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Summary

Objective: Cbfa1 is a transcription factor, which is classified into the runt family. The mice lacking this gene display complete loss of bone
formation, indicating that Cbfa1 is an essential factor for osteoblast differentiation. The Cbfa1-deficient mice also show an abnormality in
cartilage development. Although cartilage anlagens are well formed in these mice, endochondral ossification is blocked, and most of
chondrocytes fail to differentiate into their maturation form as characterized by the absence of type X collagen and low levels of alkaline
phosphatase activity. It is suggested that Cbfa1 may participate in chondrocyte differentiation. In this study, we have investigated the role of
Cbfa1 in chondrocytes during their cytodifferentiation in vitro.

Design: To investigate the role of Cbfa1 in regulation of chondrocyte differentiation, we over-expressed Cbfa1 or its dominant negative form
in cultured chick chondrocytes using a retrovirus (RCAS)system and examined changes in chondrocyte behaviour induced by the introduced
genes.

Results: Mature chondrocytes isolated form the cephalic portion of sterna seemed to express Cbfa1 more prominently than immature
chondrocytes isolated from the one-third caudal portion of sterna. Over-expression of Cbfa1 in immature chondrocytes strongly stimulated
alkaline phosphatase activity and matrix calcification. In contrast, expression of a dominant negative form of Cbfa1, which lacks the
C-terminal PST domain, severely inhibited alkaline phosphatase activity and matrix calcification in mature chondrocytes.

Conclusion: Taken together with the observation that Cbfa1 transcripts dominantly localized in hypertrophic chondrocytes as well as in
osteoblasts, it is suggested that Cbfa1 plays an important role in the progression of chondrocyte maturation. © 2001 OsteoArthritis Research
Society International
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Introduction

Endochondral ossification is the essential mode of bone
formation during embryonic development1. In growth
plates, chondrocytes actively proliferate and synthesize
abundant extracellular matrix including aggrecan, type IX
collagen and type II collagen. As chondrocytes become
postmitotic, the cells start to terminally differentiate, which
is characterized by expression of type X collagen and high
activity of alkaline phosphatase. This process is called
hypertrophy or maturation. The cells then induce matrix
calcification, and the calcified matrix was invaded by
blood vessels and replaced by bone. To date, extensive
investigation have revealed that many soluble factors
including fibroblast growth factors2,3, bone morphogenetic
proteins4–6, Indian hedgehog7,8 and parathyroid hormone
related peptide7,9 regulate or modulate changes in expres-
sion of the chondrocyte phenotype during endochondral
ossification. However, the mechanism of regulation of
chondrocyte differentiation by these factors has remained
unknown. It is no doubt that clues to clarify the mechanism
of cellular differentiation come from an understanding tran-
scriptional regulation of gene expression. Recently several
S76
transcription factors such as Sox 910,11, c-fos/c-jun12–15

and Cbfa116–18 have been reported to participate in
regulation of gene expression of chondrocytes during
cartilage development.

Cbfa1 is one of members of the runt transcription factor
family, which proteins share a unique 125-amino acid motif
called the ‘runt’ DNA binding domain19. Recently Cbfa1 has
become regarded as an essential transcription factor for
osteoblast differentiation and bone formation18,20–22. The
lack of this gene in mice leads to the complete absence of
bone formation due to blockage of osteoblast matur-
ation18,22. Transfection of Cbfa1 gene in osteogenic cells or
non-osteogenic cells enhances or induces osteoblastic
phenotype as defined by the expression of alkaline phos-
phatase, type I collagen and osteocalcin20,23. Further,
Cbfa1 directly promotes transcription of osteocalcin and
osteopontin, which protmotor regions contain binding sites
of Cbfa123,24. In addition to its involvement of osteoblast
differentiation, this gene is also suggested to be important
for chondrocyte differentiation. In the developing limbs,
Cbfa1 transcripts initially appear in the regions surrounding
cartilaginous condensation, and then more evident in the
hypertrophic chondrocytes when the cartilage tissues
become well developed16,20. In Cbfa1 deficient mice, endo-
chondral ossification as well as intramembranous ossifi-
cation is also severely disturbed16–18. Although cartilage
formation normally occurs, most parts of the cartilage
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tissues excluding tibia, fibula, radius and ulna do not
become calcified16–18. Chondrocytes in the mutant mice
show much lower levels than normal of expression of
ALPase and type X collagen gene16,17. These data suggest
that Cbfa1 may regulate chondrocyte maturation. In this
study we aimed to investigate the roles of Cbfa1 in
chondrocyte differentiation. To do so, we used the retro-
virus technique to introduce two types of Cbfa1 with differ-
ent N-terminal domains, one starting from exon 2 (originally
cloned as Pebp2-A)19 and the other starting from exon
120,25 into chick chondrocytes in culture. Further, to inacti-
vate the function of Cbfa1, we also caused over-expression
of a dominant negative form of Cbfa1, which lacks the
C-terminal portion from the runt domain, in chondrocytes.
As a result, expression of Cbfa1 strongly stimulated proteo-
glycan synthesis, production of ALPase activity and matrix
calcification in chondrocytes, and the expression of the
dominant negative form of Cbfa1 conversely inhibited these
events. These findings strongly suggest that Cbfa1 is a
positive regulator of chondrocyte maturation.
Materials and methods
IN SITU HYBRIDIZATION

