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Abstract

In this paper, we propose that structural learning of a directed acyclic graph can be decomposed into problems related to its
decomposed subgraphs. The decomposition of structural learning requires conditional independencies, but it does not require
that separators are complete undirected subgraphs. Domain or prior knowledge of conditional independencies can be utilized to
facilitate the decomposition of structural learning. By decomposition, search for d-separators in a large network is localized to small
subnetworks. Thus both the efficiency of structural learning and the power of conditional independence tests can be improved.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Directed acyclic graphs (DAGs) are widely used to represent independencies, conditional independencies and
causal relationships among variables [5,6,8,15,18,19,24]. Structure recovery of DAGs has been discussed by many
authors [5,12,19,24,27]. Search for d-separators of vertex pairs is a key issue for orientation of directed edges and for
recovering DAG structures and causal relations among variables. To recover structure of DAGs, Verma and Pearl [27]
presented the inductive causation (IC) algorithm which searches for a d-separator S from all possible variable subsets
such that two variables u and v are independent conditional on S. A systematic way of searching for d-separators
in increasing order of cardinality was proposed in [23,24]. The PC algorithm limits possible d-separators to vertices
that are adjacent to u and v [19,24]. A decomposition approach of searching for d-separators was presented in [11].
To decompose a graph into two subgraphs, the approach in [11] needs a moral graph and it requires two conditions:
(i) variable sets in two subgraphs are independent conditional on their separator and (ii) the separator must be a
complete subgraph in the moral graph. The two conditions are often used to define decomposition of an undirected
graph, see Definitions 2.1 and 2.2 in [15].

In this paper, we present a decomposition approach for recovering structures of DAGs. The ultimate use of the con-
structed DAGs is to interpret association and causal relationships among variables. Decomposition in our approach
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only needs an undirected independence graph which may not be a moral graph and may have extra edges added to
the moral graph, and further it only requires condition (i) of conditional independencies but it does not require condi-
tion (ii) of complete separators. Thus the decomposition is weaker than the weak decomposition defined in [15] and
also than that proposed in [11]. Deleting condition (ii) from decomposition conditions is important since it is difficult
with domain or prior knowledge to judge whether a separator is complete or not. In many practical applications, con-
dition (i) of conditional independencies can be judged with domain or prior knowledge or with incompletely observed
data patterns, such as Markov chain, chain graphical models, dynamic or temporal models, file-matching for large
databases and split questionnaire survey sampling [6,16,20].

Section 2 gives notation and definitions. In Section 3, we show a condition for decomposing structural learning
of DAGs. Construction of d-separation trees to be used for decomposition is discussed in Section 4. We propose the
main algorithm and then give an example in Section 5 to illustrate our approach for recovering the global structure
of a DAG. Section 6 discusses the complexity and advantages of the proposed algorithms. Conclusions are given in
Section 7. The proofs of our main results and algorithms are given in Appendix A.

2. Notation and definitions

2.1. Directed acyclic graphs and undirected graphs

Let �GV = (V , �EV ) denote a DAG where V = {X1, . . . ,Xn} is the vertex set and �EV the set of directed edges.
A directed edge from a vertex u to a vertex v is denoted by 〈u,v〉. We assume that there is no directed loop in �GV . We
say that u is a parent of v and v is a child of u if there is a directed edge 〈u,v〉, and denote the set of all parents of a
vertex v by pa(v). We say that two vertices u and v are adjacent in �GV if there is an edge connecting them. A path l

between two distinct vertices u and v is a sequence of distinct vertices in which the first vertex is u, the last one is v

and two consecutive vertices are connected by an edge, that is, l = (c0 = u, c1, . . . , cm−1, cm = v) where 〈ci−1, ci〉 or
〈ci, ci−1〉 is contained in �EV for i = 1, . . . ,m (m � 1), and ci �= cj for all i �= j . We say that u is an ancestor of v and v

is a descendant of u if there is a path between u and v in �GV and all edges on this path point at the direction toward v.
The set of ancestors of v is denoted as an(v), and define An(v) = an(v) ∪ {v}. A path l is said to be d-separated by
a set of vertices Z if and only if

(1) l contains a ‘chain’: u → v → w or a ‘fork’ u ← v → w such that the middle vertex v is in Z, or
(2) l contains a ‘collider’ u → v ← w such that the middle vertex v is not in Z and no descendant of v is in Z.

Two distinct sets X and Y of vertices are d-separated by a set Z if Z d-separates every path from any vertex in X to
any vertex in Y ; We call Z a d-separator of X and Y . In a DAG �GV , a collider u → v ← w is called a v-structure if u

and w are non-adjacent in �GV .
Let ḠV = (V , ĒV ) denote an undirected graph where ĒV is a set of undirected edges. An undirected edge between

two vertices u and v is denoted by (u, v). For a subset A of V , let ḠA = (A, ĒA) be the subgraph induced by A

and ĒA = {e ∈ ĒV | e ∈ A × A} = ĒV ∩ (A × A). An undirected graph is called complete if any pair of vertices is
connected by an edge. For an undirected graph, we say that vertices u and v are separated by a set of vertices Z if
each path between u and v passes through Z. We say that two distinct vertex sets X and Y are separated by Z if and
only if Z separates every pair of vertices u and v for any u ∈ X and v ∈ Y . We say that an undirected graph ḠV is
an undirected independence graph for a DAG �GV if the fact that a set Z separates X and Y in ḠV implies that Z

d-separates X and Y in �GV . We say that ḠV can be decomposed into subgraphs ḠA and ḠB if

(1) A ∪ B = V , and
(2) C = A ∩ B separates A \ B and B \ A in ḠV .

The above decomposition does not require that the separator C is complete, which is required for weak decomposition
defined in [15] and for decomposition of search for v-structures proposed in [11]. In the next section, we show that a
problem of structural learning of a DAG can also be decomposed into problems for its decomposed subgraphs even if
the separator is not complete.
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Fig. 1. A directed graph, a moral graph and a triangulated graph. (a) The DAG �GV . (b) The moral graph �Gm
V

. (c) A triangulated graph �Gt
V

.

