4)

where mr depends on r. For example, for F(t, x) = x, we have mr(t) = r and hence γ = T. If
F(t, x) = x2, then γ is not finite.

Definition 2.4 ([16, 33]). A function x ∈ C([0, T]) is a solution of the problem (1.2) if there
exists a function f ∈ L1([0, T],R) such that f(t) ∈ F(t, x(t)) a.e. on [0, T] and

x(t) =
∫ t

0

(t − s)q−1

Γ
(
q
) f(s)ds − 1

2

∫T

0

(T − s)q−1

Γ
(
q
) f(s)ds

+
1
4
(T − 2t)

∫T

0

(T − s)q−2

Γ
(
q − 1

) f(s)ds,

(2.5)
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which, in terms of Green’s function G(t, s), can be expressed as

x(t) =
∫T

0
G(t, s)f(s)ds, (2.6)

where

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− (T − s)q−1

2Γ
(
q
) +

(T − 2t)(T − s)q−2

4Γ
(
q − 1

) , 0 < t < s < T,

(t − s)q−1 − 1
2
(T − s)q−1

Γ
(
q
) +

(T − 2t)(T − s)q−2

4Γ
(
q − 1

) , 0 < s < t < T.

(2.7)

Here, we remark that the Green’s function G(t, s) for q = 2 takes the form (see [22])

G(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

1
4
(−T − 2t + 2s), 0 < t < s < T,

1
4
(−T + 2t − 2s), 0 < s < t < T.

(2.8)

Now we state the following lemmas which are necessary to establish the main result
of the paper.

Lemma 2.5 (Bohnenblust-Karlin [36]). Let D be a nonempty subset of a Banach space X, which is
bounded, closed, and convex. Suppose that G : D → 2X \{0} is u.s.c. with closed, convex values such
that G(D) ⊂ D and G(D) is compact. Then G has a fixed point.

Lemma 2.6 ([37]). Let I be a compact real interval. Let F be a multivalued map satisfying (A1)
and let Θ be linear continuous from L1(I,R) → C(I), then the operator Θ ◦ SF : C(I) →
BCC(C(I)), x �→ (Θ ◦ SF)(x) = Θ(SF,x) is a closed graph operator in C(I) × C(I).

3. Main Result

Theorem 3.1. Suppose that the assumptions (A1) and (A2) are satisfied, and

γ <
4Γ

(
q
)

(
5 + q

)
Tq−1 . (3.1)

Then the antiperiodic problem (1.2) has at least one solution on [0, T].
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Proof. To transform the problem (1.2) into a fixed point problem, we define a multivalued
map Ω : C([0, T]) → 2C([0,T]) as

Ω(x) =

{

h ∈ C([0, T]) : h(t) =
∫ t

0

(t − s)q−1

Γ
(
q
) f(s)ds − 1

2

∫T

0

(T − s)q−1

Γ
(
q
) f(s)ds

+
1
4
(T − 2t)

∫T

0

(T − s)q−2

Γ
(
q − 1

) f(s)ds, f ∈ SF,x

}

.

(3.2)

Nowwe prove thatΩ satisfies all the assumptions of Lemma 2.6, and thusΩ has a fixed point
which is a solution of the problem (1.2). As a first step, we show that Ω(x) is convex for each
x ∈ C([0, T]). For that, let h1, h2 ∈ Ω(x). Then there exist f1, f2 ∈ SF,x such that for each
t ∈ [0, T],we have

hi(t) =
∫ t

0

(t − s)q−1

Γ
(
q
) fi(s)ds − 1

2

∫T

0

(T − s)q−1

Γ
(
q
) fi(s)ds

+
1
4
(T − 2t)

∫T

0

(T − s)q−2

Γ
(
q − 1

) fi(s)ds, i = 1, 2.

(3.3)

Let 0 ≤ λ ≤ 1. Then, for each t ∈ J,we have

[λh1 + (1 − λ)h2](t) =
∫ t

0

(t − s)q−1

Γ
(
q
)

[
λf1(s) + (1 − λ)f2(s)

]
ds

− 1
2

∫T

0

(T − s)q−1

Γ
(
q
)

[
λf1(s) + (1 − λ)f2(s)

]
ds

+
1
4
(T − 2t)

∫T

0

(T − s)q−2

Γ
(
q − 1

)
[
λf1(s) + (1 − λ)f2(s)

]
ds.

(3.4)

Since SF,x is convex (F has convex values), therefore it follows that λh1 + (1 − λ)h2 ∈ Ω(x).
In order to show that Ω(x) is closed for each x ∈ C([0, T]), let {un}n≥0 ∈ Ω(x) be such

that un → u(n → ∞) in C([0, T]). Then u ∈ C([0, T]) and there exists a vn ∈ SF,x such that

un(t) =
∫ t

0

(t − s)q−1

Γ
(
q
) vn(s)ds − 1

2

∫T

0

(T − s)q−1

Γ
(
q
) vn(s)ds

+
1
4
(T − 2t)

∫T

0

(T − s)q−2

Γ
(
q − 1

) vn(s)ds.

