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In this paper, we answer a question posed by Herzog, Vladoiu,
and Zheng. Their motivation involves a 1982 conjecture of Richard
Stanley concerning what is now called the Stanley depth of a
module. The question of Herzog et al., concerns partitions of the
non-empty subsets of {1,2, . . . ,n} into intervals. Specifically, given
a positive integer n, they asked whether there exists a partition
P (n) of the non-empty subsets of {1,2, . . . ,n} into intervals, so
that |B| � n/2 for each interval [A, B] in P (n). We answer this
question in the affirmative by first embedding it in a stronger
result. We then provide two alternative proofs of this second result.
The two proofs use entirely different methods and yield non-
isomorphic partitions. As a consequence, we establish that the
Stanley depth of the ideal (x1, . . . , xn) ⊆ K [x1, . . . , xn] (K a field)
is �n/2�.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In [4], Herzog, Vladoiu, and Zheng established an interesting connection between a long-standing
question in commutative algebra and special partitions of partially ordered sets corresponding to
algebraic structures. As a result, some natural combinatorial partitioning questions have arisen. In this
paper, we address such a question using a purely combinatorial approach; however, we provide a brief
description of the connection to algebra to make our motivation clear.

In a 1982 paper [6], Richard P. Stanley defined what is now called the Stanley depth of a Zn-
graded module over a commutative ring S . He conjectured that the Stanley depth was always at least
the depth of the module. The question is still largely open, but see [1–3,5].
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Herzog et al. showed in [4] that for a field K , the Stanley depth of a monomial ideal I of
S = K [x1, . . . , xn] can be computed in finite time (although not efficiently) by looking at partitions
of a certain finite subposet of Nn into intervals. In [4], the authors demonstrate that for the maximal
ideal m = (x1, . . . , xn) ⊆ K [x1, . . . , xn], computing the Stanley depth of m is equivalent to finding a par-
tition of the non-empty subsets of [n] into intervals with a particular property. They claim that for
n � 9, they were able to show sdepth m = �n/2�, raising a combinatorial problem, which the following
theorem answers in the affirmative:

Theorem 1.1. Let n be a positive integer. Then there exists a partition P (n) of the non-empty subsets of [n]
into intervals so that |Y | � n/2 for each interval [X, Y ] ∈ P (n).

In fact we will prove an even stronger result that gives a very regular structure to the intervals
used in the partition.

The paper begins by precisely stating the relationship between monomial ideals and posets needed
to answer the question raised by Herzog et al. We then provide two proofs of our main theorem. The
first proof is inductive, while the second is non-inductive and allows for immediate identification of
the interval that contains any given subset. The two proofs provide non-isomorphic partitions even
for relatively small values of n.

2. Background and notation

2.1. Combinatorics

For a positive integer n, we let [n] = {1,2, . . . ,n}, and we let B(n) denote the Boolean algebra
consisting of all subsets of [n]. For sets X, Y ⊆ [n] with X ⊆ Y , we let [X, Y ] = {Z : X ⊆ Z ⊆ Y }. It is
customary to refer to [X, Y ] as an interval in B(n).

In the remainder of this paper, we will concentrate on the case where n is odd, say n = 2k + 1 for
some k � 0. The reason is that if n is odd, and we have a partition P (n) of the non-empty subsets
of [n], with |Y | � n/2 for each interval [X, Y ] ∈ P (n), then Q(n) = P (n) ∪ {[{n + 1}, [n + 1]]} is a
partition of the non-empty subsets of [n + 1] into intervals and |Y | � (n + 1)/2 for each interval
[X, Y ] ∈ Q(n).

Keeping this remark on parity in mind, it is then clear that Theorem 1.1 follows as an immediate
corollary to the following more structured result.

Theorem 2.1. Let k be a non-negative integer. Then there exists a partition C(k) of the non-empty subsets of
[2k + 1] into intervals so that for each interval [X, Y ] ∈ C(k), |X | is odd and |Y | = k + 1 + �|X |/2�.

In the next two sections of this paper, we provide alternative proofs of Theorem 2.1. These proofs
lead to non-isomorphic partitions when k � 3.

2.2. Algebra

Let K be a field and S = K [x1, . . . , xn]. For c ∈ Nn , let xc denote the monomial xc(1)
1 xc(2)

2 · · · xc(n)
n . Let

J ⊆ I ⊆ S be monomial ideals. Say I = (xa1 , xa2 , . . . , xar ) and J = (xb1 , xb2 , . . . , xbt ) where ai,b j ∈ Nn .
Let

g =
∨

i

ai ∨
∨

j

b j

(the component-wise maximum of the ai and b j ). Then the characteristic poset of I/ J with respect
to g , denoted P g

I/ J , is the induced subposet of Nn with ground set{
c ∈ Nn

∣∣ c � g, there is i such that c � ai, and for all j, c � b j
}
.

