
Discrete Event Dyn Syst (2012) 22:293–332
DOI 10.1007/s10626-011-0123-x

Modeling and control of switching max-plus-linear
systems with random and deterministic switching

Ton J. J. van den Boom · Bart De Schutter

Received: 11 October 2010 / Accepted: 14 November 2011 / Published online: 7 December 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Switching max-plus-linear (SMPL) systems are discrete-event systems that
can switch between different modes of operation. In each mode the system is
described by a max-plus-linear state equation and a max-plus-linear output equation,
with different system matrices for each mode. The switching may depend on the
inputs and the states, or it may be a stochastic process. In this paper two equivalent
descriptions for switching max-plus-linear systems will be discussed. We will also
show that a switching max-plus-linear system can be written as a piecewise affine
system or as a constrained max-min-plus-scaling system. The last translation can
be established under (rather mild) additional assumptions on the boundedness of
the states and the inputs. We also develop a stabilizing model predictive controller
for SMPL systems with deterministic and/or stochastic switching. In general, the
optimization in the model predictive control approach then boils down to a nonlinear
nonconvex optimization problem, where the cost criterion is piecewise polynomial
on polyhedral sets and the inequality constraints are linear. However, in the case
of stochastic switching that depends on the previous mode only, the resulting
optimization problem can be solved using linear programming algorithms.

Keywords Discrete-event systems · Randomly switching max-plus-linear systems ·
Equivalent classes · Stabilizing control · Model predictive control

1 Introduction

There exist many modeling frameworks for discrete-event systems such as queue-
ing theory, (extended) state machines, formal languages, automata, temporal logic
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models, generalized semi-Markov processes, Petri nets, and computer simulation
models (see Cassandras and Lafortune 1999; Ho 1992; Peterson 1981 and the
references therein). In general, models that describe the behavior of a discrete-
event system are nonlinear in conventional algebra. However, there is a class of
discrete-event systems that can be described by a model that is “linear” in the max-
plus algebra (Baccelli et al. 1992; Cuninghame-Green 1979; Heidergott et al. 2006).
Such discrete-event systems are called max-plus-linear systems. Essentially, they can
be characterized as discrete-event systems in which only synchronization and no
choice occurs. So typical examples are serial production lines, production systems
with a fixed routing schedule, railway networks, legged robots, transmission lines,
and urban traffic systems.

The basic control problem for MPL systems consists in determining the optimal
input times (e.g., feeding times of raw material or starting times of processes or
activities) for a given reference signal (e.g., due dates for the finished products
or completion dates for processes or activities). In the literature many different
approaches are described to solve this problem. Among these the most common
ones are based on residuation and on model predictive control (MPC). Residuation
essentially consists in finding the largest solution to a system of max-plus inequalities
with the input times as variables and the due dates as upper bounds. Residuation-
based approaches for computing optimal input times are presented or used in
Boimond and Ferrier (1996), Cottenceau et al. (2001), Goto (2008), Lahaye et al.
(2008), Libeaut and Loiseau (1995), Maia et al. (2003) and Menguy et al. (1997,
2000a, b). The MPC approach is essentially based on the minimization of the error
between the actual output times and the due dates, possibly subject to additional
constraints on the inputs and the outputs. The MPC approach for MPL systems has
been developed in De Schutter and van den Boom (2001), Masuda (2006), Masuda
and Goto (2007), Necoara et al. (2009) and van den Boom and De Schutter (2002).
Another approach, based on invariant subspaces, is proposed in Katz (2007) and
Maia et al. (2011).

In van den Boom and De Schutter (2006) we have introduced the class of switching
max-plus-linear (SMPL) systems. This class consists of discrete-event systems that
can switch between different modes of operation. In each mode the system is
described by a max-plus-linear state equation and a max-plus-linear output equation,
with different system matrices for each mode. In van den Boom and De Schutter
(2006) the mode switching was a function of the input signals and the previous state;
in the current paper the switching can also depend on a stochastic sequence. The class
of SMPL systems with deterministic and stochastic switching contains discrete-event
systems with synchronization but no choice, in which the order of events may vary
randomly and often cannot be determined a priori. This randomness may be due to
e.g. (randomly) changing production recipes, varying customer demands or traffic
demands, failures in production units, or faults in transmission links.

In this paper we discuss two types of SMPL system descriptions and we show that
the two descriptions are equivalent. Furthermore, we show that an SMPL system can
be rewritten as a piecewise affine system or as a max-min-plus-scaling system. Using
the results of Heemels et al. (2001) we also implicitly prove that an SMPL system
can be rewritten as an (extended) linear complementarity (ELC/LC) system or as a
mixed logic dynamical (MLD) system, which are system descriptions that are often
used in the field of hybrid systems. Using these results we can transfer properties of
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piecewise affine systems and max-min-plus-scaling systems to SMPL systems. Finally,
we will present a design procedure for stabilizing model predictive controllers for
SMPL systems with both types of switching procedures.

This paper will review and extend the results of van den Boom and De Schutter
(2006, 2007, 2008a, b). The most important changes with respect to van den Boom
and De Schutter (2008b) are the revision of the proofs and the improvement of
the presentation of the material. The main change with respect to van den Boom
and De Schutter (2007, 2008a) is the correction in Theorem 1. We also relaxed the
condition of a row-finite matrix C by the condition that the system is structurally
observable in Theorem 1. We improved the definitions for the maximum growth
rate and we explicitly provide an algorithm to compute this value. Further we have
extended the paragraph on the optimization in the MPC algorithm and added some
lines to Section 5 to indicate how MPC techniques using PWA and MMPS systems
can be used to compute a predictive controller for SMPL systems. Finally we added a
paragraph to Section 5 on MPC for SMPL systems with deterministic switching. The
paper is organized as follows. In Section 2 we introduce the max-plus algebra and the
concept of SMPL systems. In Section 3 we define a second class of SMPL systems and
discuss the equivalences between the two classes of SMPL systems. Furthermore we
will show that SMPL systems can be rewritten as piecewise affine systems or max-
min-plus-scaling systems. Section 4 presents conditions for a stabilizing controller,
and in Section 5 we derive a stabilizing model predictive controller for SMPL
systems.

