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In this paper projection methods based on expansions of solutions of re-
tarded function differential equations in terms of generalized eigenfunctions
are considered. It is first shown that the projection series developed earlier
by Hale and Shimanov and those considered by Bellman and Cooke are
actually the same. Using extensions of the residue-type arguments of Bellman
and Cooke, convergence results are then established for a class of perturbed
systems. These results are applied to obtain approximations to optimal controls
for certain infinite dimensional variational problems. Numerical results are
presented for several examples.

1. INTRODUCTION

In this paper we consider the method of finite-dimensional projections for
retarded functional differential equations (FDE) developed previously by
Hale [11] and Shimanov [28]. These authors established that the state of
linear autonomous FDEs can be decomposed into the sum of a projection
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onto a finite-dimensional generalized eigenmanifold in the state space plus a
residual term. A question of fundamental importance not dealt with in these
papers is that of whether the finite-dimensional projection term converges to
the infinite-dimensional state of the FDE as the eigenmanifold is extended to
include the infinite set of all generalized eigenfunctions of the FDE. We
treat this problem below and show that an affirmative answer can be given in
certain cases. We then use these ideas to investigate a fairly wide class of
optimal control problems with fixed initial and terminal values given in the
infinite-dimensional state space. Such a problem falls into a class of problems
with target set in function space discussed in [2] and [16]. However, the
approach taken in this paper is not in the spirit of that of [2] and {16](in which
a maximum principle and sufficiency results are developed), since here we
project the original problem onto a finite-dimensional subspace where the
“finite-dimensional” problem is then “solved.” We then consider the
sequence of solutions thus obtained and discuss convergence properties of
this sequence relative to the solution of the original problem.

The projection method has been previously applied by other authors
[20-22] to a class of control problems with no terminal constraints. Unfor-
tunately, a crucial step in the proof for convergence of solutions of the finite~
dimensional problems appears to be based on invalid arguments [19; see
MR 33, #2991].

In Section 2 we give a summary of the projection method of Hale and the
decomposition results. The relationship of the series obtained from these
projections to the well-known series expansions of Bellman and Cooke is
rigorously established in Section 3, and the general question of convergence
is considered in Section 4. Finally, Section 5 is devoted to a discussion of the
applications of these results to the optimal control problems mentioned above.

For [a, 6] a subinterval of the real line and R” euclidean (real or complex)
n-space, we shall use L ([, 5], R") to denote the usual space of “functions” on
[a, &] with values in R* whose pth power is Lebesgue integrable. The Scbolev
space of absolutely continuous functions on [, 5] into R* with first derivatives
in L, will be denoted by W{([a, b], R*). The symbol | x | will denote the
norm of %, where the norm is to be understood to be that of the space in which
x lies.

2. ProjectioN RESULTS ¥OrR RETARDED FDE
"This section will be devoted to a summary of projection ideas developed in
detail by Hale [11, 12]. In addition, we shall discuss problems involving the
convergence of series obtained using these projections. The notation adopted

will be almost identical to that used by Hale.

505/18/2-5
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Consider the system described by the linear stationary FDE

() = L(x;) + f(2) (2.1)
where L is a linear mapping L: € — R” given by

Lix) — f_o dn(0) *(t + 6) 2.2)

with % a matrix-valued function of bounded variation. Here, as in [11, 12],
x; will denote the complete state of the system in (2.1), i.e., x,(6) = x(¢ - 0),
8 e[—r,0] and € = C([—r, 0], R") is the Banach space of continuous func-
tions on [—7, 0] having values in R" with the usual supremum norm. As is
shown in [11], the infinitesimal generator % related to Eq. (2.1) has the form

d(6)/do, —r < 0<0,

AH(0) = f:dn(s)gb(s), 6 — 0. (2:3)

The domain 2(&7) of the operator &7 is the subset in C{([—7, 0], R*) con-
sisting of functions that are continuous and have a continuous derivative on
[—7, 0] and satisfy $(0) = L(#). The spectrum of </ consists only of point
spectrum, i.e., points in the spectrum of &7 are eigenvalues of & (see [11]
or [12, Lemma 20.1]). Any nonzero ¢ € Z(o/) satisfying the equation

M — ) =0, 2.4

where [ is the identity operator in %, is called an eigenfunction of 7.
The knowledge of eigenvalues and eigenfunctions will be necessary later
on. To find them let us rewrite (2.4) in the form

dy(0)/d = \p(0), —r <0 <0, (2.5)
[ #)86) = a0, 0=o0. (2.6)

From (2.5) we have ¢(f) = exp(Ad)a, where a € R®. Substituting this into
(2.6), we obtain

0
gu— [ e exp(/\e)g a=0, @.7)
where 7 is here the identity operator in R”. Define

AQ) = M — f_" dn(8) exp(A0). 2.8)
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Then the eigenvalues of &7 satisfy
det 4(2) =0, (2.9)
while the vector @/ € R* corresponding to an eigenvalue A; can be found from
A\ o = 0. (2.10)
Then the eigenfunction ¢; corresponding to the eigenvalue ; is found to be
¢;(0) = exp(i0) &, 0 e [—r, Q. (2.11)
The following general properties of eigenvalues A; of =&/ are known [12]:

(i) they are of finite multiplicity;

(ii) theve is a y > 0 such that no eigenvalue has real part greater
than y;

(iiiy when 7 is piecewise constant on [—7, 0], as is the case for differ-
ential-difference equations, the A; are asymptotically distributed in curvilinear
strips of type | Re(s -+ g, log 8)| < ¢, {1 = 1,..., R[5}

Let .4, denote (as in [11]) the smallest subspace of C([—r, 0], R*) containing
the null spaces A (of — M), I = 1, 2,... . It is shown in {11, 12] that /%, =
N (4 — NI, & = ascent of of — A, is finite-dimensional. Thus for
every eigenvalue }; of o7 there exists a finite set of generalized eigenfunctions
$ity.e., 4 constituting a basis of 4, . Let @, denote a matrix-valued func-
tion [—r, 0] - RPXds ' ‘

B, (0) = [$/(O). 63, B[, 0]. (2.12)

Since A A C.H A there exists a d; X d; constant matrix B,\j_ whose only
eigenvalue is A;, such that

AP, =P, B, . 2.13)

For ¢ € C(J—r, 0], R®), ¢ € C([0, r], R*), where R™ is the #n-dimensional
euclidean space of row vectors, define the bilinear functional (4, ¢) — (f, -

W = w00 — [ [ —0aos0a e

Also, for 4 € D(s£*) C C([0, r], R*)(see [12]), let

—dy(6)/do, 0<0<r
IO w9, 0=,
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It is shown in [11, 12] that the operator &/* has properties similar to the
adjoint of 7. In particular, the following relation holds:

Gy ) = (¥, 4),  forall peD(), $eD(¥). (2.15)

Let ¥, denote the matrix analogous to (2.12), with ¢, defined on [0, 7] the
generahzed eigenfunctions of .27*. The matrix functions &, ;and ¥, may be
chosen so that

¥y, B0 =1 (2.16)

where [ is the d; X d; identity matrix. Take the first N eigenvalues A;, j =
I,..., N, where the eigenvalues A; are ordered with respect to real parts,
beginning with the eigenvalues with greatest real part. Let

N = [P, ..., B, ] @.17)

be the basis chosen as above for the generalized eigenmanifold .4~ associated
with {A; ,..., Ay}, with corresponding basis

7,
P2 (2.18)
¥,

AN

for the generalized eigenmanifold for the adjoint. Let P¥ denote the projec-
tion onto the subspace .#% given by
PNp — BNCEV, .
Thus for any ¢ € € we may write
="+

where ¢7" = PNg, qSQN =¢ — PN¥$. For any solution x; of (2.1) we may
write

x =l 22, (2.19)
where
N
P = 0Ny = Y, B, w0 (2:20)
i=1

Define the d; X 1 vector function y, by y, (t) = (‘F,\ , X, and theZ,_1 d; x 1
vector function y¥ by y¥(t) = <Y’N X From 2. 18) we have

()
o= | (2.21)
J’AN(t)
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Formula (2.20) can now be written as
PN N, N, !
¥ = 0yN(t) =) DD (2.22)
j=1

Let BY = quasidiag {B,\1 soeey By} s0 that HDN = OVBN, From results
derived in [12, Section 24], we may write

(1) = exp(BN) yN(0) + J exp(BN(t — ) PNO) f(5) ds  (2.23)
and

2 = T(@) &2 + [ T — ) XOF(s) ds (2.24)

where 7'(t) is the semigroup of operators for the homogeneous form of (2.1),
X2 = X, — &MPN0) and X, is defined by

0, ~—T\<\6<0,
X"(e)ng 6 =0

with [ the # X # identity matrix. Hence

__ (I — @N0) PM0), 6 =0,

oN
X0 () —@N(g) PN(0), —r < 0 <0.