Digoxigenin-11 UTP-labelled single strand RNA probes
were prepared using DIG RNA labelling kit (Roche Diag-
nostics Mannheim Gemany) used according to the manu-
facture’s instructions. Hybridization was carried out as
described by Nomura et al.26. An 0.6 kb PstI-Hind III
fragment of Cbfa1 cDNA was used to generate an anti-
sense probe.
CELL CULTURES

Chicken embryo fibroblasts were obtained from the torso
of virus-free White Leghorn 11 day-old embryos (line M;
Nisseiken, Yamanashi Japan) and cultured in medium 199
containing 10% fetal bovine serum (FBS). Upper sterna
(US) and lower sterna (LS) chondrocytes were isolated
from the cephalic portion and one-third caudal portion,
respectively, of the sternum of 17-day-old embryos (line M)
and cultured in high-glucose DMEM containing 10% FBS
as described previously27,28.
RT-PCR

Total RNA was prepared from chondrocyte cultures by
the method of Smale and Sasse29 with minor modi-
fications30. 1 �g of whole cellular RNA was reverse-
transcribed by Superscript reverse transcriptase (Gibco
BRL, Gaithersburg, MD)30. Subsequent amplification was
carried out with Elongase (Gibco BRL) and gene-specific
primers under the following conditions: 95°C for 10 sec and
60°C for 1 min. Primers for PCR were as follows: 5′-GCA
TTC CTC ATC CCA GTA TGA GA-3′ and 5′-GTA AAG GTG
GCT GG(G/A) TAG TGC A-3′ for Cbfa1 cDNA; 5′-GC(A/G)
TCG TGA TT(A/G) GCG ATG ATG A-3′ and 5′-GTC
(A/G)AG GGC (A/G)TA TCC AAC AAC A-3′ for HPRT
cDNA. Chick Cbfa1 primers were designed from the con-
sensus sequence of human (L40992) and mouse Cbfa1
(AF010284) cDNAs. The amplified products were
sequenced to verify the accuracy of the PCR reaction in
each RT-PCR experiments (data not shown). According to
the sequence of chick RT-PCR products for Cbfa1, the
homology between chick and human Cbfa1 was 92%. The
entire structure of chick Cbfa1 cDNA will be published
elsewhere.
CONSTRUCTION AND EXPRESSION OF RECOMBINANT

RETROVIRUSES ENCODING CBFA1 ISOFORMS AND A DOMINANT

NEGATIVE FORM OF CBFA1

cDNAs including entire coding sequences of mouse
Cbfa1/Pebp2 A and Osf2/Cbfa1/til-1, in which the Kozak
consensus sequence CCACC is attached to the 5′ of
ATG and which were recently used for the functional
analysis of Cbfa1 isotypes, were employed. The two iso-
types of Cbfa1 cDNAs and the dominant negative form of
Cbfa1 cDNAs were each subcloned into the RCAS (A)
retroviral vector31–33. The dominant negative form of Cbfa1
which lacks the PST domain, one of the transactivation
domains24 was generated by subcloning a BamHl/ Hind III
fragment of the mouse Cbfa1 coding sequence (AA 1-225
of D14636) into modified pBluescript that contains a myc-
epitope (EQKLISEEDL) and stop codon. The tagged
DN-Cbfa1 cDNA fragment was then subcloned into RCAS
(B) retroviral vector. Chick fibroblasts were transfected with
the vector constructs wiht the constructed vectors by use of
FuGENE6 transfection reagent according to the manufac-
turer’s protocol (Roche Diagnostics, Mannheim). The
recombinant virus in the medium was concentrated by
centrifugation (2500 rpm for 3 h) and used to infect freshly
isolated chondrocytes.
NUCLEAR EXTRACTION AND IMMUNOBLOT