2 Max-plus algebra and SMPL systems

2.1 Max-plus algebra

In this section we give the basic definition of the max-plus algebra (Baccelli et al.
1992; Cuninghame-Green 1979).

Define ε = −∞ and Rε = R∪{ε}. The max-plus-algebraic addition (⊕) and multi-
plication (⊗) are defined as follows:

x ⊕ y = max(x, y), x ⊗ y = x + y

for any x, y ∈ Rε, and

[A ⊕ B]i, j = ai, j ⊕ bi, j = max(ai, j, bi, j)

[A ⊗ C]i, j =
n⊕

k=1

ai,k ⊗ ck, j = max
k=1,...,n

(ai,k + ck, j)

for matrices A, B ∈ Rε
m×n and C ∈ Rε

n×p. The matrix ε is the max-plus-algebraic
zero matrix: [ε]i, j = ε for all i, j. A max-plus diagonal matrix S = diag⊕(s1, . . . , sn)

has elements [S]i, j = ε for i �= j and diagonal elements [S]i,i = si for i = 1, . . . , n. The
matrix E = diag⊕(0, . . . , 0) is the max-plus identity matrix. The max-plus-algebraic
matrix power of A ∈ Rε

n×n is defined as follows: A⊗0 = E and A⊗k = A⊗A⊗k−1
for

k = 1, 2, . . . . Let S⊗−1
denote the inverse of S in max-plus algebra, so S ⊗ S⊗−1 =

S⊗−1 ⊗ S = E. diagonal up to a permutation of rows. S is invertible if it has one and
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only one entry in each row and column which is different from ε. If all si are finite,
the max-plus inverse of a max-plus diagonal matrix S = diag⊕(s1, . . . , sn) is equal to
S⊗−1 = diag⊕(−s1, . . . , −sn).

2.2 SMPL systems

Switching Max-Plus-Linear (SMPL) systems are discrete-event systems that can
switch between different modes of operation (van den Boom and De Schutter 2006).
In each mode � ∈ {1, . . . , nL}, the system is described by a max-plus-linear state
equation and a max-plus-linear output equation:

x(k) = A(�(k)) ⊗ x(k − 1) ⊕ B(�(k)) ⊗ u(k) (1)

y(k) = C(�(k)) ⊗ x(k) (2)

in which the matrices A(�) ∈ Rε
nx×nx , B(�) ∈ Rε

nx×nu , C(�) ∈ Rε
ny×nx are the system

matrices for the �-th mode.1 We assume that there are nL possible modes.
The index k is called the event counter. For SMPL systems the state x(k) typically

contains the time instants at which the internal events occur for the kth time, the
input u(k) contains the time instants at which the input events occur for the kth time,
the output y(k) contains the time instants at which the output events occur for the
kth time, and the mode �(k) determines which max-plus linear model is valid during
the kth event.

In van den Boom and De Schutter (2006) we have considered SMPL systems with
deterministic switching depending on the previous state or on an input signal. In van
den Boom and De Schutter (2007) we have introduced SMPL systems with random
switching, in which the mode switching depended on a stochastic sequence. In this
paper we consider the combination of both switching types (van den Boom and De
Schutter 2008a). For the SMPL system (1) and (2), the mode switching variable �(k)

then in general depends on both stochastic variables as well as deterministic variables
(state and inputs). The switching actions are determined by a switching mechanism.
For the SMPL system (1) and (2), the mode switching variable �(k) is a stochastic
process that depends on the previous mode �(k − 1), the previous state x(k − 1),
the input variable u(k), and an (additional) control variable v(k). We denote the
probability of switching to mode �(k) given �(k − 1), x(k − 1), u(k), and v(k) by
P[L(k) = �(k)|�(k − 1), x(k − 1), u(k), v(k)], where L(k) is a stochastic variable and
�(k) is its value. We assume that for all �(k), �(k − 1) ∈ {1, . . . , nL},the probability P
is piecewise affine on polyhedral sets in the variables x(k − 1), u(k), and v(k). Since
P is a probability, we have

0 ≤ P[L(k) = �(k)|�(k − 1), x(k − 1), u(k), v(k)] ≤ 1

and
nL∑

�(k)=1

P[L(k) = �(k)|�(k − 1), x(k − 1), u(k), v(k)] = 1

1Note that if we consider an SMPL system with only one mode, we have a special subclass, namely
the class of regular max-plus-linear systems.
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Fig. 1 Deterministic switching

mode 1

mode 2

mode 3

v(k) < 0.3 0.3 v(k) < 0.7

v(k) 0.7

To illustrate the different types of mode switching, we will now present three
simple examples. In the first example we discuss deterministic switching, in which
the mode switching only depends on the previous state or an input signal. In a second
example we discuss random switching, in which the mode switching entirely depends
on a stochastic sequence. In a third example we discuss stochastic switching with a
probability depending on the state.

Example 1 (Deterministic switching) Consider the system in Fig. 1 with three modes,
starting in mode 1 at event step k. Let v(k) be a control variable that determines the
system to stay in mode 1 (for v(k) < 0.3), to switch from mode 1 to mode 2 (for
0.3 ≤ v(k) < 0.7), or to switch to mode 3 (for v(k) ≥ 0.7).

