
Theoretical Computer Science 290 (2003) 2075–2084
www.elsevier.com/locate/tcs

Note

Characterization of real time iterative array
by alternating device

V)eronique Terrier
D�epartement d’Informatique, GREYC, Campus II, Universit�e de Caen, 14032 Caen Cedex, France

Received 5 October 2001; received in revised form 7 May 2002; accepted 13 May 2002
Communicated by B. Durand

Abstract

In this paper, we show that real time k-dimensional iterative arrays are equivalent through
reverse to real time one-way alternating k-counter automata.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Iterative array; Cellular automata; Alternating counter automata

1. Introduction

Cellular arrays are recognized to be a very relevant and natural model of massively
parallel computation. Alternating computation, extension of nondeterminism, has also
a parallel behavior. This common feature of modeling parallelism has been stressed
by Ito et al. [5] for a kind of two-dimensional cellular arrays and alternating ;nite
automata working on two-dimensional languages: they have shown that deterministic
two-dimensional on-line tessallation acceptors are equivalent to two-way (right and
down moves) two-dimensional alternating ;nite automata through 180◦-rotation. As
real time one-dimensional cellular automata can be viewed as a deterministic two-
dimensional on-line tessallation acceptor where the input is restricted to square tape
whose the symbols but the top row are all blank, they conclude that real time one-
dimensional cellular automata can be simulated by two-dimensional alternating ;nite
automata. Further, if we consider rebound automaton introduced in [7] which is a two-
dimensional alternating ;nite automaton where the input are also square tapes whose

E-mail address: veroniqu@info.unicaen.fr (V. Terrier).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(02)00489 -9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81202725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:veroniqu@info.unicaen.fr


2076 V. Terrier / Theoretical Computer Science 290 (2003) 2075–2084

the symbols but the top row are all blank, it follows that alternating rebound automata
starting from the bottom right corner with only up and left moves are equivalent
to real time cellular automata. Zhang et al. [8] have shown that alternating rebound
automata are equivalent to real time two-way alternating one counter automata. So
real time one-dimensional cellular automata (real time 1-CA) can be simulated by real
time two-way alternating one counter automata (real time 2ACA(1)). Here, we will
precise the relationship between alternating counter automata and cellular arrays in
considering iterative arrays which are cellular arrays with sequential input mode. We
will show that real time one-way alternating k-counter automata (real time 1ACA(k))
are equivalent through reverse to real time k-dimensional iterative arrays (real time
k-IA). As consequence for one-dimensional array, we have (real time 1ACA(k))reverse =
real time 1-IA( real time 1-CA⊆ real time 2ACA(1). Concerning iterative arrays, Cole
[2] has shown that the power of real-time IA strictly increases with the dimension of
the space and that real time 1-IA is not closed under concatenation, Kleene closure
and reversal. Moreover Rosenberg [6] has set that for any k, real time k-IA are not
closed under concatenation, Kleene closure, reversal, sequential machine mapping nor
the operations of taking derivatives and quotients. The same results have been obtained
by Inoue et al. [4] for alternating counter automata: real time 1ACA(k) is less powerful
than real time 1ACA(k+1) and real time 1ACA(k) is not closed under concatenation,
Kleene closure, reversal and length-preserving homomorphism. As real time k-IA is
obviously closed under complementation, the question whether real time 1ACA(k) is
closed under complementation becomes trivial.

The de;nitions of iterative arrays and one-way alternating counter automata are spec-
i;ed in Section 2. In Section 3, we describe how to simulate through reverse a real
time k-IA by a real time 1ACA (k) and in Section 4 the converse.

2. De�nitions

2.1. Iterative array

A k-dimensional iterative array is a k-dimensional array of ;nite automata (cells) in-
dexed by Zk . All cells are identical except the communicating cell indexed by (0; : : : ; 0)
which receives sequentially the input and gives the result. The cells evolve syn-
chronously at discrete time steps according their local neighborhood and also according
the input for the communicating cell. Formally a k-IA is de;ned by (�; S; F; V; �0; �; �)
where � is the input alphabet, S the set of states, F ⊂ S the set of accepting states;
V = {(x1

1 ; : : : ; x
1
k); : : : ; (x

v
1 ; : : : ; x

v
k)}⊂Zk is the neighborhood; � from S |V | into S is the

transition function of the noncommunicating cells and �0 from (�∪{B})× S |V | into S
the transition function of the communicating cell (B is a blank symbol); �∈S is the
quiescent state which veri;es �(�; : : : ; �) = �.