(2.25)

We thus see that the original functional differential equation is projected by
the use of the projection P¥ onto a finite-dimensional invariant subspace
AN of €. The evolution of the system in this subspace in terms of “coor-
dinates” y/(t) is described by (2.23) which is equivalent to

M) = BYyN() + FNO) (1),

(2.26)
IV = CBV, 5.

The behavior of the residual term x@" is described by the integral Eq.
(2.24). We remark that the formal use of a differential equation for %2
(as well as for x; in cases when f(£) == 0) in some previous papers [22, 28] is
apparently without justification, as is the use of a differential equation for
2(t) in [11] where z, = x2".

The decomposition of the original equation into the system of Egs. (2.26)
and (2.24) has two essential properties:

(i) the system (2.26) is a finite-dimensional system of ordinary diffe-
rential equations without time lag;
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(ii) the operator T'(¢) in (2.24) acts on (I — P¥) %, so that [12, Theorem
24.1]:

| T@)s¢" | < Kesp(y — 8)) [0 |, «@ e — PME, (2.27)
where y is a constant such that Re Ay > v, and § > 0, K > 0 are constants
dependililg on y (i.e., on Ay). If, in particular, ¥y < 0, then (2.27) guarantees
that x2" for the case f(¢) = 0 is uniformly bounded by an exponentially
decreasing function of time.

A question of great interest is: for which ¢ €% do we have ¢*" —¢ as
N -— 0, or, in terms of (2.1), for which class of functions {f} do we obtain
#LN — x,, or equivalently x2¥ — 0 in ¥'?

From (2.24) we obtain

1= < 17O 1+ [ 1Te— 9 XEF@1ds. @28)
0

An estimate for the first term is given by (2.27). The second term may be
estimated by the use of the inequality [12, Section 24]:

| T(2) X&' | < K exp((y — 8)0), (2.29)

where K and y are as in (2.27). It must be realized that K depends on Ay
and hence on N, and in fact estimates for K given in [12] in terms of the
iterates of the map T(¢) show that K(Ay) increases as N — co. Without
further information on how fast K(A,) increases with /N one cannot use the
estimates given in (2.27) and (2.29) to investigate the convergence of x2".
Further evidence that the convergence can be difficult to ascertain is supplied
by the following simple example. Consider the scalar system

#(t) = #(t) + a(t — 1) + £(2). (2.30)
The characteristic equation is
A@) =2 —1 —exp(—A) = 0. (2.31)

It is clear that the roots of 4(d) = 0 are simple. Using the notation in (2.11)
for eigenfunctions ¢, , and representing i, by

¥a,(0) = exp(—A,0) &,

where b7 (as well as o/ in (2.11)) is a scalar, we can, after some simple calcula-
tions, write the normalization condition (2.16) in the form

bi(1 + exp(—X;)) @@ = 1.
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If a/ is, for each j, arbitrarily chosen to be equal to 1, then b’ must satisfy
bi = 1/(1 + exp(~—2;)), which, in light of (2.31), yields

b= 1)) (2.32)

Making note of the second term in (2.28), we compute

=260 HOTOE)

x'Of =
- S aonol0  —r<o<o
S a,b, (O 6=0,
? exp()\ 0} aib?; £(s), —r <8 <0
and by (2.32)
S -3 510 b=0, @)
X O F6) = ? v
-5 Lewtnfro.  —r<<0. @3

It is known that the modulus of A; for the retarded system (2.30) grows with
7 nearly as an algebraic progression, and it is also known that ¥ A-]-{l_ 1fj =
¢+ Iln N + (), where €. is Euler’s constant and &(N)— 0 as N— c0.
Thus the failure of 1 — Z;~1 (1/A;) to converge casts serious doubt upon the
usefulness of (2.28) in establishing x?” — 0. In view of the difficulties
discussed above we turn to other methods of investigating the convergence
question.

It has been known for some time that solutions of differential-difference
equations can be written in terms of Fourier-type exponential series [5].
Since these series are nothing more than expansions in the generalized eigen-~
functions ¢() = (9”/v') &Mt discussed above, one possible approach to the
question of when 9" — 0 lies in showing the equivalence between the Fourier
exponential series of Bellman and Cooke and that series obtained by use of
the projection methods detailed above. We now proceed to do just that.
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3. EQUIVALENCE OF THE PROJECTION SERIES AND THE BELLMAN-—COOKE
ExPONENTIAL SERIES

The exponential series expansion for solutions of certain classes of auto-
nomous differential difference equations was obtained in [5] via inversion
of the Laplace transform of the solution, and is an infinite sum of terms
bi(2) e, where the p,(#) are polynomials in ¢, n-vector-valued, and the A,
are solutions of (2.9).

We shall now show the term-by-term equivalence of the exponential series
and the projection series. Questions related to convergence of the exponential
series will be treated in the next section. While the convergence results will
be established only for differential-difference equations, the equivalence of
terms will be proved for the general retarded FDE (2.1). By considering the
Laplace transform of the solution x(¢) of Eq. (2.1), we shall first derive a
general formula for p,(z) el

Assume that f € L,([0, t,], R") and extend f to the semiaxis [0, co) by taking
f(#) = 0 for t > #; . Then the Laplace transform of f exists. We shall assume
that x, = £ is a continuous function (this assumption can be weakened to
£ecL, if instead of the general FDE we consider a differential-difference
equation). Since the solution of the homogencous FDE is exponentially
bounded [11, Corollary I1.1], by applying the variation of constants formula
[12, Section 16] to system (2.1) in [0, %] and by considering the free motion
of system (2.1) in [#;, o0) we see that the solution of the nonhomogeneous
Eq. (2.1) is exponentially bounded, |x,| <C Ke®, hence Laplace trans-
formable. We may then consider the integral

=] ) “ f_“ dn(0) (¢ + 0)) e+ dt | 3.1)

< [ Vag 190)] a1 52 +- )] et s

7. . ® 8t ,—ot
< Vap ()] | Kebteret i

which converges for o such that ¢ == Re(s) = 8.
By similar arguments it is not difficult to show that the integral

[[ 101 [7 et 1t + 0] ar

exists for o > 8. Therefore the Fubini theorem [9] can be applied to change
the order of integrations in (3.1). An application of the Laplace transform to
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both sides of (2.1) yields the following expression for the Laplace transform
of the solution x(f):

Zx)(s) = 47s) g(s), (3-2)

where

6 A8 ta
o) =60 = [ [ oo dn@ ey de - [ efmdr. (33)

We observe that s — ¢(s) is analytic, which implies that the only singulari-
ties of §— et 47Y(s) g(s) occur at s =A;, where A; are the roots of
det 4(s) = 0. Therefore the terms appearing in the exponential series will
have the form

(1) €' = Resfe® 47(s) g(5)}oms, - (3-4)

‘We show that the term in (3.4) is equal to the corresponding term in the
projection series. Denote by x{¢, f) the solution of (2.1} with initial data
¥, = £ and let A; be a solution of (2.9)(i.e., in the point spectrum of /),
Let 9(S,)={¢e¥|¢ = x({f) for some t >0, £, fel, with f
having compact support in [0, o0)} and define, for x{&, f)e 2(S,), the
operator S, : Z(S,) C€ —~% by ’

S (€, FO) = Reste ™ A3 O, 1 &, 1)} a5

where
0 s t
Q(k! t; g:f) = 5(0} - J.:.,.j; Eh(sdﬂ d?}(S) E{T) dr —:§— j; 8'”7"‘:]((7) dr.