(3.5)
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As F has compact values, we pass onto a subsequence to obtain that vn converges to v in
L1([0, T],R+). Thus, v ∈ SF,x and

un(t) −→ u(t) =
∫ t

0

(t − s)q−1

Γ
(
q
) v(s)ds − 1

2

∫T

0

(T − s)q−1

Γ
(
q
) v(s)ds

+
1
4
(T − 2t)

∫T

0

(T − s)q−2

Γ
(
q − 1

) v(s)ds.

(3.6)

Hence u ∈ Ω(x).
Next we show that there exists a positive number r such that Ω(Br) ⊆ Br, where Br =

{x ∈ C([0, T]) : ‖x‖ ≤ r}. Clearly Br is a bounded closed convex set in C([0, T]) for each
positive constant r. If it is not true, then for each positive number r, there exists a function
xr ∈ Br, hr ∈ Ω(xr)with ‖Ω(xr)‖ > r, and

hr(t) =
∫ t

0

(t − s)q−1

Γ
(
q
) fr(s)ds − 1

2

∫T

0

(T − s)q−1

Γ
(
q
) fr(s)ds

+
1
4
(T − 2t)

∫T

0

(T − s)q−2

Γ
(
q − 1

) fr(s)ds, for some fr ∈ SF,xr .

(3.7)

On the other hand, in view of (A2), we have

r < ‖Ω(xr)‖

≤
∫ t

0

|t − s|q−1
Γ
(
q
)

∣∣fr(s)
∣∣ds +

1
2

∫T

0

|T − s|q−1
Γ
(
q
)

∣∣fr(s)
∣∣ds

+
1
4
|T − 2t|

∫T

0

|T − s|q−2
Γ
(
q − 1

)
∣∣fr(s)

∣∣ds

≤ Tq−1

Γ
(
q
)
∫T

0
mr(s)ds +

Tq−1

2Γ
(
q
)
∫T

0
mr(s)ds +

Tq−1

4Γ
(
q − 1

)
∫T

0
mr(s)ds

=
Tq−1(5 + q

)

4Γ
(
q
)

∫T

0
mr(s)ds,

(3.8)

where we have used the fact that

∣∣∣(T − 2t)(T − s)q−2
∣∣∣ ≤

∣∣∣(T − t)(T − s)q−2
∣∣∣ ≤ |(T − t)|q−1, for t < s,

∣∣∣(T − 2t)(T − s)q−2
∣∣∣ ≤

∣∣∣(T − t)(T − s)q−2
∣∣∣ ≤ |(T − s)|q−1, for t ≥ s.

(3.9)

Dividing both sides of (3.8) by r and taking the lower limit as r → ∞, we find that γ ≥
4Γ(q)/(5 + q)Tq−1, which contradicts (3.1). Hence there exists a positive number r ′ such that
Ω(Br ′) ⊆ Br ′.
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Now we show that Ω(Br ′) is equicontinuous. Let t′, t′′ ∈ [0, T] with t′ < t′′. Let x ∈ Br ′

and h ∈ Ω(x), then there exists f ∈ SF,x such that for each t ∈ [0, T],we have

h(t) =
∫ t

0

(t − s)q−1

Γ
(
q
) f(s)ds − 1

2

∫T

0

(T − s)q−1

Γ
(
q
) f(s)ds +

1
4
(T − 2t)

∫T

0

(T − s)q−2

Γ
(
q − 1

) f(s)ds. (3.10)

Using (3.8), we obtain

∣
∣h
(
t′′
) − h

(
t′
)∣∣ =

∣
∣
∣
∣
∣

∫ t′′

0

(t′′ − s)q−1

Γ
(
q
) f(s)ds +

1
4
(
T − 2t′′

)
∫T

0

(T − s)q−2

Γ
(
q − 1

) f(s)ds

−
∫ t′

0

(t′ − s)q−1

Γ
(
q
) f(s)ds − 1

4
(
T − 2t′

)
∫T

0

(T − s)q−2

Γ
(
q − 1

) f(s)ds

∣∣∣∣∣

≤

∣∣∣∣∣∣∣

∫ t′

0

[
(t′′ − s)q−1 − (t′ − s)q−1

]

Γ
(
q
) f(s)ds

∣∣∣∣∣∣∣
+

∣∣∣∣∣

∫ t′′

t′

(t′′ − s)q−1

Γ
(
q
) f(s)ds

∣∣∣∣∣

+

∣∣∣∣∣
− (t

′′ − t′)
2

∫T

0

(T − s)q−2

Γ
(
q − 1

) f(s)ds

∣∣∣∣∣

≤ 1
Γ
(
q
)
∫ t′

0

∣∣∣
(
t′′ − s

)q−1 − (t′ − s)q−1
∣∣∣mr ′(s)ds +

Tq−1

Γ
(
q
)
∫ t′′

t′
mr ′(s)ds

+
(t′′ − t′)Tq−2

2Γ
(
q − 1

)
∫T

0
mr ′(s)ds.