We denote by 〈(u1; : : : ; uk); t〉 the state of the cell (u1; : : : ; uk) at time t. At time 0, all
cells are in the quiescent state �: 〈(u1; : : : ; uk); 0〉= �. IA has a sequential input mode,
that means at time i= 1; : : : ; n the ith digit ai of the input a1 · · · an is fed to the cell
(0; : : : ; 0) and at time i¿n the blank symbol B is fed to the cell (0; : : : ; 0). At time t



V. Terrier / Theoretical Computer Science 290 (2003) 2075–2084 2077

on the cell (u1; : : : ; uk) we have

〈(u1; : : : ; uk); t〉

=



�0(at ; 〈(x1

1 ; : : : ; x
1
k); t − 1〉; : : : ; 〈(xv1; : : : ; xvk); t − 1〉) if u1 = · · · = uk = 0;

�(〈(u1 + x1
1 ; : : : ; uk + x1

k); t − 1〉; : : : ;
〈(u1 + xv1; : : : ; uk + xvk); t − 1〉) else:

Let f :N→N be a strictly increasing function. An IA recognizes a language L in
time f if and only if it accepts the words w∈L of length n in f(n) steps i.e. if the
communicating cell enters an accepting state at time f(n). The real time corresponds
to f(n) = n and the linear time to f(n) = cn for some constant c¿1. Cole [2] has
shown that the computing capability of the array is preserved even if the neighborhood
is restricted to the Von Neumann one: VVon Neumann = {(x1; : : : ; xk)∈Zk :

∑ |xi|61} and
that the same is true for the Moore neighborhood: VMoore = {(x1; : : : ; xk)∈Zk : |xi|61}.
Therefore in the following, we will only consider the Moore neighborhood. The work-
ing area of a real time 1-IA on the input a1 · · · a7 is depicted in Fig. 1.

2.2. One-way alternating counter automata

As de;ned in [4] a one-way alternating k-counter automaton is a one-way ;nite
automaton with k integer counters which has both existential and universal branching
modes. Formally, an 1ACA(k) M is a sextuplet (�; S; U; F; sinit ; �) where � is the input
alphabet, S the set of states, U ⊂ S the set of universal states, F ⊂ S the set of accepting
states, sinit the initial state and � : S × (�∪{$})×{0; 1}k→P(S ×{−1; 0; 1}k ×{right;
nomove}) the transition function ($ is an end-marker). S\U describes the set of exis-
tential states.

The input x∈�∗ is delimited with the end-marker $ placed on the right. M starts
the computation in initial state sinit , its head pointing on the ;rst input symbol and
with its k counters empty. In each step, according its current state s, the symbol
a scanned and whether its counters are zero or not, M enters a state s′, modi;es
the counters ci of &i =−1; 0 or 1 and moves eventually its head to the right for
any (s′; (&1; : : : ; &k); move)∈�(s; a; (I(c1); : : : ; I(ck))). I refers to the indicator function:
I(c) = 1 if c �= 0 and 0 if c= 0. We assume that M can enter an accepting state only
when reaching the right end-marker $. A con8guration of M is a description of M at
some step of the computation, it is an element (ai · · · an; s; (c1; : : : ; ck)) of �∗ × S ×Zk
giving the portion of the input a1 · · · an unread, the current state s and the current
values c1; : : : ; ck of the k counters. For two con;gurations I and J we write I � J if J
is a successor of I in one step of computation. A con;guration is universal or existen-
tial according its state s is universal or existential. A con;guration is accepting if its
state is accepting and the whole input is read. The initial con;guration of M on input
w= a1 · · · an∈�∗ is (a1 · · · an; sinit ; (0; : : : ; 0)).



2078 V. Terrier / Theoretical Computer Science 290 (2003) 2075–2084

Fig. 1. A one-dimensional iterative array.