The above arguments show that this operator is well-defined. Note that
(&, 1) — Sy 2£, f) is a linear map.

Let P";'“‘ % -»% be the canonical projection (see [30, p. 306]) onto
M, () along B/ — NI)* and let Py~ : & — € be the projection of Hale-
Shimanoy onto ./, (/) discussed above and given by P26 = &, (¥, , .
If R, denotes the resolvent of s/ — AI, then we have [30]

i
cAN _
P"i T 2m fpj R, dx,

where I'; is a contour enclosing the isolated singularity A; . Furthermore, by
Lemmas 21.2 and 21.4 in [12] we obsetve that PJ~5 = =@, (¥, , > is the
projection onto .4, (/) along

2 ={$eC|<{P),,$> = 0} = F(L — NI
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and thus we have

PEAN . pl=s
We shall hereafter denote Py " = Pﬁ‘s by simply P, .

TueorReM 3.1.  Assume £ €€, feLy([0, t,], R") with f(£) =0 for t > ¢, .
Then for t = t, we have

Py x&, f) = Sywd& 1)

Proof. We show first that P,\a_xt(f, 0) = S,lixt(f, 0) for £€% and ¢t > 0.
Recall that there exists a real number p such that for A € p(27), Re(A) > p,
the resolvent R, is given by [9, p. 622]

R = — fo " e T(r) Edr

for any ¢ € %, where {T(z)} is the solution semigroup on . In particular, for
Re(d) > p, t > 0 and £ € € we have

—Ryux£,0) = —R,T(1)¢ = fo " e T(r) T(t) £ dr
— fo TN T 4 1) ¢ dr = ft ® e T (@)} dw
= [T ereTyes do— [ Tersy du
= —R(e'g) — [ e T(w) ¢ do.
Thus by analytic continuation we obtain
Rix6,0) = R(e49) + [ e T@) ¢ dw
for all A€ p(:#), t > 0 and £ € %. This leads to

Py x{£,0) = — 571”— fp_RAxt(g, 0) d\ = —Res {Ryxy(£, O)} sy,

— _Res %R,\(e”g) + " g (a) fa’w%

A=2;

= —Res{Ry(¢"8)} 1, - (3-5)
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But from [12, pp. 99-100] we sece

R 0) = 24-0) |—400) + [ [ exerinpperar| + [ eomierar

(3.6)
so that we find, using (3.5) with (3.6),

Py x(€, 0)(0) = Res

AGH0) A-1(}) [ £(0) — Jj J'Os M=) dn(s) £(r) dTH
= S/\,-xt(f’ 0)(6),

forany ¢t > 0 and £€%.
Next observe that for f as in the hypotheses and ¢ > 0 we have

%100, f) = T(0) (0, ) = T(0) &y = %(Ly, 0)
where ; = x, (0, f). Then our above arguments yield
P Aixt1+o(07 f ) =P ijo(cl H 0) = S"jxa(zl ’ O) = S'\ixfl’*“’(o’f )’

for ¢ > 0. Thus, for £, f as in the hypotheses we have P, x(0, f) = 5, %(0, f)
for t > #,, and P, x,(¢, 0) = S %(¢, 0) for £ > 0. The linearity of (f,f) —
P, %4¢, f) and (¢, f )= Sy €, f ) then allows us to conclude

P, f) = Sipdef)y  for 131y

But it is easy to see that both - P,\J_xt(f, f)and ¢t — Shjxt(g?, f) are con-
tinuous on (0, o0), whence the conclusion of the theorem follows.

7

4. CoNVERGENCE RESULTS

Having shown an equivalence between the terms in the expansions of
Bellman and Cooke and the terms obtained using the projections due to Hale,
we are now in a position to use the ideas and methods and, in some cases,
already-proven results in [5] to establish convergence results for the sequence
4" in a number of instances. We shall restrict our investigations to differen-
tial-difference equations, a subclass of the Eq. (2.1) where the measure
has only a finite number of atoms and no continuous part.

Consider equations with v delays 7 ,..., &, (y then has atoms at 0 =0,
= —h;,i=1,.,vh, =r)and f as described in Section 3:

o) = Y Aale —h) +50),  te[0, ], @)
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where 0 = 4y < by < <#,,
xp =&

We shall assume in our subsequent discussions that #; — &, > 0; i.e., the
time interval on which we study the dynamical system in (4.1) is greater than
that associated with the state of the system.

If we take the Laplace transform in this case, we obtain (3.2) with ¢(s) =

p(s) + F(s), where
26) = €0) + Y. A th €"E(r) dr 4.2)

gl i

o= Cerf(n) dr
and \

As) = sT— Y ™. (4.3)

=0

Our first results concern the case where the matrix 4, is nonsingular.

TreoreM 4.1. Let & be a bounded subset of L([0, t,], R™). Assume det
A, # 0 and let t — x(t, &, f) denote the solution of (4.1) corresponding to f € F
and € e Li([—h, , 0], R*)(where we assume £(0) is specified). Then

;Y(t, g’ f) = %i_g'} Z p_,(t) eajt, (4.4)
A€C,

holds for t > t, — h,, where pj(t) e\t is the residue (n-vector-valued) of the
Junction s — et A7) p(s) - 7 (5)} at the pole s = A; , and C, are the contours
described in [5, p. 100]. Moreover, the convergence in (4.4) is uniform in fe F
and uniform in t on any interval [a, b] with & — h, < a < b < 0.

Remark. Since our eventual concern here involves convergences of xle in
%, the uniform (in ¢) convergence guaranteed by the theorem is of paramount
interest. We point out that the statement and proof of the above theorem must
be modified by replacing ¢ > #; — &, type statements by ¢ > max{0, t; — A}
if one does not make the assumption that ; — %, > 0.

Proof. The arguments are mostly modifications of those used in [5] to
prove a similar theorem for the scalar case with one delay and with f(t) = 0
(see [5 pp. 98-124] and the arguments for Theorems 4.1, 4.2 and 4.6). We
shall therefore omit here those details for arguments which are the same as
those in [5].
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Taking the Laplace transform in (4.1) and then using the inversion formula,
we have for t >0
1 pytiw A
©(t) = 5= | et AN {p() + /) s, 4.5)
P 1]
where y is such that the roots of det 4(s) = 0 all lie to the left of Re(s) = .
Using the fact that ¢, f are L; , one can easily argue that | p(s)j and | £ (s)] are
O(1) on horizontal line segments o + iy, €, < o < €,, as pp — 0, where ¢;
is such that all characteristic roots lie to the left of Re(s) = ¢; . Then, intro-
ducing the contours C) as in [5], one proceeds to argue just as on pp. 103~
104 of [5] that (4.5) can be written

*(t) = lim

2 Res — o [, e a0 + 76y a’sﬁ, 46)

where here 3¢, Res denotes the sum of the residues of

s = e A K ) +F (50
in the contour C;.
Thus, to obtain (4.4) from (4.6), it remains only to establish that

fim [ o A6 p(s) +f(o}pds =0, @7
Cr—

and, of course, to point cut for which values of ¢ this convergence is uniform
in #. Using the definitions of p and f, we may write

[ e 40 + fi) ds = 1) + Le) + L0,

|3

where
L) = JC e A7(s) ds §(0), (4.8)
() = 2 fh g LZ” s 43) as| A8 d, (4.9)
Ij(t) = fo * % [ e s dsg () . (4.10)

1

We next recall Lemma 4.2 {5, p. 122] which states that for a scalar equation
with a single delay with A(s) = s — 4, — 4,e~%" and J; # 0, the following
relation holds:

lim f | ets A-s)[ | ds | = 0, (4.11)
-5 00 fefm
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for t > —hy, and furthermore the convergence in (4.11) is uniform in # on
[2, ] whenever —&; << a < b < 0. An analogue of this lemma for the 7~
vector equation, which we are going to prove, will be needed to conclude the
proof of Theorem 4.1.