A triangulated graph is an undirected graph whose every cycle of length � 4 possesses a chord [15]. For an
undirected graph ḠV which is not triangulated, we can add extra edges to it such that it becomes to be a triangulated
graph, denoted by Ḡt

V .
Define a moral graph �Gm

V for a DAG �GV to be an undirected graph ḠV = (V , ĒV ) whose vertex set is V and
whose edge set is constructed by marrying parents and dropping directions, that is, ĒV = {(u, v): 〈u,v〉 or 〈v,u〉 ∈
�EV } ∪ {(u, v): (u,w,v) forms a v-structure} [15]. An undirected edge added for marrying parents is called a moral
edge. The moral graph �Gm

V is an undirected independence graph for �GV [15].

Example 1. Consider a DAG �GV in Fig. 1(a). 2 → 4 ← 3 and 4 → 7 ← 6 are two v-structures. A path l = (2,1,5)

is d-separated by vertex 1, and another path l′ = (2,4,7,6,5) is d-separated by an empty set since 4 → 7 ← 6 is a
collider. Vertices 2 and 5 are d-separated by vertex 1. an(4) = {1,2,3} and An(4) = {1,2,3,4}. The moral graph �Gm

V

is shown in Fig. 1(b), whose edges (2,3) and (4,6) are moral edges. Set {2,3,5} separates {1} and {4,6,7}, and thus
�Gm

V can be decomposed into two undirected subgraphs over {1,2,3,5} and {2, . . . ,7}. An undirected independence
graph for �GV may have extra undirected edges added to the moral graph, say edges (1,4) and (1,6) added to �Gm

V , see
dashed edges in Fig. 1(c). The graph in Fig. 1(c) is a triangulated graph of �Gm

V .
Given a DAG �GV , a joint distribution or density of variables X1, . . . ,Xn is

P(x1, . . . , xn) =
n∏

i=1

P(xi | pai ),

where P(xi | pai ) is the conditional probability or density of Xi given pa(Xi) = pai . The DAG �GV and the distribution
P are said to be compatible [19] and P obeys the global directed Markov property of �GV [15]. Let X Y denote
the independence of X and Y , and X Y | Z the conditional independence of X and Y given Z. If sets X and Y are
d-separated by Z, then X is independent of Y conditional on Z in every distribution that is compatible with �GV [19].
In this paper, we assume that all the distributions are compatible with �G. We also assume that all independencies of a
probability distribution of variables in V can be checked by d-separations of �GV , called the faithfulness assumption
[24]. The faithfulness assumption means that all independencies and conditional independencies among variables can
be represented by �GV .

The global skeleton is an undirected graph obtained by dropping direction of a DAG. Thus the absence of an
edge (u, v) implies that there is a variable subset S of V such that u and v are independent conditional on S, that
is, u v|S for some S ⊆ (V \ {u,v}). Two DAGs over the same variable set are called Markov equivalent if they
induce the same conditional independence restrictions. Two DAGs are Markov equivalent if and only if they have the
same global skeleton and the same set of v-structures [27]. An equivalence class of DAGs consists of all DAGs which
are Markov equivalent, and it is represented as a partially directed graph where the directed edges represent arrows
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Fig. 2. A d-separation tree.

that are common to every DAG in it, while the undirected edges represent that any proper orientation of them leads
to a Markov equivalent DAG. Therefore the goal of structural learning is to construct a partially directed graph to
represent the equivalence class. A local skeleton for a subset A of variables is an undirected subgraph for A in which
the absence of an edge (u, v) implies that there is a subset S of A such that u v|S.

2.2. d-separation trees

To depict separations and conditional independencies among multiple variable sets, we introduce a notion of
d-separation trees in this subsection. Let C be a collection of variable sets, that is, C = {C1, . . . ,CH }, such that⋃H

h=1 Ch = V and Ci �⊆ Cj for i �= j . Let T be a tree whose every node is a variable set in C and is displayed as a
triangle. The term ‘node’ is used for a tree to distinguish the term ‘vertex’ for a graph. An edge eh = (Ci,Cj ) connects
nodes Ci and Cj in T , and it is attached with a separator S displayed as a rectangle, which is the intersection of adja-
cent nodes, that is, S = Ci ∩ Cj ; We say that the separator S connects the nodes Ci and Cj . Removing a separator S

from the tree T splits T into two subtrees T1 and T2 with node sets C1 and C2 respectively. Let Vi = ⋃
C∈Ci

C be the
union of the nodes in the subtree Ti for i = 1 and 2.

Definition 1. A tree T is said to be a d-separation tree for a DAG �G if any separator S in T d-separates, in �G, the
vertex sets V1 \ S and V2 \ S of two subtrees T1 and T2 obtained by removing S.

The notion of a d-separation tree is very similar to that of a junction tree. A d-separation tree is defined with d-
separation and it does not need that every node is a clique, while a junction tree is a d-separation tree (see Theorem 2).

Example 1. (Continued) Let C = {{1,2,3,4}, {1,4,6}, {1,5,6}, {4,6,7}} be a collection of variable sets. A d-sepa-
ration tree with C as the node set is depicted in Fig. 2. Removing the separator S = {1,4}, we obtain two subtrees T1
and T2 with the node sets C1 = {{1,2,3,4}} and C2 = {{1,4,6}, {1,5,6}, {4,6,7}} respectively, and the separator S

d-separates V1 \ S = {2,3} and V2 \ S = {5,6,7} in �GV .

2.3. Hypergraph

A collection of variable sets C = {C1, . . . ,CH } is said to be a hypergraph on V where each hyperedge Ch is
a nonempty subset of variables, and

⋃H
h=1 Ch = V , see Chapter 17 in [4]. A hypergraph is a reduced hypergraph

if Ci �⊆ Cj for i �= j [3]. In this paper, only reduced hypergraphs are used, and thus simply called hypergraphs. In
Section 4.2, a hyperedge can be used to represent the domain knowledge of association among variables or to represent
multiple databases with overlapping.

Example 1. (Continued) Let C = {{1,2,3,4}, {1,3,5,6}, {4,6,7}} be a hypergraph, as shown in Fig. 3.

3. Decomposition of structural learning

In this section, we show that if vertices u and v are d-separated by a d-separator S in a DAG �GV , then u and
v are not contained by any node of the d-separation tree for �GV or there exists a node C that contains u, v and S′
such that u v|S′, and vice versa. Applying this result to structural learning, we can split a problem of searching for
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Fig. 3. A hypergraph.

d-separators and building the skeleton of a DAG into small problems for every node of T . This result may also be
useful for designing observational studies for recovering local causal relationships.