A computation tree of M is a labeled tree which satis;es the following conditions:
1. each node is labeled by a con;guration;
2. if an internal node is labeled by an existential con;guration I , it has exactly one

child J such that I � J ;
3. if an internal node is labeled by an universal con;guration I with successors {J :
I � J}= {J1; : : : ; Jr}, it has exactly r children J1; : : : ; Jr .

An accepting computation tree of M on input w is a computation tree whose root
is labeled by the initial con;guration of M on w and whose leaves are labeled by
accepting con;gurations.

An input w is accepted by M in t steps if there is an accepting computation tree
of M on w whose height is t. M recognizes a language L in time f if it accepts the
words w∈L of length n in f(n) steps. The real time corresponds to f(n) = n and the
linear time to f(n) = cn for any constant c¿1. Note that a machine M which works
in real time moves its head to the right at each step, its transition function is from
S × (�∪{$})×{0; 1} into P(S ×{−1; 0; 1}k) and its computation trees have n + 1
levels.



V. Terrier / Theoretical Computer Science 290 (2003) 2075–2084 2079

Observe that, without loss of generality, for any constant integer r, we can consider
that M discriminates whether its counters are −r − 1; : : : ; 0; : : : ; r + 1 or diIerent, and
modify the counters of −r; : : : ; 0; : : : ; r. Indeed to come down to the usual de;nition,
it suJces to divide the counters by r and to record the remainders and the signs in
the state. Actually it is as for IA whose neighborhood can be restricted to the Von
Neumann one.

3. Simulation of a real time k-dimensional iterative array by a real time one-way
alternating k-counter automaton

Let A= (�; S; F; VMoore; �0; �; �) be a k-dimensional iterative array and L the words
accepted in real time by A. First, we describe a 1ACA(k) M which recognizes LR the
reverse of L in time 2n − 1. Second, we simulate M by a 1ACA(k) M ′ working in
real time.

Let (x1
1 ; : : : ; x

1
k); : : : ; (x

v
1 ; : : : ; x

v
k) the v= 3k relative positions of the Moore neigh-

borhood. Let w= a1 · · · an be a word of L. Let 〈(c1; : : : ; ck); t〉 denote the state of
the cell (c1; : : : ; ck) at time t of the k-IA A on the input w. We will de;ne an
1ACA(k) M which admits an accepting computation tree on the input wR such that at
level 2(n − t) the nodes with counter values c1; : : : ; ck record the state 〈(c1; : : : ; ck); t〉
of the k-IA. The alternating machine M will go back one transition of the IA with
an existential branching where it guesses the v antecedents following by an universal
branching where it updates the counters. By instance in dimension k = 1 the transition
�(〈c − 1; t − 1〉; 〈c; t − 1〉; 〈c + 1; t − 1〉) = 〈c; t〉 will be depicted by

 at · · · a1

〈c; t〉
c




↓
 at−1 · · · a1

〈c − 1; t − 1〉; 〈c; t − 1〉; 〈c + 1; t − 1〉
c




↙ ↓ ↘
 at−1 · · · a1

〈c − 1; t − 1〉
c − 1




 at−1 · · · a1

〈c; t − 1〉
c




 at−1 · · · a1

〈c + 1; t − 1〉
c + 1




Formally the 1ACA(k) M is de;ned by the sextuplet (�; SM ; UM ; FM ; sinit ; �M ) where
the set of states SM = {sinit}∪S∪Sv (v= 3k the size of the neighborhood), the set of
universal states UM = Sv, the set of accepting states FM = {(�; : : : ; �)} (� the quiescent
state of A) and the transition function is de;ned by
• �M (sinit ; a; (0; : : : ; 0)) = {((s1; : : : ; sv); (0; : : : ; 0); right): �0(a; s1; : : : ; sv)∈F}
• For s∈S; �M (s; a; (i1; : : : ; ik)) = {((s1; : : : ; sv); (0; : : : ; 0); right): �(s1; : : : ; sv) = s if

(i1; : : : ; ik) �= (0; : : : ; 0); else �0(a; s1; : : : ; sv) = s}
• For (s1; : : : ; sv)∈Sv; �M ((s1; : : : ; sv); a; (i1; : : : ; ik)) = {(sp; (xp1 ; : : : ; x

p
k ); no move):

p= 1; : : : ; v}



2080 V. Terrier / Theoretical Computer Science 290 (2003) 2075–2084

Fact 1. A word w= a1 · · · an is accepted in real time by the k-IA A if and only if its
reverse wR = an · · · a1 is accepted by the 1ACA(k) M .