We achieve this by defining the probability functions

P[L(k) = 1|1, x(k − 1), u(k), v(k)] =
{

1 for v < 0.3 , ∀x, u
0 for v ≥ 0.3 , ∀x, u

P[L(k) = 2|1, x(k − 1), u(k), v(k)] =
⎧
⎨

⎩

0 for v < 0.3 , ∀x, u
1 for 0.3 ≤ v < 0.7 , ∀x, u
0 for v ≥ 0.7 , ∀x, u

P[L(k) = 3|1, x(k − 1), u(k), v(k)] =
{

0 for v < 0.7 , ∀x, u
1 for v ≥ 0.7 , ∀x, u

In general for deterministic switching, the probability functions are piecewise con-
stant with values either 0 or 1.

Example 2 (Stochastic switching with fixed probability) Consider the system in Fig. 2
with three modes, starting in mode 1 at event step k. In this case of stochastic
switching we assume that the probability to stay in mode 1 is equal to γ , that the
probability to switch from mode 1 to mode 2 is equal to β, and that the probability to
switch from mode 1 to mode 3 is equal to 1 − β − γ , where β, γ ∈ [0, 1] are constants
and γ + β ≤ 1.

Fig. 2 Stochastic switching

mode 1

mode 2

mode 3

1
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mode 1 mode 2P[L(k) = 1|1, x (k 1), u(k), v(k)]

P[L(k) = 2|1, x(k 1), u(k), v(k)]

Fig. 3 State-dependent stochastic switching

We can achieve this by defining the probability functions

P[L(k) = 1|1, x(k − 1), u(k), v(k)] = γ , ∀x, u

P[L(k) = 2|1, x(k − 1), u(k), v(k)] = β , ∀x, u

P[L(k) = 3|1, x(k − 1), u(k), v(k)] = 1 − β − γ , ∀x, u

In general for stochastic switching with fixed probability, the probability functions
are piecewise constant with values between 0 and 1.

Example 3 (Stochastic switching with a probability depending on the state) Consider
the system in Fig. 3 with two modes, starting in mode 1 at event step k. In this
example, the switching probability depends on the state of the system. Consider a
system with state x(k). Let x1(k) be the first entry of the state. We assume the system
always stays in mode 1 for x1(k) < 0, and always switches from mode 1 to a mode 2
for x1(k) > 1; for x1(k) ∈ [0, 1] we have a probability equal to x1(k) to stay in mode
1, and a probability equal to 1 − x1(k) to switch from mode 1 to mode 2.

We can achieve this by defining the probability functions

P[L(k)1|1, x(k − 1), u(k), v(k)] =
⎧
⎨

⎩

1 for x1(k) < 0 , ∀x, u
x1(k) for 0 ≤ x1(k) ≤ 1 , ∀x, u
0 for x1(k) > 1 , ∀x, u

P[L(k) = 2|1, x(k − 1), u(k), v(k)] =
⎧
⎨

⎩
0 for x1(k) < 0 , ∀x, u
1 − x1(k) for 0 ≤ x1(k) ≤ 1 , ∀x, u
1 for x1(k) > 1 , ∀x, u.

In general for stochastic switching with a probability depending on the state or the
input the probability functions are piecewise affine in the state or the input.

Definition 1 A polyhedral partition {�i}i=1,...,ns of the space R
nw is defined as the par-

titioning of the space R
nw into non-overlapping polyhedra �i, i = 1, . . . , ns of the form

�i = { w(k) | Si w(k)�i si } , for i = 1, . . . , ns,

for some matrices Si ∈ R
q×nw and vectors si ∈ R

q, and with �i a vector operator2

where the entries stand for either ≤ or < and there holds
ns⋃

i=1

�i = R
nw and �i ∩ � j = ∅ for i �= j

2We need this construction that allows both strict and non-strict inequalities since the sets �i have to
be non-overlapping.
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Definition 2 (van den Boom and De Schutter 2007, 2008a, b) Consider the system
(1) and (2) with nL possible modes and let the probability of switching to mode
�(k) given �(k − 1), x(k − 1), u(k), v(k) be denoted by P[L(k) = �(k)|�(k − 1), x(k −
1), u(k), v(k)]. Then the system (1) and (2) is a type-1 Switching Max-Plus-Linear
(SMPL) system if for any given �(k) ∈ {1, . . . , nL}, P[L(k) = �(k)|·, ·, ·, ·] is a prob-
ability function that is piecewise affine on polyhedral partition of the space of the
variables �(k − 1), x(k − 1), u(k), v(k).

Remark 1 Consider a type-1 SMPL system with switching probability P. If we
define the vector w(k) = [

�(k − 1) xT(k − 1)uT(k) vT(k)
]T ∈ R

nw , then there exist
a polyhedral partition {�i}i=1,...,ns of R

nw and vectors αm,i, and scalars βm,i for i =
1, . . . , ns, m ∈ {1, . . . , nL} such that the probability P can be written as

P[L(k) = �(k)|w(k)] = αT
�(k),i w(k) + β�(k),i , if w(k) ∈ �i (3)

Remark 2 Since P is a probability, for any w(k) we have

0 ≤ P[L(k) = �(k)|w(k)] ≤ 1 , for �(k) = 1, . . . , nL

and
nL∑

�(k)=1

P[L(k) = �(k)|w(k)] = 1

Remark 3 As was mentioned in Section 1, the switching of the mode cannot always
be determined a priori, but may have a stochastic behavior. For example, in the
case of a production system we can use the probability P to describe the changing
production recipes or varying customer demands; or in transmission links each mode
may represent a network with a specific set of faults, and the probability P may
describe the chance of this set of faults to occur.