Nuclear extracts were prepared form the virus-infected
cultures (P1 cultures) according to the method previously
described34. The �g of nuclear extract was separate on a
10.0% gel by SDS-PAGE and transferred to a PVDF
membrane (Millipore Japan, Tokyo, Japan). After the mem-
brane had been blocked with 10% horse serum overnight at
22°C, it was incubated with polyclonal rabbit antibodies,
�A1Cl7 and �A1N35 against C-terminal and N-terminal
domains of mouse Cbfa1/Pebp2aA, respectively35 and
then with peroxidase-conjugated anti-rabbit IgG goat anti-
body (Biomedical Technologies Inc., Stoughton, MA).
MEASUREMENT OF SULPHATED GLYCOSAMINOGLYCAN CONTENT,

DNA CONTENT AND ALPASE ACTIVITY

Cultures were harvested in saline solution containing
0.2% TX-100 and 0.02 N NaOH and then sonicated. Cell
lysates were centrifuged thereafter, and the supernatant
was used for determination of DNA and sulphated gly-
cosaminoglycan (GAG) contents by the fluorometric pro-
cedure of36 and direct spectrophotometric microassay of
Farndale et al.37, respectively. ALPase activity associated
with the cell layer was measured by a modification of
Bessey et al.38 using p-nitrophenyl phosphate (pNP) as a
substrate as described previously28.
ALIZARIN RED STAINING

To detect calcium accumulation, the cultures were
washed with saline and fixed with 95% ethanol. Alizarin red
staining was then carried out.
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Results

EXPRESSION OF CBFA1 IN CHICK CHONDROCYTES IN CULTURE

Cbfa1 transcripts were found in hypertrophic chondro-
cytes as well as osteoblasts in the growth plates of the
mice16,17. Figure 1A showed the localization of Cbfa1
transcripts in the tibiotarsus of Day 16.5 mouse embryo.
Particularly intense signals were detected in the hyper-
trophic chondrocytes near the vascular invasion front (Fig.
1B). To elucidate the function of Cbfa1, we decided to
introduce Cbfa1 or its dominant negative form into chondro-
cytes by using a chick retrovirus (RCAS) system. Before
these experiments, however, we first investigated the
expression profile of the Cbfa1 gene in chick chondrocytes.
We isolated chondrocytes from two parts of chick sternal
cartilage, one being the caudal one-third portion of the
sternum (LS) and the other part, the cephalic portion of the
sternum (US). The chondrocytes isolated from the LS show
immature chondrocyte phenotype, whereas those isolated
from the US display mature one. The LS cells are smaller in
size and more actively proliferate than US cells (Fig. 2A).
The rate of proteoglycan synthesis in the LS chondrocytes
was less than that in the US ones, as judged by determin-
ing sulphated glycosaminoglycan contents (Fig. 2B). As
regards expression of maturation phenotype, the US cells
showed high levels of alkaline phosphatase (ALPase)
activity (Fig. 2B) and type X collagen expression4,39,40
while LS cells contained very low levels of ALPase activity
(Fig. 2B) and no expression of type X collagen at the start
of the culture period.

To examine expression of Cbfa1, we made degenerative
primers based on the sequence of mouse Cbfa1 and
carried out RT-PCR using total RNA prepared from LS and
US chondrocyte cultures. After 30 cycles of amplification,
RT-PCR products were observed in reaction mixtures con-
taining RNA from either LS or US cultures. The sequence of
the amplified product had 92% homology to the corre-
sponding region of human Cbfa1. The signal for Cbfa1 in
the case of US cultures seemed stronger than that obtained
with LS cultures (Fig. 2C, Cbfa1). The results of RT-PCR
for hypoxanthine-guanine phosphoribosyltransferase
(HPRT) (Fig. 2C, HPRT) showed no differences in the
intensity of the amplified products between the two
cultures.
Fig. 1. In situ hybridization of Cbfa1 in tibia of E16.5 mouse. Cbfa1
is strongly expressed in hypertrophic chondrocytes as well as

osteoblasts. The boxed region in (A) is magnified in (B).
INTRODUCTION OF CBFA1 INTO IMMATURE CHONDROCYTES