Lemma 4.1, If A(s) is as given by (4.3) with det A, # 0, then

lim [ |et d3(s)| | ds| =0, (@4.12)

o Jo

Jor t > —h, ; furthermore, the convergence in (4.12) is uniform in t on [a, b]
whenever —h, < a << b < 0.

Proof. We refer the reader to Chapter 12 of [5]. Define

G(s) = e A(s) = Ise™ — A — Aleso""_hl) e — 4, (413)

and
2(s) = det G(s). 4.14)

Denote the elements of the matrix 4; by &%, j, k¢ = 1,..., n. Each element of
the main diagonal of the matrix G(s) always contains a nonzero term ses* plus
terms (possibly zero) akfestv 4 g¥¥gstw—t1) | -.. 4 g** Tf we represent the
determinant g(s) as a polynomial with respect to s and €%, where §; are sums
of terms like A, — %;, then we may observe the following:

(i) The maximal possible power of e is .

(i) The maximal power of s is # and such a term certainly is present,
as it is the term s”e™**» resulting from the product of all elements on the main
diagonal.

(iif) Other terms will have a form s*e®* with 8; = kh,, £ = 0, 1,...,
n — 1, the last inequality following from the fact that s always appears in
product with £%» and is possibly multiplied by other terms of type esth»—5:
with A, — k; = 0.

(iv) Equation (4.13) implies that the coefficient corresponding to s%0s
is equal to (—1)" det 4, (compare equation (12.10.6) in [5]), and, by non-
singularity of 4, , is nonzero.

Let us write g(s) in a form

o) = E, ™1+ <(5)) 7, 4.15)
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where 0 = B, < B, < - < B,, and ¢(s) — 0 as | s | — oo, The statements
above yield the following implications:

) max B: < mh,, (4.16)
() m,=mn,B, =nh,, (4.17)
(i) B; = mh, , (4.18)
(i) po #~ 0, my = 0. (4.19)

™

P
ol / {my, B, = {n b,

P DT BN R A 8,

{my.80)

Frc. 1. Distribution diagram for the differential-difference equation with matrix
A, nonsingular.

\' Ims
Cps
U

Res

£

]

Fic. 2. Thestrips V3, region U, and U, and the contours C;4. , Cy— in the complex
plane.

If we now construct the polygonal distribution diagram defined in [5,
Section 12.8], corresponding to the quasipolynomial (4.15), connecting the
points P; with coordinates (8; , m;)(see Fig. 1), then by (4.17) it will certainly
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contain the point P, = (n, #h,) and, by (4.19), the point P, = (0, 0). By
upward convexity of the distribution diagram (see [5]), the only line segment
L; appearing in the distribution diagram will be the segment L, connecting
the points Py and P, , with a slope equal to #/uk, = 1/h, . Hence, by Theorem
12.10 of [5] we may conclude that the asymptotic zeros of g(s) are contained
in a single curvilinear strip V; : | Re(s + 1/A, log 5)| < ¢; (which may, how-
ever, contain more than one root chain). The strip ¥ divides the complex
plane into two regions U, and U (U, lying on the left of V) with different
lower bounds for g(s)[5, Theorem 12.10, Part (a)]. By Theorem 12.9 of [5],
within U, and for | s | large one term of g(s) is of predominant order of magni-
tude, namely the one corresponding to the point of the distribution diagram
at the righthand end of the segment L; . Hence there are positive constants
¢, ¢3 such that

[g(s)] = c|s"e™ ™|, for |s|>=c¢, sel; (4.20)
and
[g(8)] = c | %% | = ¢, for |s|>=¢, seU,. (4.21)

In addition, by Theorem 12.10(c) of [5], ¢, ¢, can be chosen so that (4.21)
holds in any subregion ¥, of ¥, in which s is uniformly bounded away from
all zeros of g(s) and | s | = ¢, . Moreover, in Uy U I, we have

Re(s—}— ; logs) < ¢,
so that

]S€Sh”, < eclh,,’
or

[s] < | e, (4.22)

Considering the cofactors of the matrix G(s), we see that they are quasipoly-
nomials similar to (4.15), with m, = n — 1, and, by (4.22),

lsmjeejsl < le(al—s)h,,m]-esjsl — plimihy ' B mit)s l.

Applying (4.18) (which is still valid for cofactor terms) along with Part (d)
of Lemma 12.3 in [5], we conclude that all cofactors of G(s) are O(1) for
se Uy Vy, | 5| sufficiently large. Combining this with (4.21), we find

[GYs) =O(1), seU,uVy, |s|l>=c,
or, since 4-Y(s) = sG-Y(s),

| 4-Y(s)] = O(] &™), seUyu ¥y, [sl>=¢. (4.23)
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Similar arguments using | s™iefss | < | s |71 | et Dot | for s e Uy, Re(s) <
0, in the cofactor terms together with (4.20) yield

|GHs) = O(s|t ™),  sely, Re(s) <0, [s|=>oa,

ar

|4 = Ols 1Y), sely, Re() <O, [s|>cq. (424)

The above arguments show that there is a complete analogy between
estimates (4.23), (4.24) for the n-vector case and the estimate (4.6.5) in [5]
for the scalar case. Hence all further arguments for the convergence of the
series of contour integrals given on pp. 122-123 in [5] can be repeated to
complete the proof of Lemma 4.1.

Let us observe that the estimates derived above are sharper than those
given in Theorem 12.14 of [5].

An application of Lemma 4.1 yields immediately that I,(#}) — G as [ — o0,
uniformly in £ on [a, b] where @ > —#, . Likewise, the lemma guarantees that
Iy(#) — 0 as | — oo for £ > 0, the convergence being uniform on {a, 5] where
a > 0. Also, I(#) — 0 as [ —» oo for t > #, — h, , with uniform convergence
on [a, b], @ > t, — h, . Noting that I, is the only term which depends on f,
we also observe that the convergence in (4.7) (and hence in (4.4)) is uniform
with respect to f for fe #, F a bounded subset of L, . This completes the
proof of Theorem 4.1.

Investigating the term J; in (4.10) once again, we sec that if f vanishes for
t >t —¢ee>0,andif t; — &, — € > 0, then I(#) > 0as [ - oo for £ >
t; — h, — ¢, with the convergence uniform in ¢ on any interval [a, b] with
a > t; — h, — e. This then yields

CoroLLARY 4.1, Suppose F, is a bounded subset of L ([0, t,], R") such that
fe Z implies f(t) =0 a.e. on (t; — €, ), € >0, where t, — h, — ¢ = 0.
Then, if det A, + 0, (4.4) obtains for t > t; — h, — ¢ with the convergence
being uniform in fe . and uniform in t on [a, b] with t, —h, — e <
a < b < co. Equivalently, we may write, using the notation and results of
Sections 2 and 3,

LE ) > whef),  feF,

Jor each t > t;, — ¢, the convergence being uniform in fe %, .

We have thus shown that for system (2.1) with % piecewise constant on
[—7,0], and with A, nonsingular, we have xle(f, H— xtl(f, ) for
h—h,—e>=0,£cLy([—h 0], R?), fe % , where % is defined in Corollary
4.1. At first glance the requirement that f vanish on (¢, — e, ;) may appear

505/18/2-6
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rather puzzling and somewhat arbitrary. Since € > 0 is arbitrary, we suspect
that this is in reality a condition on x at #; . One observation that sheds some
light on this hypothesis on f involves the “boundary condition” ¢(0) = L(¢)
required of a C? function ¢ in order for it to lie in the domain of 7, the
infinitesimal generator (2.3) associated with Eq. (2 1) Recalling that
My, C D(/) from (3.5), we see that the convergence xt — x; implies that
®y, is the limit in % of functions all satisfying the boundary condition (0) =
L(qS) Requiring that f vanish in a neighborhood of #; yields %(#) = L{x; ),
which is the same boundary condition for x; - This boundary condition will
also arise naturally in the discussion below of the convergence £7"—> ¢
for initial functions.