Example 4 (Production system I) Consider the production system of Fig. 4. This
system consists of three machines M1, M2, and M3. Three products (A, B, C) can
be made with this system, each with its own recipe, meaning that the order in the
production sequence is different for every product.

M1

M2

M3

d1 = 1

d2 = 1

d3 = 5

u (k) y (k)

A,C

B

A

B

B,C

C

A

C

A,B

Fig. 4 A production system
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For product A (using recipe �(k) = 1) the production order is M1-M2-M3, which
means that the raw material is fed to machine M1 where it is processed. Next, the
intermediate product is sent to machine M2 for further processing, and finally the
product A is finished in machine M3. Similarly, for product B (using recipe �(k) = 2)
the processing order is M2-M1-M3, and for product C (using recipe �(k) = 3) the pro-
cessing order is M1-M3-M2. We assume that the type of the kth product (A, B or C) is
available at the start of the production, so that we do know �(k) when computing u(k).

Each machine starts working as soon as possible on each batch, i.e., as soon as the
raw material or the required intermediate products are available, and as soon as the
machine is idle (i.e., the previous batch has been finished and has left the machine).
We define u(k) as the time instant at which the system is fed with the raw material
for the kth product, xi(k) as the time instant at which machine i starts processing the
kth product, and y(k) as time instant at which the kth product leaves the system. We
assume that all the internal buffers are large enough, and no overflow will occur.

We assume the transportation times between the machines to be negligible, and
the processing times of the machines M1, M2 and M3 to be given by d1 = 1, d2 = 2
and d3 = 3, respectively. The system equations for recipe A are given by

x1(k) = max(x1(k − 1) + d1, u(k)) ,

x2(k) = max(x1(k) + d1, x2(k − 1) + d2)

= max(x1(k − 1) + 2d1, x2(k − 1) + d2, u(k) + d1) ,

x3(k) = max(x2(k) + d2, x3(k − 1) + d3)

= max(x1(k − 1) + 2d1 + d2, x2(k − 1) + 2d2, x3(k − 1) + d3, u(k) + d1 + d2) ,

y(k) = x3(k) + d3 ,

leading to the system matrices for recipe A:

A(1) =
⎡

⎣
d1 ε ε

2d1 d2 ε

2d1 + d2 2d2 d3

⎤

⎦ , B(1) =
⎡

⎣
0
d1

d1 + d2

⎤

⎦ , C(1) = [
ε ε d3

]
.

Similarly we derive for recipe B:

A(2) =
⎡

⎣
d1 2d2 ε

ε d2 ε

2d1 d1 + 2d2 d3

⎤

⎦ , B(2) =
⎡

⎣
d2

0
d1 + d2

⎤

⎦ , C(2) = [
ε ε d3

]
,

and for recipe C:

A(3) =
⎡

⎣
d1 ε ε

2d1 + d3 d2 2d3

2d1 ε d3

⎤

⎦ , B(3) =
⎡

⎣
0

d1 + d3

d1

⎤

⎦ , C(3) = [
ε d2 ε

]
.
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The switching probability from one recipe to the next one is assumed to be
given by:

P[L(k) = 1|1, x(k − 1), u(k), v(k)] = 0.64,

P[L(k) = 2|1, x(k − 1), u(k), v(k)] = 0.18,

P[L(k) = 1|2, x(k − 1), u(k), v(k)] = 0.18,

P[L(k) = 2|2, x(k − 1), u(k), v(k)] = 0.64,

P[L(k) = 1|3, x(k − 1), u(k), v(k)] = 0.18,

P[L(k) = 2|3, x(k − 1), u(k), v(k)] = 0.18,

P[L(k) = 3|1, x(k − 1), u(k), v(k)] = 0.18,

P[L(k) = 3|2, x(k − 1), u(k), v(k)] = 0.18,

P[L(k) = 3|3, x(k − 1), u(k), v(k)] = 0.64,

(4)

which means that if we have a specific recipe for product k, then the probability of
having the same recipe for product k + 1 is 64%, and the probability of a switching
to each other recipe is 18%.

Now define

S1 = [1 0 . . . 0]T s1 = 2 �1 ≡≤
S2 = [−1 0 . . . 0]T s2 = −2 �2 ≡<

α1,1 = [−0.46 0 . . . 0]T β1,1 = 1.10

α1,2 = [0 0 . . . 0]T β1,2 = 0.18

α2,1 = [0.46 0 . . . 0]T β2,1 = −0.28

α2,2 = [0 0 . . . 0]T β2,2 = 0.18

α3,1 = [0 0 . . . 0]T β3,1 = 0.18

α3,2 = [0 0 . . . 0]T β3,2 = 0.64

then the SMPL system can be written in the form of Definitions 1, 2 and Remark 1.

Example 5 (Production system II) Now consider the production system of Example
4, but assume that the products B and C are equivalent, but are produced using
different recipes (so M2-M1-M3 for B and M1-M3-M2 for C). This means that if we
need to produce a product B/C we can choose the recipe (so either B or C). We
therefore introduce an auxiliary binary control variable v(k) ∈ {0, 1} that can be used
to choose between processing recipe B and C. The switching probability from one
recipe to the next one is now given by:

P[L(k) = 1|1, x(k − 1), u(k), v(k)] = 0.64,

P[L(k) = 2|1, x(k − 1), u(k), v(k)] = 0.36 v(k)

P[L(k) = 1|2, x(k − 1), u(k), v(k)] = 0.18,

P[L(k) = 2|2, x(k − 1), u(k), v(k)] = 0.64 v(k)

P[L(k) = 1|3, x(k − 1), u(k), v(k)] = 0.18,

P[L(k) = 2|3, x(k − 1), u(k), v(k)] = 0.64 v(k)

P[L(k) = 3|1, x(k − 1), u(k), v(k)] = 0.36 (1−v(k)),

P[L(k) = 3|2, x(k − 1), u(k), v(k)] = 0.64 (1−v(k)),

P[L(k) = 3|3, x(k − 1), u(k), v(k)] = 0.64 (1−v(k)).