The data above indicate that chick chondrocytes also
expressed Cbfa1 gene, and its expression was likely to
increase in hypertrophic chondrocytes. Therefore, we forc-
edly expressed Cbfa1 gene in immature chondrocytes to
see whether over-expression of Cbfa1 would change the
phenotype of immature chondrocytes. Cbfa1 has two iso-
types with different N-terminal domains, one starting from
exon 2 which we called Type-I Cbfa1 (originally cloned as
Pebp2�A)19 and the other starting from exon 1, which
we called Type-II Cbfa1 (originally cloned Osf2/Cbfa1 or
til-1)20,25. Freshly isolated LS chondrocytes were infected
with RCAS viruses endocing mouse Type-I or Type-II
Cbfa1. The infection with either Type-I or Type-II Cbfa1
viruses induced dramatic changes in cell shape (Fig. 3A).
The cells in Type-I or Type-II Cbfa1-infected cultures (Fig.
3A, Type-I or Type-II) were much bigger in size, and more
refractile than those in the control cultures treated with the
virus encoding the vector alone (Fig. 3A, Control). When
we carried out immunoblotting to confirm that Cbfa1 pro-
teins were produced in these infected cultures, we found,
as shown in Fig. 3B, that the antibody recognizing the
C-terminal portion of both Type-I (lane 2) and Type-II Cbfa1
(lane 3) reacted with the nuclear extracts to form a single
band. The size of the band was around 56 kDa for both
Cbfa1’s and corresponded well to the expected size35,
indicating that Cbfa1 virus-infected cultures expressed the
constructed gene products.

To evaluate the changes in phenotype expression in the
virus-treated chondrocytes, we first examined the effects of
Cbfa1 on proteoglycan synthesis by measuring the content
of sulphated glycosaminoglycan (GAG) which is a compo-
nent of cartilage proteoglycan. In the Type-I or Type-II
Cbfa1 virus-infected cultures, the content of sulphated
GAG had increased twofold (Fig. 3C). We next investigated
whether Cbfa1 stimulated expression of the phenotype of
the hypertrophic chondrocytes. Expression of either Cbfa1
strongly stimulated ALPase activity in the chondrocytes,
whereas the control cultures exhibited only low levels of
ALPase activity (Fig. 3C). Further, the cultures infected with
either type of Cbfa1 showed extensive matrix calcification,
whereas the control cultures had no matrix calcification
(Fig. 3D). These data suggest that Cbfa1 stimulated pro-
teoglycan synthesis and expression of hypertrophic pheno-
type in chondrocytes. The activities of Type-I and Type-II
Cbfa1 to stimulate GAG synthesis, ALPase activity and
matrix calcification were comparable.
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Fig. 2. The differences in cell shape, GAG synthesis, ALPase activity, and Cbfa1 expression between LS and US chondrocyte cultures. LS
and US chondrocytes were isolated as described in Materials and methods and plated at the density of 30×104 cells per 35-mm dish. A
and B: Photographs were taken (A), and sulphated GAG contents and ALPase activity were measured (B) on Day 5. C: On Day 7, total RNA

was extracted from the cultures, and expression of Cbfa1 and HPRT was analysed by RT-PCR.
INTRODUCTION OF A DOMINANT NEGATIVE FORM OF CBFA1 INTO

MATURE CHONDROCYTES

We next asked how inactivation of Cbfa1 would affect
chondrocyte function. Cbfa1 contains a QA domain,
runt DNA binding domain and PST domain41,42. The
QA domain, a glutamine and alanine-rich one, has
been reported to be responsible for transactivation and
heterodimerization24. The PST domain, in the C-terminal
portion of Cbfa1 is also necessary for transactivation of the
target genes24,43. So we constructed a dominant negative
form of Cbfa1 (DN-Cbfa1) by deletion of the PST domain
from mouse Type-I Cbfa1 and subcloned into the RCAS
vector. The RCAS virus encoding DN-Cbfa1 was used to
infect US chondrocytes. We first examined whether the
DN-Cbfa1 virus-infected cells expressed the constructed
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Fig. 3. Type-I and Type-II Cbfa1 stimulated expression of hypertrophic phenotype in immature chondrocytes. Freshly isolated LS
chondrocytes were infected by RCAS virus encoding Type-I Cbfa1, Type-II Cbfa1 or vector alone. The confluent cultures were passaged and
replated at the density of 15×104 cells (A and C) per 35-mm dish, 200×104 cells per 100-mm dish (B) or 40×104 cells per 16-mm well (D).
The cultures were maintained in DMEM containing 10% FBS and 10 �g/ml of ascorbic acid. (A and B): On Day 4 photographs were taken
(A) and sulphated GAG contents and ALPase activity were measured (B). (C): Nuclear proteins were extracted form the cultures infected with
the virus encoding vector alone (lane 1), Type-I Cbfa1 (lane 2) or Type-II Cbfa1 (lane 3) on Day 6 and analysed by immunoblot. (D): For