(Note that such a poset can be defined for any g � ai,b j for all i, j, but it is simply convenient to
take g as the join of the ai and b j .)
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Let P be a partition of P g
I/ J into intervals. For I = [x, y] ∈ P , define Z I := {i ∈ [n] | y(i) = g(i)}.

Define the Stanley depth of a partition P to be

sdepth P := min
I∈P

|Z I |

and the Stanley depth of the poset P g
I/ J to be sdepth P g

I/ J := maxP sdepth P , where the maximum

is taken over all partitions P of P g
I/ J into intervals. Herzog et al. showed in [4] that sdepth I/ J =

sdepth P g
I/ J . By considering all partitions of the characteristic poset, this correspondence provides an

algorithm (albeit inefficient) to find the Stanley depth of I/ J . Given this setting, it is easy to see
the correspondence between P (1,1,...,1)

m and the set of non-empty subsets of [n]. (In this context,
|Z I | = |Y |.) We will establish, using purely combinatorial techniques, the following theorem as a con-
sequence of Theorem 1.1 along with some elementary counting.

Theorem 2.2. Let K be a field and S = K [x1, . . . , xn]. Let m be the maximal ideal (x1, . . . , xn) ⊆ S. Then

sdepth m =
⌈

n

2

⌉
.

3. An inductive approach to the main theorem

This proof presented here relies on the construction of two auxiliary partitions, to be denoted A(k)

and B(k), respectively. In contrast to the partition C(k) we seek to complete the proof of Theorem 2.1,
A(k) and B(k) will each be partitions of all subsets of [2k + 1] into intervals. The partition C(k) will
then be constructed from A(k) and B(k) using some intervals from one and some intervals from the
other.

It will also be important to keep track of the sizes of the intervals in the partitions A(k) and B(k).

Size Property:

(1) If [X, Y ] is an interval in the partition A(k), then |Y | = k + 1 + �|X |/2�.
(2) If [X, Y ] is an interval in the partition B(k), then |Y | = k + �|X |/2�.

We note that when [X, Y ] is an interval in either A(k) or B(k) and |X | is odd, say |X | = 2s + 1,
then |Y | = k + s + 1.

As we proceed with the construction, we will use the partitions A(k) and B(k) to determine
functions, denoted Ak and Bk respectively, mapping the subsets of [2k + 1] to {0,1}, by the following
rules:

Coloring Rule: Let S ⊆ [2k + 1]. Set Ak(S) = 0 when S belongs to an interval [X, Y ] in the partition
A(k) with |X | even; else set Ak(S) = 1. Similarly, set Bk(S) = 0 when S belongs to an interval [X, Y ]
in the partition B(k) with |X | even; else set Bk(S) = 1.

We will maintain the following property inductively:

Coloring Property: For every non-empty subset S ⊆ [2k + 1], Ak(S) = 1 − Bk(S).

3.1. Construction of the two sequences

First, set

A(0) = {[∅, {1}]} and B(0) = {[∅,∅], [{1}, {1}]}.
Note that these two partitions satisfy the Size Property. Also, note that A0({1}) = 0 and

B0({1}) = 1, so the Coloring Property holds as well.
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Fig. 1. The inductive construction.

Now suppose that for some k � 0, we have constructed partitions A(k) and B(k) of the subsets of
[2k + 1] into intervals so that both the Size Property and the Coloring Property hold.

Then A(k + 1) is defined by

A(k + 1) = {[
X, Y ∪ {2k + 2}]: [X, Y ] ∈ A(k)

}
∪ {[

X ∪ {2k + 3}, Y ∪ {2k + 2,2k + 3}]: [X, Y ] ∈ B(k)
}

and

B(k + 1) = {[
X ∪ {2k + 2}, Y ∪ {2k + 2}]: [X, Y ] ∈ A(k)

}
∪ {[

X, Y ∪ {2k + 3}]: [X, Y ] ∈ B(k)
}

∪ {[
X ∪ {2k + 2,2k + 3}, Y ∪ {2k + 2,2k + 3}]: [X, Y ] ∈ B(k)

}
.

We have found it convenient to view these two constructions using the suggestive diagram shown
in Fig. 1.