(5)
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Note that for any v(k) ∈ {0, 1} there holds P[L(k) = 1|i, x(k − 1), u(k), v(k)] +
P[L(k) = 2|i, x(k − 1), u(k), v(k)] + P[L(k) = 3|i, x(k − 1), u(k), v(k)] = 1 for i =
1, 2, 3.

Now define

S1 = [1 0 . . . 0]T s1 = 1 �1 ≡≤
S2 = [−1 0 . . . 0]T s2 = −1 �2 ≡<

α1,1 = [0 0 . . . 0]T β1,1 = 0.64

α1,2 = [0 0 . . . 0]T β1,2 = 0.18

α2,1 = [0 0 . . . 0.36]T β2,1 = 0

α2,2 = [0 0 . . . 0.64]T β2,2 = 0

α3,1 = [0 0 . . . − 0.36]T β3,1 = 0.36

α3,2 = [0 0 . . . − 0.64]T β3,2 = 0.64

then the SMPL system can be written in the form of Definition 1, Definition 2 and
Remark 1.

Remark 4 In the Examples 4 and 5 we have assumed sufficiently large internal
buffers and negligible transportation times between the machines. Note however that
we have done so to simplify the example; it is not a limitation in the theory.

3 Equivalence in classes of SMPL systems

In this section we introduce an alternative class of SMPL systems, called type-2
SMPL systems, and we show that type-1 and type-2 SMPL systems are equivalent.
Furthermore we will show that SMPL systems can be rewritten as piecewise affine
systems or max-min-plus-scaling systems, two well-known classes of hybrid systems.
The relations between the models are depicted in Fig. 5. In Example 6 all equivalent
system descriptions will be computed for a type-1 SMPL model.

Proposition 1.a

Proposition 1.b

Proposition 4

Proposition 3

type-1
SMPL

type-2
SMPL

type-d
piecewise affine

constrained
max-min-plus-scaling

Fig. 5 Transformations and model classes with the proposition that states the relation
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Definition 3 (van den Boom and De Schutter 2008b) A type-2 SMPL system is
defined as follows: Consider the system (1) and (2) with nL possible modes. The
mode �(k) = m if

z(k) = [
�(k − 1) xT(k − 1) uT(k) vT(k) d(k)

]T ∈ 	m ⊂ R
nz

for m = 1, . . . , nL, where d(k) ∈ [0, 1] is a uniformly distributed stochastic scalar
signal, and where 	m is a union of polyhedra, so 	m = ∪nm

j=1	m, j in which
{	m, j} m = 1, . . . , nL

j = 1, . . . , nm

is a polyhedral partition.

Remark 5 The polyhedral partion {	m, j} m = 1, . . . , nL

j = 1, . . . , nm

can be parameterized by

	m, j = { z(k) | Rm, j z(k)�m, j rm, j } , for j = 1, . . . , nm

where �i is a vector where the entries stand for either ≤ or <.

A type-1 SMPL model is easy for modeling where we consider the probabilities
of switching from one mode to another. The model gives a lot of physical insight
into the system and is usually more intuitive for the user. A type-2 SMPL model is
signal-based and the properties of probabilities of switching are translated into the
properties of a stochastic signal. The fact that type-2 SMPL models are signal-based
makes that this type of SMPL system can easily be translated into another model in
one of the other classes of hybrid systems (see Propositions 3 and 4).

Proposition 1 The class of type-1 SMPL systems and the class of type-2 SMPL
systems are equivalent in the sense of input-state-output-mode behavior.

Proof

Type-1 SMPL → type-2 SMPL Consider a type-1 SMPL system of the form (1) and
(2) as given in Definition 2. The probability P is given by

P[L(k) = �(k)|w(k)] = αT
�(k),i w(k) + β�(k),i , if w(k) ∈ �i (6)

Now define the function η such that

η(m, w(k)) =

⎧
⎪⎨

⎪⎩

m∑
�(k)=1

P[L(k) = �(k)|w(k)] for m = 1, . . . , nL

0 for m = 0

Furthermore we observe that η(nL, w(k)) = ∑nL
j=�(k) P[L(k) = �(k)|w(k)] = 1.

For w(k) ∈ �i we find

η(m, w(k)) = ᾱT
m,i w(k) + β̄m,i (7)

where ᾱ0,i = 0 and β̄0,i = 0 and ᾱm,i = ∑m
j=1 α j,i and β̄m,i = ∑m

j=1 β j,i for m =
1, . . . , nL.