Let us turn next to a discussion of convergence of &7 ¥ where £ is the initial
function for the system (4.1). The question of expansion of “initial functions”
in uniformly convergent series of exponentials (or, equivalently, the question
of ¢PY — £ in ) for special cases of (4.1) has been treated by other authors
[19]. But arguments substantiating the results presented there appear to be
in error [Math. Rev. 33, no. 3, #2991, March 1967]. Suppose that for a given
£ on [—r, 0] there exists £ defined on [—2r — ¢, —7] so that the function
given by

o &), te[—2r — ¢, —7],
&) = gg(t), te(—r,0],

has the properties that &eL,([—2r —e¢, —r —¢], R"), & is absolutely
continuous on [—7 — ¢, 0] and satisfies

Ho=Y A&t—h), aetin[—r—c0].

We remark that the above comments simply point out that £* N ~¢ifa
certain type of backwards continuation theorem holds. We shall present
explicit conditions for such a backward continuation in Corollary 4.2. For a
general discussion of continuation results the reader should consult [13, 14].

COROLLARY 4.2. Suppose & is absolutely continuous on [—r,0] with
Ee W€, 0], R") for some e > 0. Further, suppose & satisfies £(0) =
o AE(—h;), where A, is nonsingular. Then £~ — ¢ in €, where the projec-
tions PN are made relative to the homogeneous form of (4.1).

Proof. We take, without loss of generality, ¢ <C %; and define an extension
of ¢ to [—2r, 0] by
v—1

Er) = A7 E(r L 1) — Y Ak +r — R, (4.25)

i=0
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for 7 € [—2r, —r]. We see that the extended £ is continuous at —7 and in fact
is absolutely continuous on [—7 — ¢, 0] and in L, on (—2r, —r — ¢). Using
(4.25) we can further extend £ to [—2r — ¢, 0] so that

feL([—2r — ¢, —7 — €], R®),

from which the results of the corollary then follow.

If the condition det A, 5% 0 is not satisfied, then p, = 0 and the distri~
bution diagram indicates that the zeros of det A(s) may be distributed in
more than one strip 7; . The reasoning leading to estimates (4.23) and (4.24)
is therefore not applicable. However, the order results for 4-(s} described
in Sections 12.12-12.14 of [5] can still be applied, yielding

lim [ |et A-Y(s)) | ds| =
Cp—

o

for £ > (n — 1) &, . Employing these estimates in arguments similar to those
used in establishing Theorem 4.1, we see that in order to obtain convergence
of x¢ we need I, in {4.10) to approach zero uniformly on intervals [a, 4]
with @ > t; — h, — . This will be true if f(r) vanishes for r > #, — nh, — e.
In considering terms for the n-vector system analogous to I, in (4.9), we also
find the added restriction #; > (n 4 1) A, for xt — % in .

If the m-vector system under consideration actually respresents an nth-
order scalar equation, somewhat improved results can be given. Using the
estimate (Sections 12.13, 12.14 of [5])

lim jets A2 (s)| [ ds| == 0
I-s00 o

for t > 0, one obtains rt — &, iff(r) =0forr > t; — b, — eand t; >2h,"

We remark that the restrictions ty > (n+ 1)k, and ¢, > 2k, associated
with the I-type terms (4.9) can be removed by modification of the transform
technique used in obtaining (3.2). This necessitates use of a different residue
function p(s) and also requires additional smoothness assumptions on the
initial function ¢ (so that an integration by parts can be performed and the
inversion formula will have a larger region of validity). This modified residue
function has the form (compare with (4.2)):

~fog
) = &(—h,) ™ 1 f g(z) cstd— Y A f £(2) et db.
i=0 iy
Furthermore, since the residue function is no longer of the form used in (3.3),
the equivalency arguments used in Section 3 need modification. Since these
modifications would in no way alleviate the more serious restrictions that
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J(r) =0for v > t, —nh — e (r > t; — h, — ¢, respectively), we shall not
pursue their development here,

Careful consideration of the above discussion leads one to suspect that even
if one takes f=0in (4.1), iee., the homogeneous system, one might well
have xt . X, for t; Z> nh, in some cases where det A, = 0 while for t; < n#,
this convergence statement does not obtain. That this is, in fact, the case for
some n-dimensional systems can be secen from results of Henry [15]. We
consider the case of the #-vector equation

@(t) = Ag(t) + At — hy), (4.26)

with solution operator T'(z) (see (2.24) and [12, 15]). The adjoint system is
given by
&) = —=2(t) Ay — 2(t + ) 4, (4.27)

and, as in [15], we denote by T*(¢) the functional analytic adjoint of T'(#).
(Note that while 7%(¢) is not the solution operator for (4.27), it is related to the
solution operator 7(—¢) of (4.27) in a very “nice” way [15].) Henry shows
that the mapping # — A" (T*(t)) is nondecreasing and there is a real number
3,0 < 8 < mh, , such that t — A (T*(2)) is constant for ¢ = 8. Furthermore,
it is easy to construct examples (similar to that in [15, p. 497] or that in [12,
p- 36] with, for example # = 3 and

0 00
={1 0 0],
010

in (4.27)) so that £— A (T*(t)) does not become constant until ¢ = nh, .
That is, for such examples, there exists e A (T*(nh,)) such that
S ¢ N(T*(2)) for t < mhy so that 8 is precisely nk; . It follows easily from
Corollary 2 of [15] that Z(T(¢)), the closure of the range of T'(£), contains
properly the set span{.#, | A € o()} for ¢ < nh; . In fact, one sees that

(T () L span{l, | A€ o(s/)},

for t < nhy while

R(T(2)) C spanfll, | X € o(f)}

for t = nh, .

We point out that for the unperturbed ( f = 0) Eq. (4.1), in addition to the
results of Henry cited above, some convergence results are already available
in [5] (see in particular Theorems 4.2, 4.6, 6.5 and 6.9) which, with proper
modifications of the equivalency results of Section 3, could be used to ensure
xff'—» x; Whenever x is a solution of the homogeneous form of (4.1). Other
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authors (see [5, Theorems 6.10, 6.11; 1]) have obtained convergence results
for perturbed systems, but due to smoothness assumptions and/or restrictive
regions of convergence these results do not appear to be directly applicable to
the problems under discussion here.

Finally, in concluding our remarks on convergence results, we remind the
reader that Pitt [25] has also investigated convergence of the exponential
series considered above. But his convergence results in L, are not applicable
in ensuring xZN —x, in@.

5. Oprivar CoNTROL ViA ProjecTION METHODS

In this section we shall show how the projection method can be used to
investigate optimal control problems for linear retarded FDE with fixed
initial and terminal functions.

We consider the problem of minimizing a functional J: L, ~— R! on

V={uluel x(&u) =} (5.1)

where % is a given closed linear subspace of Ly([0, 4], R?), and x(¢, %) is
the solution of the n-vector retarded FDE

©(t) = L(x) + Du(t),  te[0,1], (5.2)
Ny = & (5.3)

The functions £, { are given elements of some subset of &, to be detailed

below along with the choice of %. We make the controllability assumptions

that for the choice of £, { and % under consideration, there is at least one

ue W > x,(§ 1) = L Thatis, Vin (5.1) is not empty (see Remark 5.1 below).

We also need some continuity and convexity hypotheses on the functional .
We shall say that a functional [ is quasiconvex (see [26]) if

J =N+ do) < max{J(w), J(¢),,0 <A< L,u,vel,.

(As usual, when strict inequality holds for every A€ (0, 1) and « 5= v, we
say that ] is strictly quasiconvex.) An equivalent definition [8] of quasicon-
vexity requires that E, = {v | J(v) < o} be convex for each « e R Since
lower semi-continuity (I.s.c.) of [ is characterized by the sets E, being closed
{27}, Mazur’s theorem {9, p. 422] yields immediately that [ Ls.c. and quasi-
convex imply that | is weakly Ls.c. With these well-known observations in
mind, we make the following assumptions on J:

H(i): [ is strictly quasiconvex and Ls.c. on L, ;
H(ii): For A" CL,, J(v) < M, Voe X', implies # bounded.
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Using quite standard arguments, one obtains immediately the well-known
results

TuEOREM 5.1 Under H(i) and H(ii), there exists a unique e* € E such that
J(e*) = inf{J(e)| e € E} for any given nonempty closed convex ECL, .

An easy application of this theorem yields the following theorem.

Turorem 5.2.  Under H(i), H(ii), there exists a unique element u*in V
satisfying
Jew*) = inf o).

