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Abstract

We show that every first-countable countably paracompact LindBlé&Space has cardinality
at mostc; every first-countableo;-Lindel6f Hausdorff space has cardinality at most 2very
realcompact first-countable;-Lindel6f space has cardinality at mastin all these results, first
countability canbe replaced by countablegtitness plus either couwatile or countable closed
pseudocharacter. We also show that the Lindel6f nhumber of eveyindel6f regular space of
countable tightness is at mast
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1. Introduction

In [1], Arhangel’skii solved a half-century old problem of Alexandroff by proving the
following inequality:

|First countable Lindel6fl» space < c.

In this paper we are explorirgpssibilities of relaxing theanditions in the left side of the
above inequality. First we go along an old road trying to redlic® T1. Gryzlov proved
in [6] that everyT1 compactum of countable pseudotcdeter has cardinality at mostWe
use the Gryzlov’'s argument to show that every countably paracompact Liregjiface
of countable pseudocharacter and cabie tightness has cardinality at mestWe also
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present a very short proof of the fact that every first-countable countably paracompact
Lindelof Ty-space has cardinality at most The reason we present a shorter proof for
a weaker result is that it reveals a very interesting effect of countable paracompactness
on T1-spaces. As it is understood from the abstract we do not reach the final goal in this
direction. So we move to a parallel road of relaxing Lindel6fness. A successful attempt in
this direction was earlier made in [2], where the authors proved that the cardinality of a
first-countable linearly Lindeldf Tychonov space does not exeeed

In the third section we are trying to relax LindeléfnessdgeLindeléfness and obtain
some partial results. While under CH every first-countatyld indel6f Hausdorff space
is simply Lindel6f there exists a consistent example (constructed by Koszmider [7]) of a
first-countable initiallyw;-compact not compact normal space. In addition to many other
credentials this space is;-Lindelof not linearly Lindel6f, and therefore, not Lindel6f.

A spaceX is calledwi-Lindel6f if every open cover o of cardinalityw; contains a
countable subcover. This is equivalent to the condition that every subXatfodardinality
w1 has a complete accumulation pointin

The Lindel6f numberof X (denoted by (X)) is the smallest cardinal numbersuch
that every open cover of contains a subcover of cardinality not exceeding

A spaceX is said to haveountable tightnes§for every setA c X and every € A\ A
there exists a countable C A whose closure contains

If ACY C X, by A and ck (A) we denote the closures dfin X andY, respectively.

In the rest of notation and terminology we will be consistent with [5].

Throughout the paper we will often use Arhangel’skii’s closure argument developed by
him to prove the inequality in question.

2. Countably paracompact Lindel6f T1-spaces

In [6], Gryzlov proved that every; compactum of countable pseudocharacter has
cardinality at most. It is still an open question whether in Arhangel'skii inequality
can be replaced by1. Moreover it is not even known if cardinalities of suél-spaces
have an upper bound. Using Gryzlov's argument we will prove the main result of this
section (Theorem 2.7).

We would like to start with a shorter proof of a weaker version of Theorem 2.7 that
utilizes an unusual effect of countable paracompactnegdg-@paces. For both proofs we
will need the following definition.

Definition 2.1. Let X be a topological space. A s&tC X is calledw-closed inX if the
following condition is met: for every familyC, C Y: |C,| < }, if ), Cly (C,) = @ then
N, Cu =9.

Observe that every closed setdsclosed. The following lemma aboutclosed sets is
extracted from the argument of Gryzlov [6].

Lemma 2.2.Let X have countable tightngss. Letc X bew-closed inX. LetF;, be closed
in Y for eachn and(,, F, =¥. Then,, F,, = 0.
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Proof. Assume there exists € ﬂn_Fn. SinceX has countable tightness, for ea_cthere
exists countabl€, C F, with x € C,. Then(, cly(C,) €, F» =@ while(), C, # @
which contradicts-closeness of in X. O

A shorter proof Forx € X, the anti-Hausdorff componentl, C X of x is defined as
follows: y € H, iff x € O, for every open neighborhoad, of y.