Proof. First assume that w is accepted in real time by A. Consider the computation
tree of M on the input wR = an · · · a1. At level 0, the root labeled by the existen-
tial con;guration (an · · · a1; sinit ; (0; : : : ; 0)) has one successor (an−1 · · · a1; (〈(x1

1 ; : : : ; x
1
k);

n−1〉; : : : ; 〈(xv1 ; : : : ; xvk); n−1〉); (0; : : : ; 0)); it is possible as �0(an; 〈(x1
1 ; : : : ; x

1
k); n−1〉; : : : ;

〈(xv1 ; : : : ; xvk); n − 1〉) = 〈(0; : : : ; 0); n〉∈F . At level 2(n − t) each node is labeled by an
existential con;guration (at · · · a1; 〈(c1; : : : ; ck); t〉; (c1; : : : ; ck)) and has one successor
labeled by an universal con;guration (at−1 · · · a1; (〈(c1 +x1

1 ; : : : ; ck+x
1
k); t−1〉; : : : ; 〈(c1 +

xv1 ; : : : ; ck + xvk); t − 1〉); (c1; : : : ; ck)). At level 2(n − t) + 1 each node is labeled by an
universal con;guration (at−1 · · · a1; (〈(c1 + x1

1 ; : : : ; ck + x1
k); t − 1〉; : : : ; 〈(c1 + xv1 ; : : : ;

ck + xvk); t − 1〉); (c1; : : : ; ck)) and has v successors labeled by existential con;gurations
(at−1 · · · a1; 〈(c1 + xp1 ; : : : ; ck + xpk ); t − 1〉; (c1 + xp1 ; : : : ; ck + xpk )). In particular at level
2n − 1, as 〈(c1; : : : ; ck); 0〉= �, each node is labeled by the con;guration (&; (�; : : : ; �);
(c1; : : : ; ck)) which is an accepting con;guration. Thus, this computation tree is an
accepting one and wR = an · · · a1 is accepted by M in 2n− 1 steps.

Conversely assume that wR = an · · · a1 is accepted by M . Consider an accepting com-
putation tree of M on wR. As M is speci;ed, this tree must have the following structure:
it is a strict alternance of existential branching with one input symbol consumed and
universal branching with v children. So its height is 2n−1. And at level 2n−1, the vn−1

leaves are labeled by accepting con;gurations of the form (&; (�; : : : ; �); (c1; : : : ; ck)). As
all states s of the leaves (&; s; (c1; : : : ; ck)) are identical, we will get by induction that
each state s of any existential con;gurations (at · · · a1; s; (c1; : : : ; ck)) is uniquely deter-
mined by the input part at · · · a1 and the counters c1; : : : ; ck . More precisely, we will
get that for t (0¡t¡n), the states 〈(c1; : : : ; ck); t〉 of the IA correspond to the states s
of all existential con;gurations (at · · · a1; s; (c1; : : : ; ck)) which label the nodes at level
2(n− t)¿0. Indeed at level 2n− 2, the nodes are labeled by existential con;gurations
(a1; s; (c1; : : : ; ck)) with s= � if (c1; : : : ; ck) �= (0; : : : ; 0) else s= �0(a1; �; : : : ; �); as ini-
tially all cells of the IA are in quiescent state �, the labels at level 2n− 2 are clearly
of the form (a1; 〈(c1; : : : ; ck); 1〉; (c1; : : : ; ck)). Further, at level 2(n− t)¿0 the nodes are
labeled by existential con;gurations (at · · · a1; s; (c1; : : : ; ck)) and have v grandchildren
at level 2(n−t+1) labeled by existential con;gurations (at−1 · · · a1; sp; (c1+xp1 ; : : : ; ck+
xpk )) such that s= �0(a; s1; : : : ; sv) if (c1; : : : ; ck) = (0; : : : ; 0), else s= �(s1; : : : ; sv); so by
induction the state 〈(c1; : : : ; ck); t〉 of the IA A corresponds to the state s of all labels
(at · · · a1; s; (c1; : : : ; ck)) at level 2(n− t)¿0. Finally, the root labelled by an existential
con;guration (an · · · a1; sinit ; (0; : : : ; 0)) has v grandchildren labeled by existential con-
;gurations (an−1 · · · a1; sp; (x