Theorem 1. Let T be a d-separation tree for a DAG �G. Vertices u and v are d-separated by S (⊆ V ) in �GV if and
only if (i) u and v are not contained together in any node C of T or (ii) there exists a node C that contains both u

and v such that a subset S′ of C d-separates u and v.

According to Theorem 1, a problem of searching for a d-separator S of u and v in all possible subsets of V is
localized to all possible subsets of nodes in a d-separation tree that contain u and v. For a given d-separation tree T

with the node set C = {C1, . . . ,CH }, we can recover the skeleton and all v-structures for a DAG as follows. First
we construct a local skeleton for every node Ch of T , which is constructed by starting with a complete undirected
subgraph and removing an undirected edge (u, v) if there is a subset S of Ch such that u and v are independent
conditional on S. Next to construct the global skeleton, we combine all these local skeletons together and remove
edges that are present in some local skeletons but absent in other local skeletons. Then we determine every v-structure
if two non-adjacent vertices u and v have a common neighbor in the global skeleton but the neighbor is not contained
in the d-separator of u and v. Finally we can orient more undirected edges if each opposite of them creates either a
directed cycle or a new v-structure [17]. This process is formally described in the following algorithm.

Algorithm 1 (Construct the equivalence class of DAGs from a d-separation tree).

1. Input: a d-separation tree T with a node set C = {C1, . . . ,CH }.
2. Construct a local skeleton Ḡh for each h separately:

• Initialize Ḡh as a complete undirected graph;
• If there exists a subset Suv of Ch \ {u,v} such that u v|Suv , then delete edge (u, v) from Ḡh and save Suv to

the d-separator list S ;
3. Construct the global skeleton ḠV :

• Initialize the edge set ĒV of ḠV as the union of all edge sets of Ḡh, h = 1, . . . ,H ;
• For a pair of vertices u and v contained in several local skeletons, delete edge (u, v) from ĒV if it is absent in

some skeleton.
4. For each d-separator Suv in the list S , determine a v-structure u → w ← v if u–w–v appears in the global skeleton

and w is not in Suv .
5. Orient other edges if each opposite of them creates either a directed cycle or a new v-structure.
6. Output: the equivalence class of DAGs.

According to Theorem 1, we can prove that the global skeleton and all v-structures obtained by applying the above
decomposition algorithm are correct, that is, they are the same as those obtained from the joint distribution of V , see
Appendix A for the detail proof. Note that separators in a d-separation tree may not be complete in the moral graph.
Thus the decomposition is weaker than the decomposition usually defined for parameter estimation [5,10,15].

Example 1. (Continued) Consider the d-separation tree in Fig. 2 as the input of Algorithm 1. At step 2, we separately
build the local skeleton for each node of T , as shown in Fig. 4(a). At step 3, the global skeleton is obtained by
combining the local skeletons in Fig. 4(a). Edge (1,6) in the subgraph for node {1,4,6} is a spurious edge and it
is removed from the global graph since the edge (1,6) does not appear in the subgraph for node {1,5,6}, that is,



X.C. Xie et al. / Artificial Intelligence 170 (2006) 422–439 427
(a)

(b)

Fig. 4. Skeleton and v-structures for �GV . (a) Local skeletons for every node of T . (b) The global skeleton and all v-structures.

there is a d-separator S16 = {5} which d-separates 1 and 6 in the subgraph. Similarly edge (4,6) is removed since
it is absent in the third local skeleton. At step 4, all v-structures can be determined, see Fig. 4(b). For example, the
v-structure 2 → 4 ← 3 can be determined since for S23 = {1} ∈ S , 2–4–3 appears in the global skeleton and vertex 4
is not contained in S23. Similarly, the v-structure 4 → 7 ← 6 is found since for S46 = {1} ∈ S , 4–7–6 appears in the
global skeleton and vertex 7 is not contained in S46. But for S16 = {5} ∈ S , 1–5–6 appears, but vertex 5 is contained
in S16, and thus it is not a v-structure. For this DAG, no other edges can be oriented at step 5. The partially directed
graph in Fig. 4(b) is the equivalence class of the DAG in Fig. 1(a).

By Theorem 1, it is ensured that the global skeleton and all v-structures in �GV can be recovered by combining
subgraphs over all nodes of T . In the next section, we discuss how to construct a d-separation tree.

4. Constructing a d-separation tree

In this section, we discuss how to construct a d-separation tree from observed data or from domain or prior knowl-
edge of conditional independencies or from a collection of databases. We first propose an approach in which an
undirected independence graph and then a junction tree are built from observed data, and we show that a junction tree
is a d-separation tree. Next we propose an approach for constructing a d-separation tree from domain knowledge or
from a collection of databases with different observed variable sets.

4.1. Constructing a d-separation tree from observed data

In several algorithms of structural learning, the first step is to construct an undirected independence graph in which
the absence of an edge (u, v) implies u v|V \ {u,v}. To construct such an undirected graph, we can start with a
complete undirected graph, and then for each pair of variables u and v, an undirected edge (u, v) is removed if u and
v are independent conditional on the set of all other variables. For linear Gaussian models, the undirected graph can
be efficiently constructed by removing an edge (u, v) if and only if the corresponding entry in the inverse covariance
matrix is zero. For discrete data, a test of conditional independence given a large number of discrete variables may
be extremely low power. To cope with such difficulty, for a vertex u, we first use information criterion to find a
variable subset which contains the Markov blanket of u [18], and then we test independence of u and another variable
conditionally on the variable subset [14,26]. This test is efficient if the Markov blanket of u is not large. For discrete
data, we can also use the algorithm proposed in [9] which reduces the requirement for testing high order conditional
independencies.

A d-separation tree can be built by constructing a junction tree from an undirected independence graph [5] or by
using the algorithm presented in Section 4.2.

Theorem 2. A junction tree constructed from an undirected independence graph for �GV is a d-separation tree for �GV .
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A d-separation tree T only requires that all d-separation properties of T also hold for �GV , but the reverse is
not required. Thus we only need to construct an undirected independence graph that may have fewer conditional
independencies than the moral graph, and this means that the undirected independence graph may have extra edges
added to the moral graph. Thus the null hypothesis of the absence of an undirected edge may be tested statistically at
a larger significance level provided that no nodes of a d-separation tree contain too many variables.