Lemma 2.3.Let X be countably paracompact and Lindel6f. ThEnis a closed compact
subspace oKX for everyx € X.

Proof. Take any; € X \ H,. There exists an open neighborha@dof z such that: ¢ 0.
Therefore any € O, does not belong té7,, henceX \ H, is open and{, is closed.

If H, is not compact then Lindel6fness &fimplies that there exists a discrete closed
in X set{x,: n € w} C H,. Due to countable paracompactness, there exist opemsé&ts
such thatix;: k > n} C W, and(), W, = @. Therefore, there existssuch thatx ¢ Wy.
Thenx;41 cannot be inH,, a contradiction. O

Theorem 2.4.Let X be afirst-countable Lindel&f1-space. IfX is countably paracompact
then|X| < c.

Proof. For Arhangel'skii's argumentto work in our case, it suffices to show that the closure
of any countable subset iXi has cardinality at most. Therefore, we may assume tht

is separable. Starting from a countable dense subsetaffer w; steps we can build a set

Y of cardinality at most which is dense an@d-closed inX.

Take an arbitrarye € Y \ Y. Let us show thak e H, for somey € Y. Let B,’s be
base neighborhoods at Let F = ﬂn(l_in N Y). The setF cannot be empty due to
Lemma 2.2. Thery € F is the point we need. Henceg, = Y = Uyey Hy- EachH, is
compact (Lemma 2.3) and therefore has cardinality at mbgiGryzlov’s theorem. Hence,
IX|<c. O

Alonger proof The next two lemmas are based on ideas due to Gryzlov [6].

Lemma 2.5.Let X be a Lindel6fTy-space of countable pseudocharacter and countable
tightness. Let bew-closed inX. LetF be a maximal family of closed in sets with finite
intersection property. Then

(1) ﬂFe]—'FZ@; _
(2) There existFy, ..., Fy, ... € F suchthaf, F, = 9.

Proof. Assume there exists € () .z F. Let B, be open neighborhoods efsuch that

(M, B» = {x}. By maximality of F there existsF, € F such thatF, Cc B, NY. Then

N, F» €N, (B, NY)=0.By Lemma 2.2, F, = contradicting the assumption.
Statement (2) follows from (1) and Lindel6fnessXf O
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Lemma 2.6.Let X be a Lindel6fT1-space of countable pseudocharacter and countable
tightness. Let bew-closed inX. If X is countably paracompact thenis Lindelof.

Proof. Assume the contrary. Then there exists a free countably completeAittéclosed
in Y sets. SinceX is Lindelof there exists € (o z F.

Let 7' be the maximal family of closed ilf sets such that € F for every F € F'.
Clearly, 7 c F'.

By Lemma 2.2,F has finite (even countable) intersection property. 7t be a
maximal family of closed in¥ sets with finite intersection property such tifatc F”.
Then by Lemma 2.5, there exig, ..., Fy,... € F” such that), F, = 4. We may
assume thak,+1 C F,.

Countable paracompactness Xfimplies that there exist opeW,’s in X such that
F,C W, and N, W, =0. The sett \ W, is closed inY. SinceF” has finite intersection
property,Y \ W, is not in 77 and therefore not i’ either. That isx ¢ Y \ W,. Since
x € Y, we havex € W,. The latter inclusion contradicts the fact tffigf W, =9. O

The proof of the next statement is the classical argument of Arhangel’skii. To avoid
repetition we will outline only the most important steps.

Theorem 2.7.Let X be a Lindel6fTy-space of countable pseudocharacter and countable
tightness. IfX is countably paracompact theix | < c.

Proof. Foreachr € X let{V,,(x): n € w} be a collection of open neighborhoodsw$uch
that ), V. (x) = {x}. Construct a sequendé®,: « < w1} of subsets ofX such that for
all o:

(1) IYel <c,andYg C Yy if B < «;

2) If VC{Vu(x): x € Uﬂ<a Yg, n € w} is countable and is not a cover &f then
Yo \UV#9; _

(3) If {Cs: n € w} is a family of countable subsets of;_, Yp and(), C, # ¥ then
M, Cly, (Cn) # 0.