Proof. 'The mapping # — &; (¢, ) is a linear map of L, into ¥. From the
variation of constants formula

w€ u)(6) = (£, 0)0) + J:1+6 X(t, + 0, 5) Du(s) ds

(where X is the appropriate “fundamental matrix” for (5.2)—see [12]), one
sees easily that this map is also continuous. The assumptions on % then imply
that ¥ is closed, convex and nonempty in L, , and hence Theorem 5.1 assures
the desired result.

Using the notation of Section 2, we let y¥(t) = (WP, x;> where x is the
solution of (5.2), (5.3). Denoting by y¥(t; ) the solution of

9N(E) = BYN@) + PNO) Du(t),  te[0, 4], (5.4)
YY) = PN, xy(8, w)) = <PV, £, (5.5

we project the original problem described above onto the associated eigen-
manifolds. The finite-dimensional problem obtained is that of minimizing J

on the set
VN = {ulue¥, yN( s u) = PV, DI (5.6)

Let us first consider the case where the eigenvalues A; are simple and p = 1
(scalar controls). Then we have

INE) = col(33(8)seres Yoy (B));

where each y, isa scalar function. Denoting by £; the scalar given by ¢, (0)D,
we may write in place of (5.4), (5.5) forj =1, 2,..., N:

Ia,(8) = Xa,() + Rgu(?), (5.7
0) = <y, s %> = <y 5 - (5.8)
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The solution of (5.7) is given by
t -
aft) = exp(it) 92, (0) + L exp(\(t — 7)) kal(r) dr, = L, N

The boundary conditions in (5.8) then reduce to the system of moment

equations
¢

fo " exp(—\7) k(e dr = I (5.9)

where

lj = hay s © exp(—2ty) — <, 5 £ (5.10)

Assume that the eigenvalues A; have been ordered so that the first » eigenvalues
are real and the remaining ones are complex pairwise conjugate. Then %, ,..., &,
will also be real, and &, , &,.5,... Will be complex pairwise conjugate; the
same property will be valid with respect to [; ,..., /,, .4 ,... . Then the system
(5.9) can be transformed to a real form by multiplying it from the left by a
quasidiagonal N X N matrix M defined by

M = quasidiag 1, [1/%21 —1%/21‘] ’ [1%2;‘ »—1%/21']""}’

where I, is the identity matrix of dimension v. Clearly M is invertible. Define

F(r) = diag{exp(—A7), exp(—2As7),..., exp(—Ay7)}
k= COI(kl » kz 3mecy kN):
I == col(l ,..., Iy).

Then (5.9) can be rewritten as
t1
[ F(e) kur) dr = 1.
1]

Multiplying this equation from the left by M, one has

4

fo " o(r) u(r) dr = ¢, (5.11)

where g(r) = MF(v)k, ¢ = MI. Letting g = col{gy,.... gy) and ¢ ==
col{¢; ...y €y), the set VN defined in (5.6) can also be written as

VN={HGOZ/I<gj,u>2 =& :j == Lyeuy N} (5‘12)
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where {, >, denotes the inner product in the Hilbert space L, . We observe
that % itself is a Hilbert space with the inner product < , >, and thus we see
that the finite-dimensional problem reduces to a classical constrained optimi-
zation problem involving a convex (quasiconvex) functional on a Hilbert
space with a finite number of constraints of equality or “moment” type (see
[18, Chapter 9]). That the constraints in (5.12) are consistent (V¥ 3 ¢)
for every IV follows from the assumption that ¥ given in (5.1) is not empty.

All the considerations above can clearly be repeated for the more general
case of multiple eigenvalues A; and for vector-valued control functions. Let
k; denote the d; X p matrix (where d; is the multiplicity of A; and wis p x 1)
defined by &, = Y’}; (0)D. Upon use of (2.23) one obtains the analogues of
(5.9), (5.10)

t

[ exp(—By1) k() dr = 1, (5.13)
Y0

where
L= (P, D exp(—By ) — <Py, .

Here each [; is actually a d; x 1 vector. Defining

F(ry = quasidiag{exp(—B,hT),..., exp(—B,\Nq-)},
= (le»--" kNT)T’

L= (I7,..., LTY

. N N . .
and an appropriate >; d; X ¥, d; matrix M, we are led once again to
moment equations

%

1 N
[(emundr=c;,  i=1..%4d,
0 1

where g(r) = MF()k, ¢ = MI. The formulation is then as before with the
controls u in % C Ly([0, ], R?) being p X 1 vector functions and the con-
straint functions g; lying in L,([0, #;], R?") being 1 X p vector functions.

We next turn to a discussion of the behavior of the optimal controls #
obtained from the finite-dimensional problems; i.e., we denote by #¥ the
unique solution (see Theorem 5.1) of minimizing J on VN, We wish, of
course, to ascertain that J(#¥) — J(u*) and, if possible, to show that &V — u*
in some sense.

Lemma 5.1, Let, V, V¥ be defined as in (5.1) and (5.6), respectrvely. Then
we V implies u e VN for every N.
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Proof. Recalling that y¥(z; #) denotes the solution of (5.4), (5.5), and also
yN(t; u) = (PN, %€, u)), we see that foruec V,

PN, (£, 1) = PN, — GNP, [,
while
PNx, (¢, u) = ONyN(t;; u)

so that yM(&; ; u) = (PP, {H(PVis a basis for Z:’ M) () and thus ue I'N.

From the above lemma and the assumption that 7 is nonempty, we con-
clude that there is a w € IV such that J(@¥) << J(») for every N. Hence, by
H(ii) and the weak compactness of bounded subsets of L, , there are #eL,
and a subsequence {#™} such that #"» converges weakly to # in L, . Further-
more, % € % since % is convex and closed in L, and hence weakly closed.

We can in fact prove # € VN for each N. From the nature of the projections
made in section 2, it follows immediately that F¥+1 C I’V and hence J(i¥) <
J(@YY) for each N. Thus, for N,, > N, we have

YN(ty; @) = (PN, .

But from the usual variation of parameters representation for {5.4), (5.5) and
the fact that #¥%» — #, we obtain

J’Nv(tﬁ iy — J’Nv(tz; i)

as NV, — o0, for each N, . It follows then that yN«(z, ; #) = (¥, >, Thus
#e VN, But VNLC TN and ée V¥ for a sequence N, with N,— oo
yields that # e VN for each V.

From the preceding arguments we see that J(i#¥) < J(i7) for each N and
thus weak lower semicontinuity of | yields

J@ <lim J@*) < Em J@") < J@)

so that lim J(#@%) exists and equals J(@). In fact, since J(@V) < J(@N+Y),
we obtain actually

lim J@¥) = J@).

If we further assume that % has been chosen so that the convergence results of
Section 4 are valid (i.e., % is chosen so that u e % implies Py, (&, u) —
x; (£, u)), the fact that # € % and u* € % with x, (& u¥) = Uyields

w8, @) = ¢ (5.14)

by letting N — co in the equality

PNu, (£, @) = OMyN(s;; &) = ONCPN, [y = PN,
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From (5.14) it follows at once that # € V. Now if # is any control in V, an
application of lemma 5.1 yields J@V) < J(u) for every N. Thus, since
lim J@N) = J(ir), we see that J(if) <X J(u), u € V, and by the uniqueness of
u* in Theorem 5.2, we find # = u* and hence J(i#¥) — J(u*).

Furthermore, we have seen above that #¥— if = u*. In fact, @V — u*.
For if {#X} is any subsequence of {#"}, {#¥} has a weakly convergent subse-
quence {#n} converging weakly to some # in L, . By arguments exactly like
those used above, one shows that # = #* and thus #%» — »* in L, . Hence any
subsequence {#%} of {#¥} has in turn a subsequence {#%=} converging weakly in
L, to u* so that #¥ — u* in L, . Therefore we have established

TrueoreM 5.3.  Under H(i), H(ii), and the assumption that the system (5.2),
(5.3)and % are such that the convergence results of section 4 hold (i.e.,see Theorem
4.1), one has J(@)— J(w*) and #N — u*inL, .