detection of mineral deposition, the cultures were stained with alizarin red on Day 10.
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Fig. 4. A dominant negative form of Cbfa1 inhibited expression of hypertrophic phenotype in mature chondrocytes. Freshly isolated US
chondrocytes were infected by RCAS virus encoding DN-Cbfa1 or vector alone. The confluent cultures were passaged and replated at the
density of 200×104 cells per 100-mm dish (A), 15×104 cells (B and C) per 35-mm dish or 40×104 cells per 16-mm well (D). The cultures were
maintained in DMEM containing 10% FBS and 10 �g/ml of ascorbic acid. (A): Nuclear proteins were extracted form the cultures infected with
the virus encoding vector alone (lanes 1 and 4), DN-Cbfa1 (lanes 2 and 5) or Type I Cbfa1 (lanes 3 and 6) on Day 6. The immunoblot was
carried out using the antibody �A1C17 (anti-�A1C) or �A1N35 (anti-�A1N). (B and C): On Day 4 photographs were taken (B) and sulphated
GAG contents and ALPase activity were measured (C). (D): For detection of mineral deposition, the cultures were stained with alizarin red

on Day 10 (D).
gene. The antibody against the N-terminal portion of Type-I
Cbfa1 recognized a 30 kDa band in the nuclear extracts of
the DN-Cbfa1 virus-infected cultures (Fig. 4A, lane 2) and a
56 kDa one in those of the Type-I Cbfa1 virus-infected
cultures (Fig. 4A, lane 3). The antibody against the
C-terminal portion of Type-I Cbfa1 only recognized a
56 kDa band in the nuclear extracts of the Cbfa1 virus-
infected cultures (Fig. 4A, lane 4–6). These data indicated
that the virus-infected cells expressed the expected
encoded gene products. When US chondrocytes were
infected with DN-Cbfa1 virus, the cells actively proliferated;
and the cell size was smaller than that of the control (Fig.
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4B, DN-Cbfa1) whereas the control cultures slowly grew
and contained large cells (Fig. 4B, Control). The feature of
the cell morphology in the DN-Cbfa1-expressing cultures
was very similar to that in LS cultures (compare Fig. 4B,
DN-Cbfa1 with Fig. 3A, Control). Further, the sulphated
GAG content in the DN-Cbfa1 cultures was half of the
control value (Fig. 4C). The similarity of characteristic
between the DN-Cbfa1 virus-infected US cultures and the
LS control cultures was also observed with respect to the
expression of hypertrophic phenotype. The DN-Cbfa1-
expressing cultures exhibited very low levels of ALPase
activity (Fig. 4C) and never underwent matrix calcifi-
cation (Fig. 4D, DN-Cbfa1), whereas the control US cul-
tures displayed high levels of ALPase activity and matrix
calcification (Fig. 4C and D, Control).
Discussion
CBFA1 STIMULATED EXPRESSION OF HYPERTROPHIC PHENOTYPE

IN CHONDROCYTES

Two lines of evidence support the hypothesis that Cbfa1
is a positive regulator of chondrocyte differentiation. One is
the demonstration, by analysis of in situ hybridization in
normal mice, that Cbfa1 is expressed in hypertrophic
chondrocytes as well as in osteoblasts16,17. Further, an
analysis of Cbfa1 expression by use of a lacZ reporter is
consistent is with the results of in situ hybridization for
Cbfa117. The other evidence is that Cbfa1 deficient mice
display severe blockage of chondrocyte differentiation16,17.
In such mice, only restricted cartilage elements including
those in the tibia, fibula, radius and ulna become
calcified16–18. In the other parts of cartilage including
humerus and phalanges, calcification does not proceed;
and the expression of Indian hedgehog and type X collagen
is inhibited, indicating that the lack of Cbfa1 gene impairs
maturation of chondrocytes16,17. In the present study we
demonstrated that forced expression of Cbfa1 in chondro-
cytes stimulated expression of the hypertrophic phenotype
such as production of ALPase activity and induction of
matrix calcification. These findings provide additional
evidence on favour of the hypothesis stated above, and
further suggest that Cbfa1 directly regulates chondrocyte
maturation.