Example 1. (Continued) To construct a d-separation tree for �GV in Fig. 1(a), at first an undirected independence graph
is constructed by starting with a complete graph and removing an edge (u, v) if u v|V \ {u,v}. An undirected graph
obtained in this way is the moral graph in Fig. 1(b). In fact, we only need to construct an undirected independence
graph which may have extra edges added to the moral graph. Next triangulate the undirected graph and finally obtain
the d-separation tree, as shown in Fig. 1(c) and Fig. 2 respectively.

4.2. Constructing a d-separation tree from domain knowledge or from observed data patterns

In this subsection, we propose an approach for constructing a d-separation tree from domain knowledge or from
observed data patterns without conditional independence tests. The domain knowledge may be experts’ prior knowl-
edge of dependencies among variables, such as Markov chains, chain graphical models and dynamic or temporal
models. In many practical applications, such as file-matching and split questionnaire survey sampling [16,20], there
are many large databases that have different data patterns, that is, databases have different attributes but may overlay
each other. Based on the domain knowledge of dependencies, data patterns of databases can be designed to recover the
entire structure for the full variable set V correctly. The problem of reconstructing a DAG from multiple overlapping
databases has been considered, and two rules for determining the absence of edges were proposed in [7]. As the author
noticed, however, the two rules do not exhaust all possible rules and the existence of others remains an open problem.
We theoretically prove that our approach is perfect, that is, the entire DAG reconstructed by using multiple databases
is the same as that reconstructed by using joint data over the full variable set V , if multiple databases are designed
based on the domain knowledge of dependencies.

We first consider a simple case with two variable sets A and B . Let C = A ∩ B . Suppose that we have a domain
knowledge that any variable in A \C associates with any variable in B \C only through variables in C, which implies
(A \ C) (B \ C)|C. We can depict this with a hypergraph and thus obtain a d-separation tree, as shown in Fig. 5(a)
and (b) respectively. The domain knowledge can also be seen as the Markov property that the future state B \ C is
independent of the previous state A \ C conditional on the current state C.

For a general case, a domain knowledge of variable dependencies can be represented as a collection of variable
sets C = {C1, . . . ,CH }, in which variables contained in the same set may associate each other directly but variables
contained in different sets associate each other through other variables. This means that two variables that are not
contained in the same set are independent conditionally on all other variables. We depict such a domain knowledge
with a hypergraph. Then equivalently the domain knowledge is legitimate if every edge of the moral graph Ḡm

V of the
underlying DAG is contained in some hyperedge in C. A slightly stronger condition for judging the legitimacy of a
domain knowledge is that for each variable u, there is a hyperedge Ch in C which contains both u and its parent set.

On the other hand, in an application study, observed data may have a collection of different observed patterns,
C = {C1, . . . ,CH }, where Ch is the set of observed variables for the hth group of individuals. For example, observed
data patterns C = {{a, b, c}, {b, c, d}} mean that there are two groups of individuals: (1) variables a, b and c are
observed but variable d is missing for the first group, and (2) variables b, c and d are observed but variable a is
missing for the second group. Data having such observed patterns are not uncommon, such as in the file-matching
and split questionnaire survey [16,20]. Given observed data patterns C = {C1, . . . ,CH }, there is no information on the
association among variables that are never observed together, and thus parameters that relate to the association are

(a) (b)

Fig. 5. A domain knowledge about associations among variables. (a) A hypergraph. (b) A d-separation tree.
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inestimable without other assumptions. The condition to make our algorithms correct for structural learning from a
collection C is that C must contain sufficient data such that parameters of the underlying DAG are estimable. For the
DAG, its parameters are estimable if, for each variable u, there is an observed data pattern Ch in C which contains
both u and its parent set. Thus a collection C of observed patterns has sufficient data for correct structural learning
if there is a pattern Ch in C for each u such that Ch contains both u and its parent set in the underlying DAG. Every
pattern Ch can be seen as a hyperedge or a maximum complete undirected graph to depict possible association among
variables in Ch. When all variables are categorical, a log-linear model with a generating class C = {C1, . . . ,CH } is the
highest order interaction model without latent variables. We assume that all independencies inferred from observed
data patterns are true for the underlying DAG.

Example 1. (Continued) Suppose that we have a hypergraph C = {{1,2,3,4}, {1,3,5,6}, {4,6,7}}, as depicted in
Fig. 3. It can be considered as a domain or prior knowledge of associations among variables. The hypergraph in Fig. 3
can also be considered as observed data patterns in three databases, that have different attributes and overlap each other.
In the case that all variables are categorical and there is no latent variable, the log-linear model with the generating
class {[1234], [1356], [467]} includes all interactions among variables that can be estimated from the observed data.
Since for each variable u, there is a hyperedge in C which contains both u and its parent set, the hypergraph C is a
legitimate domain knowledge and a legitimate collection of databases for the underlying DAG in Fig. 1(a). However, if
the hypergraph C is changed to C′ = {{1,2,4}, {1,3,5,6}, {4,6,7}}, that is, the hyperedge {1,2,3,4} in C is replaced
by {1,2,4}, then there is not any hyperedge in C′ which contains both variable 4 and its parent set {2,3}, and thus the
hypergraph C′ is neither a legitimate collection of databases nor a legitimate domain knowledge for the DAG.

Now we discuss how to construct a d-separation tree from a hypergraph that represents domain knowledge of
dependencies or observed data patterns. First we explain in the following example why the global skeleton of a DAG
�GV cannot be constructed by combining all subgraphs obtained separately from every data pattern. Then we propose
an algorithm for constructing a correct global skeleton.

Example 2. Consider a DAG �GV and observed data patterns as depicted in Fig. 6(a). From three data patterns, we get
separately three undirected subgraphs 1–2, 1–3 and 2–3. Combining them together, we obtain a combined undirected
graph in Fig. 6(b), which is not a correct skeleton for �GV since edge (2,3) is a spurious edge.

Below we propose an algorithm for constructing a d-separation tree T from domain knowledge or from observed
data patterns such that a correct skeleton can be constructed by combining subgraphs for nodes of T . Since a hyper-
edge Ch represents all possible associations among variables in Ch, we first use a complete subgraph over Ch as the
undirected independence graph over variables in Ch, and then piece all subgraphs together into an entire undirected
graph. To reduce the sizes of tree nodes, we construct a junction tree in terms of triangulating the undirected graph.
In this way, the following algorithm constructs a d-separation tree T from a hypergraph C = {C1, . . . ,CH } of domain
knowledge or observed data patterns.