p
1 ; : : : ; x

p
k )) such that �0(an; s1; : : : ; sv)∈F ; hence the states

sp = 〈(xp1 ; : : : ; xpk ); n−1〉 of the grandchildren of the root verify �0(an; s1; : : : ; sv)∈F ; so
the state 〈(0; : : : ; 0); n〉 of the IA is an accepting one and a1 · · · an∈L.

Finally, we will show the following fact.

Fact 2. The 1ACA(k) M working in time 2n − 1 can be simulated by a real time
1ACA(k) M ′.



V. Terrier / Theoretical Computer Science 290 (2003) 2075–2084 2081

Proof. As done in [1], the idea is to simulate a sequence of ∃∀∃∀ branchings of M
by a sequence of ∃∀ branchings of M ′. In a sequence of ∃∀∃∀ branchings M starting
in an existential state s, guesses s1; : : : ; sv the successors of s according the current
symbol at ; by an universal branching M updates for all sp the counters ci of xpi ; M
guesses sp;1; : : : ; sp; v the successors of each sp according the current symbol at+1; by
an universal branching M updates for all sp; q the counters ci of xqi . Now M ′ from the
state s proceeds in this way. In an existential branching, M ′ guesses an input symbol
b (hopefully the next one); it guesses sp;1; : : : ; sp; v the v2 successors according the
current symbol at and b. In an universal branching M ′ checks whether the guessed
symbol b corresponds to the current symbol at+1; it updates for all sp; q the counters
ci of xpi + xqi . Actually we consider that M ′ can discriminate whether its counters are
−1; 0; 1 or diIerent, and can modify the counters of −1; 0; 1 as well of −2 and 2.

Formally the 1ACA(k) M ′ is de;ned by the sextuplet (�; SM ′ ; UM ′ ; FM ′ ; sinit ; �M ′)
where the set of states SM ′ = {sinit}∪S∪((�∪{$})× Sv2 ), the set of universal states
UM ′ = (�∪{$})× Sv2 , the set of accepting states FM ′ = {($; �; : : : ; �); �} and the transi-
tion function is de;ned by
• For s∈{sinit}∪S; �M ′(s; a; (i1; : : : ; ik))={((b; s1;1; : : : ; sv;v); (0; : : : ; 0)): it exists

(s1; : : : ; sv) such that ((s1; : : : ; sv); (0; : : : ; 0); right)∈�M (s; a; (i1; : : : ; ik)) and for all
p= 1; : : : ; v ((sp;1; : : : ; sp; v); (0; : : : ; 0); right)∈�M (sp; b; (I(i1 + xp1 ); : : : ; I(ik + xpk )))}

• For (b; s1;1; : : : ; sv;v) ∈ UM ′ ,

�M ((b; s1;1; : : : ; sv;v); a; (i1; : : : ; ik))

=

{ ∅ if a �= b;
{(sp;q; (xp1 + xq1 ; : : : ; x

p
k + xqk)): p; q= 1; : : : ; v} else:

According to Facts 1 and 2 we get:

Proposition 1. The languages recognized in real time by k-IA are recognized in real
time by 1ACA(k).

4. Simulation through reverse of a real time 1ACA(k) by a real time k-IA

Let M = (�; S; U; F; sinit ; �) be a given 1ACA(k) and L the words accepted in real
time by M . From M we will construct a k-IA which recognizes LR in real time. In
this purpose, we will ;rst cast the accepting computation trees of M in a trellis; then
we will embed this trellis in the working area of a real time k-IA.

The nodes of the trellis will be labeled by [(c1; : : : ; ck); i] de;ned in this following
way. Let an · · · a1 be a given input. For any integers c1; : : : ; ck and i with −n6c1; : : : ; ck
6n and 06i6n; [(c1; : : : ; ck); i] represents the set of states s∈S such that the con-
;guration (an−i · · · a1; s; (c1; : : : ; ck)) is the root of an accepting computation tree. Note
that by de;nition an · · · a1∈L⇔ sinit∈[(0; : : : ; 0); 0].