Now introduce a uniformly distributed stochastic scalar signal d(k) ∈ [0, 1]. Let

L(k) = m if η(m − 1, w(k)) < d(k) ≤ η(m, w(k)) (8)
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Denote Pd[L(k) = m|w(k)] as the probability that L(k) = m according to Eq. 8. For
a uniformly distributed d(k) and scalars a, b with 0 ≤ a ≤ b ≤ 1 there holds P[a <

d(k) < b ] = b − a . Using this we find that

Pd[L(k) = m|w(k)] = P
[
η(m − 1, w(k)) < d(k) ≤ η(m, w(k)]

)

= η(m, w(k)) − η(m − 1, w(k))

= P[L(k) = m|w(k))

which is equal to the probability (6) in the type-1 SMPL system. If we combine this
result with Eq. 8 we obtain

�(k) = m if
[

η(m − 1, w(k)) − d(k) < 0
−η(m, w(k)) + d(k) ≤ 0

]
(9)

Note that η : (m, w(k)) → η(m, w(k)) is an affine function if w(k) ∈ �i (or equiva-
lently Si w(k) − si �s

i 0), and so we can rewrite Eq. 9 as

�(k) = m if ∃i such that

⎡

⎢⎣
ᾱT

m−1,i w(k) + β̄m−1,i − d(k)

−ᾱT
m,i w(k) − β̄m,i + d(k)

Si w(k) − si

⎤

⎥⎦� 0

Define

Rm,i =
⎡

⎣
ᾱT

m−1,i −1

−ᾱT
m,i 1
Si 0

⎤

⎦ , rm,i =
⎡

⎣
β̄m−1,i

−β̄m,i

−si

⎤

⎦ , �r
m,i =

⎡

⎣
<

≤
�s

i

⎤

⎦

then with zT(k) = [
wT(k) dT(k)

]
we find that

�(k) = m if Rm,i z(k)�r
m,i rm,i , i = 1, . . . , ns,

which is equal to the switching mechanism of a type-2 SMPL system.

Type-2 SMPL → type-1 SMPL Consider a type-2 SMPL system, so

L(k) = m if Rm,t z(k)�r
m,t rm,t

for some index t. Define Rm,t,1 and Rm,t,2 such that

Rm,t z(k) = Rm,t

[
w(k)

d(k)

]
= Rm,t,1 w(k) + Rm,t,2 d(k)�r

m,t rm,t (10)

Note that d(k) ∈ [0, 1] is a scalar. Let dm,t,max(w(k)) be the maximum value of d such
that Eq. 10 is satisfied, and let dm,t,min(w(k)) be the minimum value of d such that
Eq. 10 is satisfied. If for some w(k) there exists no d(k) ∈ [0, 1] such that Eq. 10
is satisfied, we define dm,t,max(w(k)) = dm,t,min(w(k)) = 0. Finding dm,t,max(w(k)) and
dm,t,min(w(k)) can be done using a linear programming algorithm, which means that
dm,t,max(w(k)) and dm,t,min(w(k)) are piecewise affine in w(k) (Borelli 2003). So there
exist matrices Si,m,t, vectors si,m,t, pm,t,i,max, pm,t,i,min and scalars qm,t,i,max and qm,t,i,min,
such that

dm,t,max(w(k)) = pT
m,t,i,max w(k) + qm,t,i,max

dm,t,min(w(k)) = pT
m,t,i,min w(k) + qm,t,i,min
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if Si,m,t w(k)�s
i,m,t si,m,t for i = 1, . . . , Mm,t, t = 1, . . . , nm and m = 1, . . . , nL.

The probability that �(k) = m, given w(k) can be written as

P[L(k) = m|w(k)] = P[dm,t,min(w(k)) ≤ d(k) ≤ dm,t,max(w(k))]
= dm,t,max(w(k)) − dm,t,min(w(k))

= (
pT

m,t,i,max − pT
m,t,i,min

)
w(k) + (qm,t,i,max − qm,t,i,min)

for Si,m,t w(k)�s
i,m,t si,m,t for i = 1, . . . , Mm,t, t = 1, . . . , nm and m = 1, . . . , nL. This is

equal to the switching mechanism of a type-1 SMPL system. ��

Proposition 2 A type-2 SMPL system can always be rewritten in the form:

x(k) = Ā(κ(k)) ⊗ x(k − 1) ⊕ B̄(κ(k)) ⊗ u(k) (11)

y(k) = C̄(κ(k)) ⊗ x(k) (12)

such that the mode κ(k) = m if

z(k) = [
κ(k − 1) xT(k − 1) uT(k) vT(k) d(k)

]T ∈ 	̄m (13)

where d(k) ∈ [0, 1] is a uniformly distributed stochastic scalar signal, and where
{	̄m}m=1,...,nκ

is a polyhedral partition and 	̄m can be written as

	̄m = { z(k) | Rm z(k)�r
m rm }

Proof Consider the type-2 SMPL system of Definition 3, and introduce a new
numbering

κ(�, j) = j +
�−1∑

i=1

ni, for � = 1, . . . , nL and j = 1, . . . , n�

If we define

	̄κ(�, j) = 	�, j

and

Ā(κ(�, j)) = A(�)

B̄(κ(�, j)) = B(�)

C̄(κ(�, j)) = C(�)

for � = 1, . . . , nL, j = 1, . . . , n�, then we obtain a system of the form (11)–(13). ��

Remark 6 For the form of Definition 3 every region 	�(k) for mode �(k) is a union
of polyhedra. For the form of Proposition 2 every region 	̄κ(k) for mode κ(k) is a
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polyhedron. The consequence is that we usually need more modes for the latter form
than for the original form.

Definition 4 An SMPL system is structurally finite if for any finite (x(k − 1), u(k))

we have that x(k) and y(k) are finite for all �(k − 1) ∈ {1, . . . , nL} and any d(k) ∈
[0, 1].

Lemma 1 A SMPL system is structurally f inite if and only if the matrix

H(�) =
[

A(�) B(�) ε

ε ε C(�)

]
(14)

is row-f inite for all � = 1, . . . , nL (i.e. for each � every row of the matrix H(�) has at
least one f inite entry).