Algorithm 2 (Construct a d-separation tree from a hypergraph).

1. Input: a hypergraph C = {C1, . . . ,CH } whose each hyperedge Ch is a variable set.
2. For each hyperedge Ch, construct a complete undirected graph Ḡh with the edge set Ēh = {(u, v),∀u,v ∈ Ch} =

Ch × Ch.

(a) (b)

Fig. 6. An incorrect skeleton combined from subgraphs. (a) A DAG and observed data patterns. (b) The combined undirected graph.
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(a)

(b)

Fig. 7. Construct a d-separation tree from a hypergraph. (a) The undirected graph obtained by combining complete subgraphs. (b) The d-separation
tree.

3. Construct the entire undirected graph ḠV = (V , Ē) whose edge set Ē = Ē1 ∪ · · · ∪ ĒH .
4. Construct a junction tree T by triangulating ḠV .
5. Output: T , which is a d-separation tree for the hypergraph C.

The correctness of Algorithm 2 is proven in Appendix A. Note that we do not need any conditional independence
test in Algorithm 2 to construct a d-separation tree. In this algorithm, we can use a heuristic triangulation algorithm
with less computational complexity to construct a junction tree [2,13,21]. Below we give two examples to illustrate
Algorithm 2.

Example 1. (Continued) Consider the domain knowledge of associations among all variables given in Fig. 3. At step 2,
we construct a complete subgraph for each hyperedge, and then at step 3 we combine them together, as depicted in
Fig. 7(a). At step 4, we construct the d-separation tree in Fig. 7(b). Note that no edges are added for triangulation
since the undirected graph in Fig. 7(a) is triangulated.

Example 3. Suppose that V = {1, . . . ,6} and that the domain knowledge is C = {C1,C2,C3,C4} = {{1,2,3}, {1,2,4},
{1,3,5}, {4,5,6}} as depicted in Fig. 8(a). At step 2, we construct four complete subgraphs, and then at step 3 we
combine them together, as shown by the undirected graph of solid lines in Fig. 8(b). At step 4, we triangulate it with
an edge (3,4) of a dash line, and then we obtain the d-separation tree in Fig. 8(c).

The nodes of a d-separation tree T constructed from domain knowledge or from observed data patterns may be
still quite large. In this case, we use conditional independence tests to reduce the node sizes. We first can construct an
undirected independence subgraph for each node, then combine these subgraphs into a global undirected independence
graph and finally construct a refined d-separation tree, see Section 5. For every node Ch of T for h = 1, . . . ,H ,
an undirected independence subgraph Ḡh = (Ch,Eh) can be constructed by starting with a complete subgraph and
removing an undirected edge (u, v) if u and v are independent conditional on Ch \ {u,v}.

Theorem 3. Suppose that Ḡh = (Ch, Ēh) is an independence subgraph for the node Ch of the d-separation tree
for h = 1, . . . ,H . The undirected graph ḠV with the edge set EV = ⋃H

h=1 Eh is an undirected independence graph
for �GV .
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(a) (b)

(c)

Fig. 8. Construct the d-separation tree. (a) Domain knowledge of associations. (b) The undirected graph and triangulation. (c) The d-separation
tree.

(a) (b)

Fig. 9. An undirected independence graph obtained by combining subgraphs. (a) Undirected independence subgraphs for each node. (b) Combining
subgraphs in (a).

Note that this combination for obtaining a global undirected independence graph is different from that for obtaining
a global skeleton proposed in Section 3. The former pools all edges in subgraphs into the global graph, while the latter
deletes an edge (u, v) from the global graph if it is present in a subgraph but absent in another subgraph.

Example 1. (Continued) We can suppose that a d-separation tree for �GV has the node set C = {{1,2,3,5},
{2,3,4,5,6,7}} since their intersection S = {2,3,5} d-separates {1} and {4,6,7}. Construct undirected independence
subgraphs for every node separately, as shown in Fig. 9(a); and then construct the global undirected independence
graph with all edges of subgraphs, as shown in Fig. 9(b). The undirected independence graph is not the moral graph
since it has two extra edges (3,5) and (2,5) added to the moral graph.

5. Illustration of structural learning via decomposition

In this section, we first formally describe the complete algorithm for structural learning of DAGs via decomposition.
Then we illustrate the algorithm using the ALARM network in Fig. 10 that is often used to evaluate structural learning
algorithms [1,12,24].

Main algorithm (The decomposition approach for structural learning of DAGs with domain knowledge).

1. Input: a hypergraph C = {C1, . . . ,CH } as the domain knowledge, or databases with observed data patterns C.
2. Call Algorithm 2 to construct a d-separation tree T from the hypergraph C.
3. If the sizes of nodes in T are too large, then refine T with observed data:

• Construct an undirected independence subgraph over each node of T ;
• Let the edge set ĒV of the entire undirected independence graph ḠV be the union of all edge sets of subgraphs;
• Construct a junction tree T ′ by triangulating ḠV , which is a d-separation tree.
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Fig. 10. The ALARM network and domain knowledge.

Fig. 11. The d-separation tree T from domain knowledge.

4. Call Algorithm 1 to construct the equivalence class of DAGs from T ′ (or T if the sizes of nodes are not very
large).

5. Output: the equivalence class of DAGs.

The correctness of the main algorithm is proven in Appendix A. To reduces the requirement for testing high order
conditional independencies, we first construct a d-separation tree at step 2 based on the prior knowledge, and then if
necessary, we further reduce the size of nodes in the d-separation tree at step 3. Note that the undirected independence
graph obtained at step 3 may have extra edges, and thus the tests of conditional independencies can be performed with
a large significance level. The conditional independence tests performed in Algorithm 1 are marginalized to nodes of
the d-separation tree.

The ALARM network in Fig. 10 describes causal relations among 37 variables in a medical diagnostic system
for patient monitoring. Using the network, some researchers generate continuous data from normal distributions and
others generate discrete data from multinomial distributions [12,24]. Our approach is applicable for both continuous
and discrete data. Since the correctness of the algorithms are proved in Appendix A and the complexity analysis
and the accuracy of independence tests are discussed in the next section, the main algorithm is illustrated by using
conditional independencies from the underlying DAG rather than conditional independence tests from simulated data.