LetY = Ua<w1 Y,.By (3),Y isw-closed, hence Lindel6f (see Lemma 2.6). By 2% X.
By (1),1XI<c. O

3. wi-Lindeldfness

As we mentioned in the introduction section, a first-countalld.indel6f space need
not be Lindelof. Therefore, it is interesting to know if Arhangel'skii’s inequality holds in
class ofw;-Lindel6f spaces.

Let us start with the following technicalatement that will allow us to derive several
important corollaries.
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Lemma 3.1.Let X be anw;-Lindeldf space of countable tightness did) < ¢ for every
countableA C X. Then/(X) <c.

Proof. Let/ be an arbitrary open cover &f. For eachwy < w1 we will define a countable
setA, C X and use these sets to choose a subcover of a desired cardinality.

Step0 PutAg=40.
Stepa < ws. SinceUﬁ<a Ag is separable, by the lemma’s hypothesis there exists a cover

Uy CU of (g, Ap of cardinality not exceeding
Pick an arbitrary pointe, € X \ [Ug<, (UUp)1. If no such point exists then stop
inductive definition. Otherwise, put, = (Uﬁ<a Ap) U{aq}.

Let us show that at some step< w1 our process must stop. Assume the contrary. Then
A =J, A« is closed being am;-long increasing sequence of closed sets in a space of
countable tightness. Sinckis a closed set of am1-Lindel6f space, there exists < w1
suchthat J,, Up is a cover ofd which contradicts the fact that € X\ [z, (UUp)I.
Therefore, our process stops at some countablesstel Uﬂ@ Ug is a subcover ok
of cardinality not exceeding (recall that each{s has cardinality at mosf). O

If in the proof of Lemma 3.1 we assume that for every closed separalfesex there
existsUy € U containingY, then at each step a coverl, can be replaced by a single
element of/ and we obtain a countable subcover. Thus, a simple repetition of the above
proof results in the following statement to be used later in this section.

Lemma 3.2.Let X be anwsi-Lindeldf space of countable tightness. Andetbe an open
cover ofX such that every separable clos&dc X is contained in somé& e U. Thenl
contains a countable subcover.

If we assume thakX is regular then the closure of every countable set has weight of
cardinalityc. Therefore every open cover of a separable closed set admits a subcover of
cardinality at most. Applying Lemma 3.1 we get the following.

Corollary 3.3. Let X be an w1-Lindel6f regular space of countable tightness. Then
1(X) <e.

This fact implies that under CH evesy; -Lindel6f regular space of countable tightness
is Lindel6f. This observation is related to anlgarresult of Dow [3], where he proves that
under CH every initiallyw1-compact Hausdorff space of countable tightness is compact.
This result together with our corollary motivates the following question.

Question 3.4.Let X be anw1-Lindelof Hausdorff(or 71) space of countable tightness. Is
then/(X) <c¢?

Another simple corollary to Lemma 3.1 is thatifis anw1-Lindel&f space of countable
tightness and the closure of any countable sét ia Lindeltf thenX is Lindel6f. This fact
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was proved in [2] only in class of Tychonov spaces while our version has no restrictions
on separation axioms.

Recall that the closure of any countable subset in a first-countableindel6f
Hausdorff space has cardinality at mesirhus, using Lemma 3.1 we obtain an estimate
for Lindelof number of first-countable: -Lindel6f spaces.

Corollary 3.5. Let X be a first-countable1-Lindel6f Hausdorff space. ThéaX) < c.

Using this estimate and the argument of Arhangel'skii's inequality, we arrive at the
following.

Theorem 3.6.Let X be a first-countable;-Lindel6f Hausdorff space. Thex | < 2°.