Remark 5.1. We observe that a choice of % in the above problems in now
quite obvious. For example, if (5.2) is a scalar differential difference equation
or a vector system with A, nonsingular as given in (4.1) with f = Du and
xy = & £ €%, then an appropriate choice of % which satisfies the necessary
hypotheses is

U =Y ={uely|ut) =0a.e. tin(f; — ¢ )},

where € > 0.

While we do not wish to go into a lengthy discussion of controllability here,
it is perhaps appropriate to make some comments on the assumption that V
given in (5.1) is nonempty whenever % = %, . We consider for simplicty
the system (4.1) with » = 1 and f = Du,

#(t) = Agx(t) + Ayx(t — b) -+ Du(t) (5.16)

and let ¢ be as in the definition of %, . Let ¢ be fixed and { € W{P([—#, 0], R").
Assume

H(a): £(8) — A,L(0) € B(A,) for 0 &[—e, 0] with, in particular, {(0) =
AL(0) + AU —H).

(If 4, is nonsingular then only the latter assumption in H(a) need be made.)
Using the pseudoinverse of 4; (see [3]), one can then extend ¥, where x; =={,
backwards to obtain a function % in W{"([t; — & — ¢, &; — 4], R™). Defining
a function w by

&), telty,—h—et; — hl,

w(t) = Ut —1), te(t,—ht,—e,
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we make a further assumption:

H(b): = _. is attainable from ¢ by (5.16) using controls in
Ly([0, t; — €], R®); i.e., for some # in Ly([0, t; — €], R¥) we have
xtl—e(gy ﬁ) = ‘wtl—e .

Under these two assumptions H(a), H(b), extending i to [0, #] by taking
#t) = 0, te(f, — & ], we obtain x; (£, #) = { with @ in %, as defined
above.

We present some situations where H(a), H(b) are satisfied:

(i) If £ =0, then H(a) is obviously true and H(b) obtains if and only
if (5.16) is null functional controllable with respect to L, controls on [0, #; — ¢].
Sufficient conditions (which involve computable criteria) for this latter
requirement can be found in [3].

(ii) If 4, is nonsingular and  is such that {(0) = A4L(0) + 4,{(—5),
then H(a) holds. If D is nonsingular, H(b) is satisfied. Note that this includes
all scalar systems &(f) = agx(f) -+ a;x(t — k) + du(t) where a; = 0, d = 0
and {(0) = a(0) + a{(—H).

Similar remarks can be made to show that the assumption ¥V = & is
often satistied for nth-order scalar equations with the appropriately defined
%, (relative to the desired convergence results discussed above). For a more
detailed discussion of conditions for functional controllability (which, in many

cases, can be modified to apply to the present situation), we refer the reader
to [3, 4] and [10].

Remark 5.2. As we shall see below, the finite constraint problerns obtained
above may, in some instances, be analytically solvable for the controls #V.
Even in cases where this is not possible, these problems may often be amenable
to standard numerical techniques (see [18, p. 297 ff.]) leading to approxima-
tions for the #¥ which are in turn approximations (in the sense of Theorem
5.3 and Theorem 5.4 below) for the solution of the originally posed infinite~
dimensional problem.

Remark 5.3. We point out that if additional constraints are placed on the
controls, say | # |, << [, or [ u(t)] < [a.e., so that in the above formulation we
take % modified by the addition of these constraints, the preceding arguments
and results can be carried through with little change (i.e., it is not crucial to
the above developments that the set of admissible controls % be a linear
subspace of L, ; a closed and convex subset will suffice). We note that in this
case the set % would be bounded (as would ¥, V%) so that the assumption
H(ii) could be omitted.
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As might be expected, under further assumptions on J, we can improve
the results in the above theorem to obtain #¥-> »* in L, . Following Poljak
[26] (see also [8]), we say that J is strongly convex if 3 8 > 0 such that

TEE2) <470 + 1) — 8 lu—o

for every u, v € L, . In [26], Poljak gives conditions on f for J(x) = [ f(x, », t)
to be strongly convex. We shall discuss below a class of problems of interest
for which one can easily verify strong convexity of the cost functional J.
In fact, one can readily prove directly for this class of problems that #V — u*
in L, . We shall, for the sake of generality and completeness, give the simple
proof here for problems with strongly convex payofs.

TueOREM 5.4. In addition to the assumptions of Theorem 5.3, suppose that |
is strongly convex. Then &N — u* in L, .
Proof. We have

0 < 1| —w | < 4 + 1) — ] (S5

where, by Theorem 5.3, #¥ — u* and J(@¥)— J(u*). Since J weakly Ls.c.
implies — J weakly upper semicontinuous, we have

i 7 (S < (5 e

and hence
0 < $8lim | &V — o* |2 < §J(@*) + £ J(w*) — Jw*) =0

or
|#N — u*| - 0as N — 0.

We turn now to the class of problems where [ has the form
J) = B, v) + L) + A4 (5.15)

where u, v — %(u, v) is a symmetric continuous bilinear functional satisfying
B(u, u) > 8| u|?forsome 8§ > 0, u — Z(u) is a continuous linear functional,
and 24" is a constant. It is readily seen that w — %(u, #) is a strictly convex,
Ls.c. mapping [17, p. 7] from which it follows that ] given by (5.15) satisfies
H(i). Furthermore, since | £(«)| < m | u |, we have

JoyzoluP—m|u| +H
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so that H(ii) is satisfied. Finally, using the identities

e S I R

and

2 (“12) = 120) + 120)

together with the inequality

— B, u) L —8lup
one obtains
wt+vy L (4+o utv u 4T
D) =2 (5 ) v 2 ()
= 1) + o) — 7 (5. 55
L3 +1/@) —Plu—of

so that [ is strongly convex. The results of Theorems 5.3 and 5.4 are thus seen
to be valid for problems having cost functionals (5.15). We mention next an
often-studied class of problems having such a cost functional.

Let # and # be symmetric # X n and p X p matrices respectively with
W = 0,% > O and define

i
Jewy = | L) W t) - T () Pul)} dt,
1]
where x is the solution of (5.2), (5.3). Using the varjation of parameters

representation referred to earlier, one obtains (with straightforward mani-
pulations) that | has the form (5.15) where

Blu, v) = f: ' %[ [ " X(t— 5) Duls) as|

X W [ fe " X(t — ) De() dT] + () o) d,

L) = fo B 267(t, £,0) W g f " X(t — 5) Du(s) dsg dt
and

+
o = [ 4t £,0) (s, £, 0)
0

with # satisfying #(u, u) = 8| u % 8 > 0 since Z > 0.
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A free-endpoint optimal control problem for linear FDE with integral
quadratic cost functional over an infinite time interval (#, = c0) has been
considered by projection methods in [20-22]. However, as mentioned in
Section 1, those results appear to be based on formal arguments and erroneous
convergence results.

We consider the special case of these integral convex cost functional
problems where #” = 0 and £ is the p X p identity matrix; i.e., J(u) =
| # |2 As it turns out, this is equivalent to the minimum norm problem,
J(#) = | u|. That is, &* such that [#* |2 = inf{| |2 |ue V'} is the unique
minimal norm element in the closed convex set V' [9, p. 74]. Similarly, the
finite-dimensional problems of minimizing Jon ¥ ¥ reduce to those of seeking
the minimal norm element in V¥,

We apply well-known Hilbert space projection results to the problem of
finding the element of minimal norm in V¥ for the case of simple eigenvalues
and scalar controls (the multiple eigenvalue and p-vector control situation
can be handled in the same manner). We shall assume that for every N, the
g; of (5.12), j = 1,..., N are also in %’ ~ %, where %' is the dual of %.
That we can, without loss of generality, do so is obvious from the problem
formulation and our choice of % as discussed in Remark 5.1 above. Let
#elV, ie,{g;, >, = ¢,j = 1,..., N. Then we may write

VN ={ueU|{g; ,u—ips =0, = 1,..., N}
Defining AN by
AN ={veW|{g,vDs =0,7 = L., N}
we easily see that
VN =i+ AN,

so that the linear variety V¥ is a translate of the closed linear subspace A4V .
Application of a version of the projection theorem [18, Theorem 3, p. 64]
yields the existence of a unique element #N of minimal norm in V¥ with
N | AN, Letting ZN denote the span of { g, ,..., gy} In %, we see that the
orthogonality requirement becomes the alignment condition #Ne ZN or

N
=Y eg;. (5.17)
i=1

This alignment condition, together with the constraints in (5.12), gives a
computable expression for #¥. If { g, ,..., gx} is a linearly independent set in
%, then substitution of (5.17) into these constraints yields

N
Z <gz' !gi>2e:i =¢;, i=1.,N
s
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or
He = ¢,

where e = col(e, ,..., ey), and H is the nonsingular matrix with elements
hy; =< g;, 8>+ . We then obtain

N — gTH-1.