Suppose that we have the domain knowledge of associations among all variables as depicted by the hypergraph in
Fig. 10. The hypergraph can also be seen as three databases with overlap. Since for each variable u in the ALARM,
there is a hyperedge which contains both u and its parent set, the domain knowledge or the collection of three data-
base is legitimate for structural learning of the ALARM network. However, if the hyperedge {8,28,29,30,31,32}
is changed to another hyperedge {8,29,30,31,32}, then there is no hyperedge which contains both variable 29 and
its parent set {8,28}, and thus parameters of the ALARM network are inestimable and the changed hypergraph as a
domain knowledge or as a collection of databases is not legitimate.

At step 2, the d-separation tree T is constructed from the hypergraph, as shown in Fig. 11. Note that at step 2
we need not do any conditional independence test, and we construct the d-separation tree only based on the domain
knowledge.

Since the three nodes of T obtained at step 2 are still quite large, we first construct undirected independence
subgraphs for three nodes separately at step 3, as shown in Fig. 12; Next combining three subgraphs together and



X.C. Xie et al. / Artificial Intelligence 170 (2006) 422–439 433
(a) (b)

(c)

Fig. 12. Undirected independence graphs for nodes of T . (a) A subgraph for the left node of T . (b) A subgraph for the middle node of T .
(c) A subgraph for the right node of T .

Fig. 13. The global triangulated graph.

triangulating it, we obtain the triangulated independence graph in Fig. 13. From the triangulated graph, we construct
a d-separation tree T ′ in Fig. 14 (separators are omitted), in which the largest node has only 5 variables.

At step 4, we construct a sub-skeleton for every node in T ′, as shown in Fig. 15. Combining all sub-skeletons
together, determining v-structures and orienting edges as much as possible, we obtain the equivalence class in Fig. 16,
in which all directed edges are oriented correctly, except that four undirected edges (5,27), (10,33), (21,34) and
(35,37) cannot be oriented because any of their orientation leads to a Markov equivalent DAG. Note that some edges
in Fig. 16 are oriented at step 5 of Algorithm 1. For example, the direction of the undirected edge (1,2) is determined
as 〈2,1〉 by 〈4,2〉 so as not to create a new v-structure, and the direction of the undirected edge (16,23) is determined
as 〈16,23〉 by 〈16,20〉 and 〈20,23〉 so as not to create a cycle.

The global skeleton and all v-structures depicted in Fig. 16 are the same as those obtained from the joint distribution
of all variables in V . Applying decomposition, we split the graph with 37 vertices into 28 subgraphs, of which the
largest one contains only 5 vertices. In such a way, a problem of high-dimensional structural learning is reduced into
several small problems.
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Fig. 14. The d-separation tree T ′ .

Fig. 15. Skeletons for all nodes of T ′ .

6. Complexity analysis and advantages

There are several obvious advantages of the decomposition approach for structural learning proposed in this paper.
First a d-separation tree can be constructed based on the prior or domain knowledge rather than conditional inde-
pendence tests. By using the d-separation tree, independence tests are performed only conditionally on smaller sets
contained in a node of the d-separation tree rather than on the full set of all other variables. Thus our algorithm has
higher power for statistical tests.
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Fig. 16. The partially directed acyclic graph.

Second, the theoretical results proposed in this paper can be applied to scheme design of multiple databases.
Without loss of information on structural learning of DAGs, a joint data set can be replaced by a group of incomplete
data sets based on the domain or prior knowledge of conditional independencies among variables.

Finally, the computational complexity can be reduced. This complexity analysis focuses only on the number of
conditional independence tests for constructing the equivalence class. Decomposition of graphs is a computationally
simple task compared to the conditional independence tests. The triangulation of an undirected graph is used in our
algorithms to construct a d-separation from an undirected independence graph. Although the problem for optimally
triangulating an undirected graph is NP-hard, sub-optimal triangulation methods [2,13,21] may be used provided
that the obtained tree does not contain too large nodes to test conditional independencies. Two most well-known
algorithms are the lexicographic search [22] and the maximum cardinality search [25], and their complexities are
O(ne) and O(n+ e) respectively. Thus in our algorithms, the conditional independence tests dominate the algorithmic
complexity.

Let V denote the set of all variables, and n the number of variables in V . In the IC algorithm, to delete an edge
between a pair of variables u and v, we may need to test independencies of u and v conditionally on all possible
subsets S of V \ {u,v}. Thus the complexity for deleting an edge in the global skeleton is O(2n), and then the
complexity for constructing the global skeleton is O(n22n).

In our decomposition algorithm, suppose that the set V of all variables is decomposed into H nodes {C1, . . . ,CH }
in the d-separation tree T , where H � n. Let m denote the number of variables in the largest node, that is, m =
maxh |Ch| where |Ch| denotes the number of variables in Ch. The complexity for constructing a local skeleton is
O(m22m), and thus that of all local skeletons is O(Hm22m). Since m usually is much less than n, our algorithm is less
computationally complex than the IC algorithm.

In the PC algorithm, to delete an edge between a pair of variables u and v, we may need to check all possible subsets
of variables adjacent to u and v. The decomposition of a large graph into small subgraphs can also be used to improve
the PC algorithm. The sets of variables adjacent to u and v can be split into small subsets by the decomposition. Thus
to delete an edge between u and v, we only need to check each subset of variables adjacent to u or v that is contained
in a subgraph with u or v. Let Adj(u) denote the set of variables adjacent to u in the global skeleton, and Adjh(u) the
set of variables adjacent to u in the hth local skeleton. Since Adjh(u) ⊆ Adj(u), the complexity for checking all subsets
of Adjh(u) is less than that for checking all subsets of Adj(u). Thus the decomposition can reduce the complexity of
the PC algorithm.

7. Conclusions

We proposed a decomposition approach for structural learning of DAGs. In this approach, a problem of learning a
large DAG is split into problems of learning small subgraphs. Domain or prior knowledge of conditional independen-
cies can be utilized to facilitate the decomposition of structural learning. We theoretically proved the correctness of
the proposed algorithms. Both the complexity of the algorithms and the power of conditional independence tests can
be improved by decomposing a large graph into small subgraphs. The theoretical results can also be used for scheme
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design of multiple databases. Although we assumed in this paper that there is no latent variables, some of our results
may be applied to the case with latent variables. For example, suppose that we have some domain knowledge. Then
we can apply our approach for local structural learning, which is discussed in an uncompleted paper.
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Appendix A

A.1. Proofs of theorems

First we give a definition and several lemmas to be used in proofs of theorems.