Note that in the atwe theorem we can safely replace first-countability by countable
tightness plus countable closed pseudocharacter. However we do not know if countable
closed pseudocharacter can be replaceddyntable pseudocharacter since we do not
know an answer to the following question.

Question 3.7.Let X be a separablev;-Lindeldf Hausdorff space of countable tightness
and countable pseudocharacter. Is it true th&t < ¢?

For our further discussion let CK) be defined as the minimum cardinal numbesuch
thatBX \ X can be written as the union of at mastompact sets.

In our last result in this section (Theorem 3.10) we will use the strategy developedin [2].
To prove Theorem 3.10 we will need the following two statements.

Theorem 3.8(Dow [4]). Suppose is a cardinal andY is a subspace of a Tychonov space
X such thatCh(Y) and |Y| are at mostk and, for eachy € Y, ¥ (y, X) < «, thenY is a
G.-setinX.

The original version of the above theorem hgg, X) instead ofy (y, X). However the
proof uses only they (y, X) < «” assumption (confirmed with the author of the theorem).

Lemma 3.9.Let X be a realcompact space and a closed separable subset &f of
cardinality at most andy (y, X) < ¢ for everyy € Y. ThenY isaG.-setinX.

Proof. SinceY is separabledY has a base of cardinality at mestSinceY is realcompact,
everyz € BY \ Y is contained in a compactu@ C gY \ Y which is aG;s-setingY. Since

the weight is at most, the set of all closed;s sets in8Y does not exceed. Therefore,
BY \ 'Y can be covered bymany compact subsets 8t \ Y. The conclusion follows from
Dow's theorem. O

In the next theorem we will repeat Arhangel’skii’s argument with a tiny change, namely,
we replace neighborhoods of points by neighborhoods of closed separable sets. And the
rest of Arhangel’skii's argument works smoothly due to Lemma 3.2.
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Theorem 3.10.Let X be a realcompactv:-Lindelof space of countable tightness and
countable pseudocharacter. Thea| < c.

Proof. For each closed separalifeCc X fix a c-sized familylfy of open sets such that

Y =(\Uy. This can be done by Lemma 3.9 since the closure of any countableXétsn

cardinality at most due to countable tightness, countable pseudocharacter and regularity.
For eacha < w1, we will define X, C X of cardinality at most so thatX will be

Uy Xo-

Definition of X,.LetZ, = Uﬂm XpgandW, = J{Uy: Y C Z, is closed and separabjle
For every countable family/ ¢ W, that does not covelX, fix x;; € X \ JU. Put
Xo = Z, U {all fixedxy}.

The set J, X, has cardinality at mostsince the number of new points added at step
depends on the number of separable closed subséig, efhich is at most. Let us show
thatX = J, X,. The sel J, X, is closed due to countable tightness. Assume there exists
anx € X \ U, X«. For each separable closédc | J, X., chooseUy € Uy that does
not containx. By Lemma 3.2, there exist separable closgd...,Y,,... C |J, X« such
that( J, Uy, covers|J, Xo. All Uy,’s are inW, for somea < wy. Thereforex € X, a
contradiction. O

In the above theorem the only good wevblarom realcompactness is writing the
remainder of a separable closed subset as the unienntdiny compacta. Therefore, if
we replace realcompactness with local compactnesvsech completeness, the theorem
still holds.

Theorem 3.10 as well as our result for Hausdorff case give a hope that the following
question might have a positive answer.

Question 3.11.Let X be a first-countablev:-Lindel6f Hausdorff space. Is it true that
|X| < c?What if X is regular or Tychono¥

We do not know an answer to this question for initiadly-compact spaces either
although the latter are well investigated. Fr case we will not be so optimistic and
state the question in a rather different way.

Question 3.12]s there an example of a first countalle-Lindeldf T1-space of cardinality
greater thanc (or even greater tha“)?

And let us finish with a questions standing rather aside yet related to our study.

Question 3.13(Arhangel’skii).Let X be hereditarily separable an@di-Lindel6f. Is then
X Lindel6f?
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