It is straightforward to verify that A(k + 1) and B(k + 1) are partitions of the subsets of [2k + 3]
into intervals. Also, it is clear that the Size Property holds. We now show that the functions Ak+1 and
Bk+1 satisfy the Coloring Property. Let S be a non-empty subset of [2k + 3]. We distinguish four cases
and show that Ak+1(S) = 1 − Bk+1(S) in each case.

Case 1. S ∩ {2k + 2,2k + 3} = ∅.
Let [X, Y ] and [Z , W ] be the intervals containing S in A(k) and B(k), respectively. Then S is

contained in the intervals [X, Y ∪{2k +2}] and [Z , W ∪{2k +3}] in A(k +1) and B(k +1) respectively.
This implies that Ak+1(S) = Ak(S) and Bk+1(S) = Bk(S). Since Ak and Bk satisfy the Coloring Property,
we conclude that Ak+1(S) = Ak(S) = 1 − Bk(S) = 1 − Bk+1(S).

Case 2. S ∩ {2k + 2,2k + 3} = {2k + 2}.
Let T = S − {2k + 2}, and let [X, Y ] be the interval in the partition A(k) containing T . It follows

that S is contained in the interval [X, Y ∪ {2k + 2}] in A(k + 1). Thus Ak+1(S) = Ak(T ). On the other
hand, S is contained in the interval [X ∪{2k + 2}, Y ∪{2k + 2}] in B(k + 1). Thus Bk+1(S) = 1 − Ak(T ),
so that Ak+1(S) = 1 − Bk+1(S).

Case 3. S ∩ {2k + 2,2k + 3} = {2k + 3}.
Let T = S − {2k + 3}, and let [Z , W ] be the interval in the partition B(k) containing T . It follows

that S is contained in the interval [Z ∪ {2k + 3}, W ∪ {2k + 2,2k + 3}] in A(k + 1). Thus Ak+1(S) =
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1 − Bk(T ). On the other hand, S is contained in the interval [Z , W ∪ {2k + 3}] in B(k + 1). Thus
Bk+1(S) = Bk(T ), so that Ak+1(S) = 1 − Bk+1(S).

Case 4. S ∩ {2k + 2,2k + 3} = {2k + 2,2k + 3}.
Let T = S − {2k + 2,2k + 3}, and let [Z , W ] be the interval in B(k) containing T . It follows that S

is in the interval [Z ∪ {2k + 3}, W ∪ {2k + 2,2k + 3}] in A(k + 1). Thus Ak+1(S) = 1 − Bk(T ). On the
other hand, S belongs to the interval [Z ∪ {2k + 2,2k + 3}, W ∪ {2k + 2,2k + 3}] in B(k + 1). Thus
Bk+1(S) = Bk(T ), so that Ak+1(S) = 1 − Bk+1(S).

It is worth noting that in the last three cases of the preceding argument, we did not have to
consider whether the set T was empty or not.

3.2. Merging the partitions

We are now ready to construct the partition C(k) of the non-empty subsets of [2k + 1] satisfying
the conclusion of Theorem 2.1. The rule is that an interval [X, Y ] belongs to the partition C(k) if and
only if [X, Y ] belongs to one of A(k) and B(k) and |X | is odd.

The fact that C(k) is a partition of the non-empty subsets of [2k +1] into intervals is an immediate
consequence of the Coloring Property. Also, the cardinality condition follows immediately from our
remark just after the Size Property. This completes the proof.

4. A non-inductive approach

Throughout this section, we fix a non-negative integer k and consider the integers in [2k + 1]
placed in clockwise natural order around a circle. We interpret arithmetic cyclically; for example, when
k = 9, we say that 18 + 5 = 4, since 18 + 5 = 23 = 19 + 4.

For each element i ∈ [2k + 1], the remaining 2k elements are partitioned into two blocks each of
size k, with the clockwise block consisting of {i + 1, i + 2, . . . , i + k}, and the counterclockwise block
consisting of {i − 1, i − 2, . . . , i − k}. In the discussion to follow, we will denote these two blocks as
cw(i) and ccw(i) respectively. For example, when k = 9,

cw(14) = {15,16,17,18,19,1,2,3,4}
and

ccw(14) = {13,12,11,10,9,8,7,6,5}

Definition 4.1. A non-empty subset B ⊆ [2k + 1] is balanced if∣∣B ∩ cw(i)
∣∣ = ∣∣B ∩ ccw(i)

∣∣ for all i ∈ B .

Clearly, if B is a balanced set, then |B| is odd, and if |B| = 2s + 1, then there are s elements in
cw(i) and s elements in ccw(i), for every i ∈ B .