The Cbfa1 gene has been predicted to produce at least
three types of isoforms25,44. One isoform, originally ident-
ified as Pebp2 A starts from exon219. The other two
isoforms, originally reported as OSF2/Cbfa1/til-1 are trans-
lated from two different tranlational sites of the same mRNA
starting from exon 121,25,45. All three isoforms of Cbfa1
have the ability to activate osteocalcin and osteo-
pontin gene expression23. However, differences in the
translational activity among the three isoforms have been
demonstrated from the results of promotor analysis and
those of the stable transfection experiments23,46. For the
forced expression of Cbfa1 in chondrocytes in this study,
we used two isoforms: one was Pebp2�A starting from
exon 219, which we have referred to as Type-I Cbfa1; and
the other was a shorter isoform starting from exon 1
originally cloned OSF2/Cbfa1/til-120,25 and here called
Type-II Cbfa1. We found that both isoforms strongly stimu-
lated ALPase activity and matrix calcification, and we did
not detect any clear difference in the stimulatory activity
between the two isoforms. Using specific probes for each
isoform, we have found that both isoforms were expressed
in growth plates, particularly in hypertrophic chondrocytes
(unpublished results). Therefore, functional differences in
chondrocyte differentiation between the two isoforms
remain unclear at this moment and should be further
investigated.
CBFA1 IS REQUIRED FOR CHONDROCYTE MATURATION

Ducy et al.43 reported that expression of DNA binding
domain of Cbfa1 inhibited transactivation function of Cbfa1
in a dominant negative manner. Further, they showed that
osteoblasts expressing the DNA binding domain of Cbfa1
showed less ALPase activity and poorly performed matrix
calcification in vitro43. We made a dominant negative form
of Cbfa1 in a similar way except for the remainder of the
N-terminal portion of the molecule. We only deleted the
C-terminal portion from the nuclear location signal
sequence just after the runt domain of Cbfa1. This con-
structed gene product, named DN-Cbfa1, was also com-
petitively inhibited the DNA binding of Cbfa1 to OSE2
elements (data not shown). Expression of DN-Cbfa1 in
mature chondrocytes changed the phenotype of the cells to
an immature state, as judged from cell shape, proliferation
activity, and lack of expression of hypertrophic markers,
suggesting that dysfunction of Cbfa1 inhibits progression
of chondrocyte maturation and that Cbfa1 is required
for chondrocyte maturation. The decrease in GAG syn-
thesis and ALPase activity in DN-Cbfa1 expressing
chondrocytes was partially recovered by the addition of
bone morphogenetic protein-2 (BMP-2) (manuscript in
preparation). It is likely that chondrocytes have a Cbfa1-
independent BMP signalling pathway to stimulate their
maturation. This may be a reason why some of cartilage
elements including tibia and ulna proceed to terminal
differentiation and exhibit matrix calcification in Cbfa1-
deficient mice16,18.

When DN-Cbfa1 virus was infected into LS cells, the
cells remarkably decreased GAG synthesis and became
fibroblastic, suggesting that Cbfa1 is also important for the
maintenance of the differentiated phenotype of chondro-
cytes. However, this is contrary to the observation that
Cbfa1-deficient mice showed normal cartilage formation.
The discrepancy may be explained in several ways. One is
that chondrocytes may require the Cbfa1 signal to maintain
their phenotype when transferred to an in vitro setting.
Another possibility is that other runt-related proteins may
exert important functions in the expression of the differen-
tiated phenotype in chondrocytes. DN-Cbfa1 competitively
inhibits the DNA binding by the runt domain, and
the sequence of this domain is highly conserved among the
runt family members47. Therefore, DN-Cbfa1 might inhibit
the function of the other subtypes of runt gene products.
Indeed, chicken homologues to Cbfa2, another runt
domain protein, have been cloned from a chondrocyte
library and suggested to be implicated in chondrogenic
differentiation48.
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