Defining

21
= f F(r) kk*F*(z) dr
0
(where here * denotes the conjugate transpose), we see that
by
MIM* = [ MF(z) BE¥F*(r) M* dr
0

=<8, =H
so that (5.17) may be written
N = RFF*[-4 (5.18)

We remark that the matrix I' is actually the familiar controllability matrix
for the system (5.7). The assumption that { g; ,..., gy} is a linearly indepen-
dent set is thus easily seen to be equivalent to the assumption that (5.7) is
controllable in the usual sense.

1f the set { gy ,..., gy} does not constitute a linearly independent set in %,
then a moment’s reflection upon the above arguments yields a similar scheme
for computing #¥ using a maximal linearly independent subset of { g, ...., g},
ie,aset{gy}f,,q < N, thatis linearly independent and spans Z'~,

Remark 5.4. We point out that, for the case of simple eigenvalues, con-
trollability of (5.7) in the usual sense is implied by controllability of (5.2) in a
certain functional sense. (We have zot, in fact, in this paper made such an
assumption on (5.2), and make the comments in this remark only as an aside
to the reader.) Suppose that we assume (5.2) controllable in the sense
that given any £, { in span{#, | A€ o(/)}, there exists u € % such that
xtl(f, #) == {. Taking 7 arbitrary but fixed, 1 <7 <{ N, we choose § = qSA!_
and [ = ad, where « is a scalar such that ae~*#+ — 1 5= 0. Then by (5.10)
and the orthonormality condition (2.16) we have

li 5 {OLE_I\itl h— 1}<¢M ) ¢Ai>

S {OCB—)\itl — ]} ,i 0
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which, by (5.9), implies %; 5= 0. Hence, an assumption of function space
controllability in the above sense for (5.2) implies %; # 0, { = 1,..., N. But
for simple eigenvalues, this latter condition is easily seen to be equivalent
to controllability of (5.7) in the usual (Euclidean) sense.

The above results show that there is a complete analogy between the known
solutions to the terminal control problem with minimal control energy for
ordinary differential systems (see [29, Section II.C]) and the solution to the
same problem in a finite-dimensional subspace of the state space of the FDE.
The formulae (5.18) and (5.10) show that the control #¥ is linear with respect
to projection of initial and terminal functions.

We remark that the simplicity of solution to the minimum-norm moment
problems encountered above is due to the formulation of the problem so that
the control space % is a Hilbert space. Were we to formulate the problem for
controls in some Banach space, we would then use the Hahn-Banach theorem
in lieu of the projection theorem in Hilbert space. This, however, requires
that the control space be the dual of some space, for example # = L,, = L;*,
and that the constraint functions g; be considered as elements of that space.
For a complete discussion of this we refer the reader to [24], [18, Section
5.8, 5.9] and to the references noted by these authors.

Finally, we wish to remark that the minimum-norm problem for delayed
systems discussed above was also considered by I. Lasiecka in her thesis
[16a] where she used finite-dimensional projection methods and pointed out
the difficulties involved in proving convergence of ¥2" — 0 via use of (2.24)
and estimates (2.27), (2.28) and (2.29).

The above discussions indicate that these projection methods for optimal
control problems (5.1)-(5.3) offer a somewhat satisfactory approach from a
theoretical viewpoint. While we are not yet in a position to make broad claims
concerning the practical usefulness of these methods, our initial computational
investigations, as documented in the following two examples, are encouraging.
To test these methods we have chosen two examples for which we can obtain
the exact solutions via other methods (see [2, 16]).

ExampLE 5.]1. Minimize
2
Ja) = [ uw) a,
0

subject to

#(t) = (2)11 7 (1) + (2)11 = &(t — 1) + u(?), te[0,2],

x = €& =1, Xy = { ==0.
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The exact solution, obtained using calculus of variations arguments, is given
by

wi(t) = (20l — 1/(202) ¢ + 8y(—1 — L@ et — 1/(2)'%}, 20, 1]

—1/2(2)H2{3,ett + S~ H — 1}, tell, 2},
where
3—e (1 — 3e)e
h=T=a &=7—a-
with
1
*Y o 1/2) .2 { - 172\,
J@®) HE—D {(11 + 6(2)1/2) & — 12e + (9 — 6(2)'7)]
= 4.38.

The characteristic equation (2.9), 4() = A — (22 — 1/(2)*2 e = 0,
has only simple roots, one of which is real, the others occurring in conjugate
pairs. Newton’s method, with asymptotic estimates as given in [5] as starting
values, yields approximate (] 4(%;)] < 10~} root values

A\ = .974
A, Ay = —1.939 + 4.144i
Ay Ay = —2.765 -+ 10.68i
X, Ay = —3.208 + 17.05i
A, Ay = —3.514 - 2338
Mo s Ay = —3.748 - 29.694,

ete.

Using the notation above (see (5.4)—(5.6) through Lemma 5.1), our computa-
tions yield:

N J@Y)  Upper bound for | xtl(f, Ny — 1]
3 4.284 0.13
5 4.313 0.09
7 4,328 0.07

11 4,343 0.05

21 4.357 0.03

41 4.365 0.02

61 4.369 0.007

Exampir 5.2. Minimize

Joy = [ uxey

505/18/2~7
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subject to
() = —x( — 1) 4 u(2), tel0, 2],
x =§=1, Xy = =0.

The exact solution (see [16]) is given by

sy (0088 >+ 1, te[0,1]
w¥(t) = §(et1 — e2~t-1)), te(l, 2],

where § = 1/(1 — ¢2), with
J@*) = —28 ~ .313.

The characteristic equation, 4(A) = A 4- e~ = 0, has no real roots and the
roots, occurring in conjugate pairs, are all simple. Approximate root values
are:

A, Ay = —.3181 -+ 1.337i
Ag, Ay = —2.062 -+ 7.588i
Xy, Ay = —2.653 - 13.951
Ap, Ag = —3.020 4- 20.271
Ag s Ayg = —3.287 - 26.58i
M1 Agp = —3.498 4 32.88i,
etc.

Computations yield:

N J@N) TUpper bound for | xgl(f, aV) — ]
2 .2059 0.155
4 2281 0.114
6 2429 0.09
8 2531 0.07
10 .2605 0.06
20 2799 0.04
100 .3035 0.01

For both of the above examples, it appears that the convergence for both
J(@") and x; (€, #N) — { is reasonable. Our computations showed that the
error in satisfying the terminal boundary condition (as measured by the bound
on the supremum of x; (£, #N)(6) — £(6), 6 € [—7, 0], given in column 3) is
always largest at § = —r. This can be related to the manner in which PN
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“‘converges” to ¢ in the event that ¢ is not required to satisfy the condition
#(0) = L(¢)(in our numerical computations we did not force the condition
uw*(t) = O on (f; — ¢, £y)).

‘While the above two examples involve scalar systems, our preliminary
investigations of vector systems yield similar computational behavior to that
catalogued above. A more detailed and complete treatment of the numerical
aspects of these methods will appear in a future paper.

The above methods constitute only one suggested possible application of
the results developed in sections 3 and 4, and it may prove to be more efficient
to treat some control problems of this type by adopting standare numerical
techniques (e.g., gradient methods, penalty function techniques). One point
in favor of the above methods is that many of the computations are inde-
pendent of the length of the interval [z, #]. Other methods may depend on
numerical integration of complicated delay equations and their adjoints which
may introduce large errors in approximate controls if the time intervals
involved are long.
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