Definition A.1. Let T be a d-separation tree for a DAG �GV with the node set C = {C1, . . . ,CH }. For any two vertices u

and v in �GV , the distance between u and v in the tree T is defined by

d(u, v) = min
Ci�u,Cj �v

d(Ci,Cj ),

where d(Ci,Cj ) is the distance between nodes Ci and Cj in T . We call Ci and Cj minimizers for u and v which
minimize the distance d(Ci,Cj ).

Lemma A.1. Let l be a path from u to v, and W be the set of all vertices on l (W may or may not contain u and v).
Suppose that a path l is d-separated by S. If W is contained in S, then the path l is d-separated by W and by any set
containing W .

Proof. Since the d-separation of the path l depends on which vertices between u and v are contained in the d-separator
and W contains all vertices on l, l is also d-separated by S ∩ W = W if l is d-separated by S. Since all colliders on l

have already been made active conditionally on W , adding other vertices into the conditional set does not make any
new collider active on l. This implies that l remains to be d-separated by any set containing W . �
Lemma A.2. Let T be a d-separation tree for a DAG �GV , and K be a separator of T which separates T into two
subtrees T1 and T2 with variable sets V1 and V2 respectively. Suppose that l is a path from u to v in �GV where
u ∈ V1 \ K and v ∈ V2 \ K . Let W denote the set of all vertices on l (W may or may not contain u and v). Then the
path l is d-separated by W ∩ K and by any set containing W ∩ K .

Proof. Since u ∈ V1 \ K and v ∈ V2 \ K , there is a series from s (may be u) to y (may be v) in l =
(u, . . . , s, t, . . . , x, y, . . . , v) such that s ∈ V1 \ K and y ∈ V2 \ K and all vertices from t to x are contained in K .
Let l′ be the sub-path of l from s to y and W ′ the vertex set from t to x and thus W ′ ⊂ K . Since s ∈ V1 \ K and
y ∈ V2 \ K , we have from definition of d-separation tree that K d-separates s and y in �GV , that is, K separates l′.
By Lemma 1, we get that l′ is d-separated by W ′ (⊂ K) and by any set containing W ′. Since W ′ ⊂ (W ∩ K), l′ is
d-separated by W ∩ K and by any set containing W ∩ K . Thus l (⊇ l′) is also d-separated by them. �
Lemma A.3. Let u and v be two non-adjacent vertices in �GV , and let l be a path from u to v. If l is not contained in
An(u) ∪ An(v), then l is d-separated by any subset S of an(u) ∪ an(v).

Proof. Since l �⊆ An(u)∪An(v), there is a series from s (may be u) to y (may be v) in l = (u, . . . , s, t, . . . , x, y, . . . , v)

such that s and y are contained in An(u)∪ An(v) and all vertices from t to x are out of An(u)∪ An(v). Then the edges
s–t and x–y must be oriented as s → t and x ← y, otherwise t or x belongs to an(u)∪an(v). Thus there exists at least
one collider between s and y on l. The middle vertex w of the collider closest to s between s and y is not contained in
an(u)∪an(v), and any descendant of w is not in an(u)∪an(v), otherwise there is a directed cycle. So l is d-separated
by the collider, and it cannot be made active conditionally on any vertex in S where S ⊆ an(u) ∪ an(v). �
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Lemma A.4. Let T be a d-separation tree for a DAG �GV and C a node of T . Let u and v be two vertices in C which
are non-adjacent in �GV . If u and v are not contained in the same separator connecting C, then there exists a subset
of C which d-separates u and v in �GV .

Proof. Define S = (an(u)∪an(v))∩C. We show below that u and v are d-separated by S, that is, every path between u

and v in �GV is d-separated by S.
If l is not contained in An(u) ∪ An(v), then we obtain from Lemma A.3 that l is d-separated by S.
When l is contained in An(u) ∪ An(v), let x and y be two vertices that are closest to u on l, that is, l =

(u, x, y, . . . , v). The path l can have the following possible cases:

(1) u ← x and x ∈ C,
(2) u → x → y and x ∈ C,
(3) u → x ← y and both x and y ∈ C,
(4) u → x ← y, x ∈ C but y /∈ C, and
(5) x /∈ C.

For cases (1) and (2), since x is contained in C and u–x–y is not a collider, the path l is d-separated by x which is
contained in S. Thus l is d-separated by S.

For case (3), we have from x ∈ An(u) ∪ An(v) that y must not be v, otherwise there exists a directed cycle in �GV .
Since y is not the middle vertex of a collider on l and y ∈ C, the path l is d-separated by y which is contained in S.
Thus l is d-separated by S.

For case (4), let C′ ( �= C) be the node of T which contains y. Since y ∈ C′ but v ∈ C, there is a sub-path l′
from y to v that passes through a separator K connecting C toward C′, which d-separates C \ K from C′ \ K . From
K ⊆ C and l′ ⊆ An(u) ∪ An(v), we have that [K ∩ l′] ⊆ [C ∩ (an(u) ∪ an(v))] = S. Since y /∈ C and vertices x

and y are adjacent in �GV , we have that x ∈ K . Notice that u → x ← y is a collider, thus we know u ∈ K from the
definition of the d-separation tree. By the assumption that u and v are not in the same separator connecting C, we have
v ∈ C \ K . Since y ∈ C′ \ C ⊂ C′ \ K and v ∈ C \ K , by Lemma A.2, we obtain that the sub-path l′ is d-separated by
K ∩ (l′ \ {y, v}) and by S. Thus l is d-separated by S.

For case (5), let C′ ( �= C) be the node of T which contains x. Similar to case (4), we can show the result. �
Lemma A.5. Let T be a d-separation tree for a DAG �GV . For any vertex u there exists at least one node of T which
contains u and pa(u).

Proof. If pa(u) is empty, it is trivial. Otherwise let C denote the node of T which contains u and the most parents
of u.