2082 V. Terrier / Theoretical Computer Science 290 (2003) 2075–2084

Recall that an universal con;guration leads to acceptance if and only if all its succes-
sors lead to acceptance and an existential con;guration leads to acceptance if and only
if it has a successor which leads to acceptance. Hence, we have that an universal state
s belongs to [(c1; : : : ; ck); i] if and only if for all (s′; (x1; : : : ; xk))∈�(s; an−i ; (I(c1); : : : ;
I(ck))); s′ belongs to [(c1 + x1; : : : ; ck + xk); i+ 1] and an existential state s belongs to
[(c1; : : : ; ck); i] if and only if it exists (s′; (x1; : : : ; xk))∈�(s; an−i ; (I(c1); : : : ; I(ck))) such
that s′ belongs to [(c1+x1; : : : ; ck+xk); i+1]. Moreover as M works in real time, at level
n the leaves (&; s; (c1; : : : ; ck)) are accepting if and only if s∈F . So [(c1; : : : ; ck); n] =F .

Formally we introduce a function g from �×P(S)|VMoore| ×{0; 1}k into P(S) de;ned
by g(a; (S1; : : : ; Sv); (i1; : : : ; ik)) = {s∈U : for all (s′; (xr1 ; : : : ; x

r
k))∈�(s; a; (i1; : : : ; ik));

s′∈Sr}∪{s∈S\U : it exists (s′; (xr1 ; : : : ; x
r
k))∈�(s; a; (i1; : : : ; ik)), such that s′∈Sr}.

According the above observation we get the following fact.

Fact 3. The data [(c1; : : : ; ck); i] with −n6c1; : : : ; ck6n and 06i6n verify these equa-
tions of recurrence:

[(c1; : : : ; ck); n] = F

[(c1; : : : ; ck); i] = g(an−i ; ([(c1 + x1
1 ; : : : ; ck + x1

k); i + 1]; : : : ;

[(c1 + xv1; : : : ; ck + xvk); i + 1]); (I(c1); : : : ; I(ck))):

So to construct an IA which simulates M , we have to embed the computation of
the [(c1; : : : ; ck); i]’s related to the input an · · · a1 in the working area of the IA on the
input a1 · · · an. Let show the following fact.

Fact 4. Each [(c1; : : : ; ck); i] can be computed on the site 〈(�c1=(k + 1)�; : : : ;
�ck=(k + 1)�); n− i + �(c1 + · · · + ck)=(k + 1)�〉.

Proof. See Fig. 2 for the case k = 1. For i= n, the sites 〈(�c1=(k + 1)�; : : : ; �ck=
(k+1)�); �(c1 + · · ·+ck)=(k+1)�〉 can be characterized by an iterative array, then F =
[(c1; : : : ; ck); i] can be recorded on these sites. For i¡n, using k + 1 steps of
the equations of recurrence we can compute the data [(c1; : : : ; ck); i] from the input
symbols an−i ; : : : ; an−i−k and the antecedents [(c1+&11+· · ·+&k+1

1 ; : : : ; ck+&1k+· · ·+&k+1
k );

i + k + 1], where &ji =−1; 0 or 1. By induction, these antecedents are computed on
the surface

S =

{〈(⌊
c1 + &11 + · · · + &k+1

1

k + 1

⌋
; : : : ;

⌊
ck + &1k + · · · + &k+1

k

k + 1

⌋)
; n− i − k − 1

+

⌈
c1 + · · · + ck + &11 + · · · + &k+1

1 + · · · + &1k + · · · + &k+1
k

k + 1

⌉〉
:

&ji = −1; 0 or 1

}
:



V. Terrier / Theoretical Computer Science 290 (2003) 2075–2084 2083

Fig. 2. From 1ACA(k) to k-IA.