(3.11)

Obviously the right-hand side of the above inequality tends to zero independently of x ∈ Br ′

as t′′ → t′. Thus, Ω is equicontinuous.
As Ω satisfies the above assumptions, therefore it follows by Ascoli-Arzela theorem

that Ω is a compact multivalued map.
Finally, we show that Ω has a closed graph. Let xn → x∗, hn ∈ Ω(xn) and hn → h∗.

Wewill show that h∗ ∈ Ω(x∗). By the relation hn ∈ Ω(xn),we mean that there exists fn ∈ SF,xn

such that for each t ∈ [0, T],

hn(t) =
∫ t

0

(t − s)q−1

Γ
(
q
) fn(s)ds − 1

2

∫T

0

(T − s)q−1

Γ
(
q
) fn(s)ds

+
1
4
(T − 2t)

∫T

0

(T − s)q−2

Γ
(
q − 1

) fn(s)ds.

(3.12)
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Thus we need to show that there exists f∗ ∈ SF,x∗ such that for each t ∈ [0, T],

h∗(t) =
∫ t

0

(t − s)q−1

Γ
(
q
) f∗(s)ds − 1

2

∫T

0

(T − s)q−1

Γ
(
q
) f∗(s)ds

+
1
4
(T − 2t)

∫T

0

(T − s)q−2

Γ
(
q − 1

) f∗(s)ds.

(3.13)

Let us consider the continuous linear operator Θ : L1([0, T],R) → C([0, T]) so that

f �−→ Θ
(
f
)
(t) =

∫ t

0

(t − s)q−1

Γ
(
q
) f(s)ds − 1

2

∫T

0

(T − s)q−1

Γ
(
q
) f(s)ds

+
1
4
(T − 2t)

∫T

0

(T − s)q−2

Γ
(
q − 1

) f(s)ds.

(3.14)

Observe that

‖hn(t) − h∗(t)‖ =

∥∥∥∥∥

∫ t

0

(t − s)q−1

Γ
(
q
)

(
fn(s) − f∗(s)

)
ds − 1

2

∫T

0

(T − s)q−1

Γ
(
q
)

(
fn(s) − f∗(s)

)
ds

+
1
4
(T − 2t)

∫T

0

(T − s)q−2

Γ
(
q − 1

)
(
fn(s) − f∗(s)

)
ds

∥∥∥∥∥
−→ 0 as n −→ ∞.

(3.15)

Thus, it follows by Lemma 2.6 thatΘ◦SF is a closed graph operator. Further, we have hn(t) ∈
Θ(SF,xn). Since xn → x∗, therefore, Lemma 2.6 yields

h∗(t) =
∫ t

0

(t − s)q−1

Γ
(
q
) f∗(s)ds − 1

2

∫T

0

(T − s)q−1

Γ
(
q
) f∗(s)ds

+
1
4
(T − 2t)

∫T

0

(T − s)q−2

Γ
(
q − 1

) f∗(s)ds, for some f∗ ∈ SF,x∗ .

(3.16)

Hence, we conclude that Ω is a compact multivalued map, u.s.c. with convex closed values.
Thus, all the assumptions of Lemma 2.6 are satisfied and so by the conclusion of Lemma 2.6,
Ω has a fixed point x which is a solution of the problem (1.2).

Remark 3.2. If we take F(t, y) = {f(t, y)}, where f : [0, T] × R → R is a continuous function,
then our results correspond to a single-valued problem (a new result).

Applications

As an application of Theorem 3.1, we discuss two cases in relation to the nonlinearity F
in (1.2), namely, F has (a) sublinear growth in its second variable (b) linear growth in its
second variable (state variable). In case of sublinear growth, there exist functions η(t), ρ(t) ∈
L1([0, T],R+), μ ∈ [0, 1) such that ‖F(t, x)‖ ≤ η(t)|x|μ + ρ(t) for each (t, x) ∈ [0, T] × R.
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In this case,mr(t) = η(t)rμ+ρ(t). For the linear growth, the nonlinearity F satisfies the relation
‖F(t, x)‖ ≤ η(t)|x| + ρ(t) for each (t, x) ∈ [0, T] × R. In this case mr(t) = η(t)r + ρ(t) and
the condition (3.1) modifies to ‖η‖L1 < 4Γ(q)/(5 + q)Tq−1. In both the cases, the antiperiodic
problem (1.2) has at least one solution on [0, T].

Examples

(a)We consider ‖F(t, x)‖ ≤ η(t)|x|1/3 + ρ(t) and T = 1 in (1.2). Here, η(t), ρ(t) ∈ L1([0, 1],R+).
Clearly F(t, x) satisfies the assumptions of Theorem 3.1 with 0 < 4Γ(q)/(5 + q) (condition
(3.1)). Thus, by the conclusion of Theorem 3.1, the antiperiodic problem (1.2) has at least one
solution on [0, 1].

(b) As a second example, let F(t, x) be such that ‖F(t, x)‖ ≤ (1/(1 + t)2)|x| + e−t and
T = 1 in (1.2). In this case, (3.1) takes the form 1/2 < 4Γ(q)/(5 + q). As all the assumptions of
Theorem 3.1 are satisfied, the antiperiodic problem (1.2) has at least one solution on [0, 1].
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