For example, referring to the circle shown in the left half of Fig. 2, when k = 9, the set B1 =
{2,5,10,15,17} is not balanced since |B1 ∩ cw(5)| = 1 and |B1 ∩ ccw(5)| = 3. However, referring to
the circle shown in the right half of Fig. 2, the set B2 = {4,8,13,17,18} is balanced.

Lemma 4.2. Let s be a non-negative integer, and let B be a balanced subset of [2k + 1] with |B| = 2s + 1. Then
for each j ∈ [2k + 1] − B, either

(1) | cw( j) ∩ B| = s and | ccw( j) ∩ B| = s + 1, or
(2) | cw( j) ∩ B| = s + 1 and | ccw( j) ∩ B| = s.

Proof. Let j ∈ [2k + 1] − B . If cw( j) contains at least s + 2 elements of B , let i be the element of
B ∩ cw( j) that is closest to j. Clearly, cw(i) contains at least s + 1 elements of B , which contradicts
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Fig. 2. Clockwise natural order.

Fig. 3. Clockwise star order.

the fact that B is balanced. Thus cw( j) contains at most s + 1 elements of B . Dually, ccw( j) contains
at most s + 1 elements of B . These two statements together imply the conclusion of the lemma. �

In view of Lemma 4.2, it is natural to partition the elements of [2k + 1] − B into two sets LB and
R B with an element j ∈ [2k + 1] − B belonging to LB when statement (1) of the lemma holds and R B

when statement (2) holds.

Lemma 4.3. If B is a balanced set, then |LB | = |R B |. Furthermore, an element j ∈ [2k + 1] belongs to LB if and
only if j + k belongs to R B .

Proof. Suppose first that element j belongs to LB . If j + k belongs to B , then there are only s − 1
elements of B in ccw( j + k). The contradiction implies j /∈ B . Furthermore, there are s elements of B
in ccw( j + k) so j + k ∈ R B .

By symmetry, if j + k ∈ R B , then j ∈ LB . �
As suggested by Lemma 4.3, there is another useful way to arrange the elements of [2k+1] around

a circle in a clockwise manner. We call this alternative order the clockwise star order. In this order,
integer i is followed by i + k. We illustrate this definitions with the circles shown in Fig. 3.

When S is a non-empty subset of [2k +1] and s ∈ S , we let Z(s, S) denote the set (possibly empty)
of elements of [2k + 1] − S encountered by starting immediately after s and continuing around the
circle in clockwise star order until just before another element of S is encountered. Note that when
|S| = 1 and S = {s}, Z(s, S) = [2k + 1] − S . Also, note that Z(s, S) = ∅ when s is followed immediately
by another element of S in the clockwise star order.

Referring to the circle in the left half of Fig. 3, note that when S = {4,7,8,11,13,14,18},
Z(11, S) = {1,10,19,9} and while Z(14, S) = ∅.

Lemma 4.4. A non-empty subset B ⊆ [2k + 1] is balanced if and only if |Z(b, B)| is even for every b ∈ B.
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Proof. Suppose first that B is balanced. Then let b ∈ B and suppose that |Z(b, B)| is odd. Then Z(b, B)

is a non-empty set whose elements must alternate between members of LB and R B , starting with an
element of LB , when listed in clockwise star order. By parity, the last element of Z(b, B) in this listing
also belongs to LB . Using Lemma 4.3, this would imply that the element of B following immediately
after the last element of Z(b, B) in the clockwise star order belongs to R B . The contradiction shows
that |Z(b, B)| must be even.

Now suppose that B is a non-empty subset of [2k + 1] and that |Z(b, B)| is even for every b ∈ B .
We show that B is balanced.

Let b0 ∈ B . As we proceed around the circle in clockwise star order starting immediately after b0
and continuing full circle through the remaining 2k elements of [2k + 1] − {b0}, note that we alter-
nate between elements of cw(b0) and ccw(b0), starting with an element of cw(b0) and ending with
an element of ccw(b0). However, since |Z(b, B)| is even for each b ∈ B , the elements of [2k + 1] − B
are evenly divided between cw(b0) and ccw(b0). Also, by parity, this also implies that the remaining
elements of B − {b0} are evenly divided between cw(b0) and ccw(b0). This shows that B is bal-
anced. �

We illustrate Lemma 4.4 with the circles shown in Fig. 3. Referring to the circle on the left half
of Fig. 3, we see that the set S = {4,7,8,11,13,14,18} is not balanced since Z(13, S) = {3,12,2}
so that |Z(13, S)| = 3. On the other hand, referring to the circle in the right half of Fig. 3, the set
B = {1,4,6,8,9,13,14,16,18} is balanced.