Proof

Part 1: (if) Let x(k − 1) and u(k) be finite. Now

xi(k) = max
j

(
[
A(�) B(�)

]
i, j +

[
x(k − 1)

u(k)

]

j

)

ys(k) = max
t

([C(�)]s,t + xt(k)
)

If all elements of x(k − 1) and u(k) are finite and every row of H(�)

has at least one finite elements, we will find that the elements xi(k),
i = 1, . . . , nx are finite as well. Similarly for finite x(k) we find finite
elements ys(k), s = 1, . . . , ny.

Part 2: (only if) We will prove the second part of lemma by contradiction. First,
define

ω(k) =
[

x(k)

y(k)

]
∈ R

nω = R
nx+ny ,

θ(k) =
⎡

⎣
x(k − 1)

u(k)

x(k)

⎤

⎦ ∈ R
nθ = R

2nx+ny (15)

then system equations (1) and (2) can be written as

ω(k) = H(�)(k)⊗θ(k) for R� z(k)�r
� r�

and finiteness of x(k) and u(k) implies finiteness of θ(k).
Now suppose that for a given � the i-th row of H(�) has no finite en-

tries, so [H(�)]i, j = ε, ∀ j. Then ωi(k) = max
(
[H(�)]i, j(k) + θ j(k)

)
=

ε, which means that the system is not structurally finite. We may
conclude that the system is structurally finite if and only if H(�) is
row-finite for all � = 1, . . . , nL . ��

Remark 7 (van den Boom and De Schutter 2008a) Note that physical systems are
typically structurally finite.
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Next we will show that SMPL systems can be rewritten as piecewise affine systems
or max-min-plus-scaling systems. The following definition is an extension of Sontag
(1981):

Definition 5 Type-d piecewise affine systems are described by

x(k) = Aix(k − 1) + Biu(k) + fi

y(k)= Cix(k) + Diu(k) + gi
for

⎡

⎣
x(k − 1)

u(k)

d(k)

⎤

⎦ ∈ 	i, (16)

where fi ∈ R
nx×1, gi ∈ R

ny×1, Ai ∈ R
nx×nx , Bi ∈ R

nx×nu , Ci ∈ R
ny×nx , Di ∈ R

ny×nu , for
i = 1, . . . , N where the signal d(k) ∈ [0, 1] is a uniformly distributed stochastic scalar
signal and {	i}i=1,...,N is a polyhedral partition of R

nx+nu+1.

Proposition 3 Every structurally f inite SMPL system of type-2 can be written as type-
d piecewise af f ine system.

Proof Consider a structurally finite SMPL system of type-2 with state and output
equations (1) and (2) where �(k) = m if z(k) satisfies Rm z(k)�r

m rm. Let ω(k) and
θ(k) be given by Eq. 15. The SMPL system is structurally finite, which means that if
θ is finite, then ω(k) will be finite. Let h(�)

i,p = [H(�)]i,p and define the set

� =
{
(�t, p1,t, p2,t, . . . , pnω,t)

∣∣∣ �t ∈ {0, . . . , nL}, pi,t ∈ {1, . . . , nθ },

i = 1, . . . , nω, ∃ω(k), such that ωi(k) = max
p

(
h(�t)

i,p + θp(k)
)

= h(�t)

i,pi,t
+ θpi,t (k)

}

Define3 ntot = #�, then ntot ≤ nL nnθ
ω . Note that ωi(k) = maxp(h

(�t)

i,p + θp(k)) = h(�t)

i,pi,t
+

θpi,t (k) is equivalent to

h(�t)

i,pi,t
+ θpi,t (k) ≥ h(�t)

i,p + θp(k) for p = 1, . . . , nω, p = 1, . . . , nθ

By collecting all entries for p = 1, . . . , nω, j = 1, . . . , nθ we obtain that

ω(k) = H(t) θ(k) + h(t) if E(t) θ(k) ≤ e(t) and R�t z(k)��t r�t (17)

where, for i = 1, . . . , nω, j = 1, . . . , nθ , and t = 1, . . . , ntot, we have:

[H(t)]i, j =
{

1 for j = pi,t

0 otherwise

[h(t)]i = h(�t)

i,pi,t

[E(t)](i−1)nθ + j,l =

⎧
⎪⎨

⎪⎩

1 for l = j and j �= pi,t

−1 for l = pi,t and j �= pi,t

0 otherwise

[e(t)](i−1)nθ + j = h(�t)

i,pi,t
− h(�t)

i, j

3For a set S the set cardinality (i.e. the number of elements) is denoted by #S.
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(Note that in fact the zero rows of [E(t) e(t)] can be removed.) It is clear that from Eq.
17 we can derive the matrices Ai, Bi, Ci, Di and vectors fi and gi such that we obtain
a description of the form Eq. 16. The polyhedra are described by the inequalities
E(t) θ(k) ≤ e(t) and R�t z(k)�r

�t
r�t . The total number of different polyhedra is less

than or equal to N = nL nnθ
ω . ��

Definition 6 A max-min-plus-scaling (MMPS) expression f of the variables x1, . . . ,
xn is defined by the syntax4

f := xi|α| max( fk, fl)| min( fk, fl)| fk + fl|β fk (18)

with i ∈ {1, 2, . . . , n}, α, β ∈ R, and where fk, fl are again MMPS expressions.

Definition 7 Consider systems that can be described by

x(k) = fx(x(k − 1), u(k), d(k)) (19)

y(k) = fy(x(k − 1), u(k), d(k)), (20)

where the components of fx, fy are MMPS expressions in terms of the components
of x(k), u(k), and the auxiliary variables d(k), which are all real-valued. Such systems
will be called max-min-plus-scaling (MMPS) systems. If in addition, we have a
condition of the form

fc(x(k − 1), u(k), d(k))� c(k),

where the components of fc are MMPS expressions and �i is a vector where the
entries stand for either ≤ or <, we speak about constrained MMPS systems.