Since no set can separate u from a parent, there must be a node of T that contains u and the parent. If u has only
one parent, then we obtained the lemma. If u has two or more parents, we suppose, by reduction to absurdity, that
u has two parents v and w which are not contained in a single node but are contained in two different nodes of T ,
say {u,v} ⊆ C and {u,w} ⊆ C′ respectively, since all vertices in V appear in T . On the path from C to C′ in T , all
separators must contain u, otherwise they cannot separate C from C′. However any separator containing u cannot
separate v and w. Thus we got a contradiction. �
Lemma A.6. Let T be a d-separation tree for a DAG �GV and C a node of T . Let u and v be two vertices in C which
are non-adjacent in �GV . If u and v are contained in the same separator S connecting C in T , then there exists a
node C′ of T containing u, v and a set S′ such that S′ d-separates u and v in �GV .

Proof. Without loss of generality, we can suppose that v is not a descendant of u in �GV . By Lemma A.5, there is a
node C1 of T that contains u and pa(u). Let C2 contains both u and v, and the distance d(C1,C2) is minimum.

If C1 and C2 are the same node of T , then S′ defined as the parents of u separates u from v.
If C1 and C2 are different nodes, then d(C1,C2) � 1, and there is at least one parent p of u that is not contained

in C2. Thus there is a separator K connecting C2 toward C1 in T such that K d-separates p from all vertices in
C2 \ K . Since u and p are adjacent in �GV and the distance d(C1,C2) � 1 is minimum, we have u ∈ K but v /∈ K (if
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v ∈ K , then d(C1,C2) is not minimum). For every parent p′ of u that is contained in C1 but not in C2, we can show
in the same way as p that K also separates p′ from all vertices in C2 \ K .

Define S′ = (An(u) ∪ An(v)) ∩ C2. Similar to proof of Lemma A.4, we show below that every path from u to v

in �GV is d-separated by S′, that is, u and v are d-separated by S′.
If a path l between u and v is not contained in An(u)∪An(v), then we obtain from Lemma A.3 that l is d-separated

by S′.
When l is contained in An(u) ∪ An(v), let x be adjacent to u on l, that is, l = (u, x, . . . , v). Because l is contained

in An(u) ∪ An(v) and v is not a descendant of u, the edge between u and x must be oriented as u ← x, that is, x is a
parent of u.

If x is contained in C2, then l is d-separated by x which is contained in S′.
If the parent x of u is not contained in C2, as shown above, we have that x and v are d-separated by K . By

Lemma A.2, we can obtain that the sub-path l′ from x to v can be d-separated by W ∩ K where W denotes the set of
all vertices between x and v (not containing x and v) on l′. Since S′ ⊇ (W ∩ K), we get from Lemma A.2 that l′ is
also d-separated S′. Hence the path l is d-separated by S′. �
Lemma A.7. Let T be a d-separation tree for a DAG �GV . If two vertices u and v have distance d(u, v) > 0 in T

where Ci and Cj are minimizers of u and v in T , then any separator on the path between Ci and Cj in T d-separates
u and v in �GV .

Proof. For any separator S on the path between Ci and Cj in T , we have by definition of d(u, v) that neither u nor
v can be contained in S, otherwise Ci and Cj are not minimizers of u and v. Since Ci and Cj belong to different
subtrees obtained by removing the edge with the separator S attached, we know that u and v are d-separated by S. �
Proof of Theorem 1. Suppose that u and v are two non-adjacent vertices in �GV . If d(u, v) > 0 in T , then we get
from Lemma A.7 that u and v are non-adjacent in �GV . If d(u, v) = 0, then we have from Lemmas A.4 and A.6 that
there exists a node C of T that contains u, v and a subset S such that S d-separates u and v in �GV . �
Proof of Theorem 2. From [5, p. 53] , we have that any separator S in the junction tree T separates V1 \S and V2 \S

in the triangulated graph Ḡt
V , where Vi denotes the variable set of the subtree Ti induced by removing the edge with

a separator S attached, for i = 1 and 2. Since the edge set of Ḡt
V contains that of ḠV , V1 \ S and V2 \ S are also

separated in ḠV . Further, since ḠV is an undirected independence graph for �GV , we obtain immediately that T is a
d-separation tree for �GV . �
Proof of Theorem 3. Since a moral graph for a DAG �GV is an undirected independence graph, by definition of
an undirected independence graph, we only need to show that Ḡ defined in Theorem 3 contains all edges of �Gm

V . It
is obvious that E contains all edges obtained by dropping directions of directed edges in �GV since any set cannot
d-separate two vertices that are adjacent in �GV .

Now we show that E also contains any moral edge that connects vertices u and v having a common child w, that
is, (u, v) ∈ E. We know from Lemma A.5 that there is at least one node Ch in a d-separation tree T that contains u,
v and w. The undirected subgraph Ḡh for Ch must contain edges u–w and v–w, that is, Ḡh has an undirected path
u–w–v. By definition of an undirected independence graph, w must be contained in a separator to separate u from v

in this undirected subgraph, but u and v cannot be d-separated conditional on any set containing w since there is a
collider u → w ← v. Thus Ḡh contains the moral edge (u, v). �
A.2. Proofs of algorithms’ correctness

Proof of Algorithm 1’s correctness. By the sufficiency of Theorem 1(1), the initializations at steps 2 and 3 for
creating edges guarantee that no edge is created between any two variables which are not in the same node of the
d-separation tree. By the sufficiency of Theorem 1(2), deleting edges at steps 2 and 3 guarantees that any other edge
between two d-separated variables can be deleted in some local skeleton. Thus the global skeleton obtained at step 3 is
correct. According to the necessity of Theorem 1, we have that each moral edge (u, v) in the undirected independence
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graph must be deleted at some subgraph over a node of the d-separation tree since a separator of a d-separation
tree cannot separate u and v of a v-structure u → w ← v. Thus we can determine all v-structures at step 4, which
completes our proof. �
Proof of Algorithm 2’s correctness. Each complete undirected subgraph Ḡh describes a saturated model over Ch

and the entire graph ḠV obtained at step 3 represents all dependencies from the prior knowledge. The triangulation at
step 4 does not bring any new conditional independence. Thus the junction tree is a d-separation tree. �
Proof of Main Algorithm’s correctness. The correctness of Algorithms 1 and 2 has been proved above. Thus we
only need to prove that step 3 is correct for obtaining a d-separation tree. According to Theorem 3, we have that the
entire undirected independence graph is constructed correctly at the step 3. Then the d-separation tree can be obtained
correctly by using an algorithm for constructing a junction tree. �
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