We state the following elementary fact for emphasis. The proof is an immediate consequence of
Lemma 4.3.

Proposition 4.5. When B is a balanced subset of [2k + 1], then for each b ∈ B with Z(b, B) �= ∅, the elements
of Z(b, B) alternate between elements of LB and elements of R B , starting with an element of LB , when listed
in the clockwise star order.

Referring again to the right part of Fig. 3, we see that for the balanced set B = {1,4,6,8,9,13,14,

16,18}, we have

LB = {3,2,10,17,15} and R B = {12,11,19,7,5}.
Note that when B is a balanced subset of [2k + 1] and |B| = 2s + 1, then |LB | = |R B | = k − s.

Therefore |B ∪ LB | = k + s + 1. Therefore, the interval [B, B ∪ LB ] satisfies the cardinality constraint of
Theorem 2.1.

We next present the technical lemma that is the heart of this alternate construction.

Lemma 4.6. Let k be a non-negative integer and let S be a non-empty subset of [2k +1]. Then there is a unique
balanced set B for which S belongs to the interval [B, B ∪ LB ].

Proof. Let S be a non-empty subset of [2k + 1]. Then partition S as S = D ∪ U where

D = {
s ∈ S:

∣∣Z(s, S)
∣∣ is even

}
and

U = S − D = {
s ∈ S:

∣∣Z(s, S)
∣∣ is odd

}
.

Claim 1. D is a balanced subset of [2k + 1].

Proof of Claim 1. For each d ∈ D , the cardinality of Z(d, D) is even. This follows from the fact that
Z(d, D) is the union of Z(d, S) and a set of blocks of the form {s} ∪ Z(s, S) where s ∈ U . Using
Lemma 4.4, we conclude that D is balanced.

Claim 2. U ⊆ LD .
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Proof of Claim 2. From Proposition 4.5, for each element d ∈ D , the elements of Z(d, D) alternate be-
tween members of LD and members of R D , beginning with a member of LD . By parity, it follows that
all members of U belong to LD .

We are now ready to complete the proof of the lemma. Let B be a balanced subset of [2k + 1]
with B ⊆ S ⊆ B ∪ LB . We show that B = D . First, let d ∈ D . If d ∈ LB , then the element of S occurring
immediately after the last element of Z(d, S) belongs to R B . The contradiction shows that d ∈ B .

Now let u ∈ U . If u ∈ B , then the next element of D occurring after u in the clockwise star order
belongs to R B . The contradiction shows u ∈ LB . �

For the sake of completeness, we summarize the contents of this section with the following state-
ment.

Theorem 4.7. Let k be a non-negative integer, and let n = 2k + 1. Then

C(k) = {[B, B ∪ LB ]: B is a balanced subset of [2k + 1]}
is a partition of the non-empty subsets of [2k + 1] into intervals. Furthermore, if B is a balanced set and
|B| = 2s + 1, then |B ∪ LB | = k + s + 1.

5. Conclusions

Returning to the original question of Herzog et al., we see that Theorem 1.1 implies that
sdepth(x1, . . . , xn) � �n/2�. It remains to show that no partition can have all of the upper bounds
of its intervals further up in B(n). Let n be a positive integer, and let P (n) be any partition of the
non-empty subsets of [n] into intervals so that |Y | � �n/2� for every interval [X, Y ] ∈ P (n). When n is
odd, say n = 2k + 1, then it is easy to see that for each i = 1,2, . . . ,2k + 1, we must have an interval
in P (n) of the form [{i}, Y ] with |Y | = k + 1. Furthermore, there are no intervals in P (n) of the form
[X, Y ] with |X | = 2. However, we do not know whether there are other cardinality constraints of this
type that must apply. On the other hand, when n is even, say n = 2k, then it is easy to see that there
must be at least one i ∈ [n] for which there is an interval of the form [{i}, Y ] in P (n) with |Y | = k.
Thus, we have completed the proof of Theorem 2.2.

The more general class of poset partitioning questions raised in [4] appears to have the potential
for further interesting mathematics. For example, at present the best known algorithm for computing
the Stanley depth of a monomial ideal inspects all of the interval partitions of its characteristic poset.
It would be interesting to know if there is a general way of identifying the partitions that need to
be inspected, providing a more efficient algorithm. It would also be interesting to examine other
classes of monomial ideals to see if they give rise to easily-recognizable classes of posets for which
combinatorial techniques can find optimal partitions.
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