Observe that⌊
cr
k + 1

⌋
− 1 6

⌊
cr + &1r + · · · + &k+1

r

k + 1

⌋
6
⌊
cr
k + 1

⌋
+ 1 for all r = 1; : : : ; k

and

n− i − k − 1 +

⌈
c1 + · · · + ck + &11 + · · · + &k+1

1 + · · · + &1k + · · · + &k+1
k

k + 1

⌉

6 n− i +
⌈
c1 + · · · + ck
k + 1

⌉
− 1:

So the antecedents could be sent on the set of sites

P =
{〈(⌊

c1
k + 1

⌋
+ xr1; : : : ;

⌊
ck
k + 1

⌋
+ xrk

)
; n− i +

⌈
c1 + · · · + ck
k + 1

⌉
− 1
〉

:

(xr1; : : : ; x
r
k) ∈ VMoore

}
:

Remark that the moves of the data from S to P depend of the remainders of the ci’s
modulo k + 1 which can be computed by ;nite automata. Moreover the input symbols
an−i−k ; : : : ; an−i can be spread from the initial cell 0 at times t= n − i − k; : : : ; n − i



2084 V. Terrier / Theoretical Computer Science 290 (2003) 2075–2084

towards the site 〈(�c1=(k + 1)�; : : : ; �ck=(k + 1)�); n − i + �(c1 + · · · + ck)=(k + 1)�〉.
So we have all the required information to compute [(c1; : : : ; ck); i] on the site 〈(�c1=
(k + 1)�; : : : ; �ck=(k + 1)�); n− i + �(c1 + · · · + ck)=(k + 1)�〉.

In particular, [(0; : : : ; 0); 0] is computed on the site ((0; : : : ; 0); n). Hence, the IA
can test in real time on the input a1 · · · an whether sinit∈[(0; : : : ; 0); 0], i.e. whether
an · · · a1 ∈ LR. From which one may conclude.

Proposition 2. The languages recognized in real time by 1ACA(k) are recognized in
real time by k-IA.

5. Conclusion

In the same way, linear time k-IA can be simulated by linear time 1ACA(k).
Furthermore, compared to sequential input mode, parallel input mode admits an

implicit synchronization of the cells at initial time. So synchronized alternating device
studied in [3] is suitable for simulating cellular array with parallel input mode. We
could show that real time one-way cellular automata can be simulated by linear time
one-way synchronized alternating ;nite automata and real time cellular automata can
be simulated through reverse by real time one-way synchronized alternating counter
automata.

What about the converse, eJcient simulations of linear time 1ACA and synchronized
1ACA by cellular arrays?

References

[1] T. Buchholz, A. Klein, M. Kutrib, Real-time language recognition by alternating cellular automata,
IFIP Internat. Conf. on Theoretical Computer Science, Lecture Notes in Computer Science, Vol. 1872,
Springer, Berlin, 2000, pp. 213–225.

[2] S.N. Cole, Real-time computation by n-dimensional iterative arrays of ;nite-state machine, IEEE Trans.
Comput. C18 (1969) 349–365.

[3] J. Hromkovic, K. Inoue, A note on real time one-way synchronized alternating one-counter automata,
Theoret. Comput. Sci. 108 (1993) 393–400.

[4] K. Inoue, A. Ito, I. Takanami, A note on real time one-way alternating multicounter machines, Theoret.
Comput. Sci. 88 (1991) 287–296.

[5] A. Ito, K. Inoue, I. Takanami, Deterministic two-dimensional on-line tessallation acceptors are equivalent
to two-way two-dimensional alternating ;nite automata through 180◦-rotation, Theoret. Comput. Sci. 66
(1989) 273–287.

[6] A. Rosenberg, Real-time de;nable languages, J. ACM 14 (4) (1967) 645–662.
[7] K. Sugata, H. Umeo, K. Morita, On the computing abilities of rebound automata, IECE Trans. (1977)

367–374.
[8] L. Zhang, J. Xu, K. Inoue, A. Ito, Y. Wang, Alternating rebound turing machines, IECE Trans. Fund.

E82-A (5) (1999) 745–755.


	Characterization of real time iterative arrayby alternating device
	Introduction
	Definitions
	Iterative array
	One-way alternating counter automata

	Simulation of a real time k-dimensional iterative array by a real time one-way alternating k-counter automaton
	Simulation through reverse of a real time 1ACA(k) by a real time k-IA
	Conclusion
	References