Proposition 4 Every structurally f inite SMPL system of type-2 can be written as a
constrained MMPS system provided that the variables x(k − 1) and u(k) are bounded.

Note that this proposition is a direct consequence of the equivalence between the
class of type-d piecewise affine systems and MMPS systems (see Heemels et al. 2001).
However we will provide a direct proof here that transfers SMPL systems directly
into MMPS systems.

Proof Consider a structurally finite SMPL system of type-2 with state and output
equations (1) and (2) where �(k) = m if z(k) satisfies Rm z(k)�r

m rm. Define ω(k),
θ(k) and H(�(k)) as in Eqs. 15 and 14. Then

ω(k) = H(�(k))⊗θ(k) for R�(k) z(k)�r
� r�(k)

so

ωi(k) = max
j

(
m(�(k))

i, j + θ j(k)
)

for R�(k) z(k)�r
� r�(k).

4The symbol | stands for OR and the definition is recursive.
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Now define the (binary) variables δm(k) ∈ {0, 1}, for m = 1, . . . , nL such that

[
δm(k) = 1

] ⇔ [
Rm z(k)�r

mrm
] ⇔ [�(k) = m] (21)

Since x(k) and u(k) are bounded, and d ∈ [0, 1] we find that there exist bounded sets
E and Z such that θ(k) ∈ E and z(k) ∈ Z . Let

ρ∗
m = max

z(k)∈Z
Rm z(k) − rm

then following Bemporad and Morari (1999, p. 5) and using the fact that the sets
{z(k)|Rm z(k)�r

m rm} are non-overlapping, we can rewrite Eq. 21 as

Rm z(k) − rm �r
m ρ∗

m

(
1 − δm(k)

)
(22)

nL∑

m=1

δm(k) = 1 (23)

Note that constraints (22) and (23) are linear (and thus also MMPS) constraints.
Define

σ ∗ =
[

max
m

max
i

max
θ(k)∈E

max
j

(
h(m)

i, j + θ j(k)
) ]

−
[

min
m

min
i

min
θ(k)∈E

max
j

(
h(m)

i, j + θ j(k)
) ]

(note that σ ∗ is finite because the system is structurally finite and x(k − 1) and u(k)

are bounded), then the system is described by the following equation

ωi(k) = max
m, j

(
h(m)

i, j + θ j(k) − (1 − δm(k))σ ∗
)

(24)

subject to Eqs. 22 and 23.
Indeed, if the SMPL system is in mode �(k) = m, then δm(k) = 1 and δq(k) = 0 for

all q �= m, and so Eq. 24 reduces to

ωi(k) = max
j

(
h(m)

i, j + θ j(k)
)

Note that Eq. 24 is an MMPS function in the variables θ and δ. Hence, we have
proven that a type-2 SMPL system, with bounded states and inputs, can be rewritten
as a constrained MMPS system. ��

Remark 8 Recall that the state x(k) and input u(k) denote the time instant at which
a state event or an input event occurs for the kth time, respectively. This means that
both state and input are non-decreasing and grow unboundedly. In Section 4 we will
introduce a shifted system, in which we consider the deviations of the state and input
signals with respect to a reference signal. Therefore in a shifted system the shifted
state and shifted input u(k) can be bounded and can thus easily be transformed into
a type-d MMPS system.
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In the following example we will illustrate some of the equivalences.

Example 6 (Equivalent system descriptions) Consider a type-1 SMPL system

x(k) =
(

A(�(k))⊗x(k − 1)
)
⊕
(

B(�(k))⊗u(k)
)

for �(k) = 1, 2

y(k) = x(k) (25)

with x(k), u(k), y(k) ∈ Rε and5

A(1) = 1 B(1) = 0.2 C(1) = 0

A(2) = −0.1 B(2) = 0.1 C(2) = 0

and

P[L(k) = 1|1, x(k − 1), u(k)] = 0

P[L(k) = 2|1, x(k − 1), u(k)] = 1

P[L(k) = 1|2, x(k − 1), u(k)] =
⎧
⎨

⎩

1 for x(k − 1) < −1
−x(k − 1) for − 1 ≤ x(k − 1) ≤ 0
0 for x(k − 1) > 0

P[L(k) = 2|2, x(k − 1), u(k), v(k)] =
⎧
⎨

⎩

0 for x(k − 1) < −1
1 + x(k − 1) for − 1 ≤ x(k − 1) ≤ 0
1 for x(k − 1) > 0 .

Note that 0 ≤ P[L(k) = i| j, x(k − 1), u(k)] ≤ 1, for i, j = 1, 2, and

P[L(k) = 1|1, x(k − 1), u(k)] + P[L(k) = 2|1, x(k − 1), u(k)] = 1 ,

P[L(k) = 1|2, x(k − 1), u(k)] + P[L(k) = 2|2, x(k − 1), u(k)] = 1 .

Define the vector w(k) = [
�(k − 1) x(k − 1) u(k)

]T . The probability P[L(k) =
�(k)|w(k)] can be written as a piecewise function:

P[L(k) = �(k)|w(k)] = αT
�(k),i w(k) + β�(k),i , if Si w(k)�s

i si , for i = 1, . . . , 4

5Note that the entry of A(2) is negative. This happens when x(k) represent the delay with respect to
some constantly increasing reference signal (cf. Remark 8 and also see the shifted system (39) and
(40) in Section 4 or in Necoara et al. (2007)).
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where

i = 1 S1 = [1 0 0] s1 = [1.5] �s
1 = [≤]

αT
1,1 = [0 0 0] β1,1 = 0

αT
2,1 = [0 0 0] β2,1 = 1

i = 2 S2 =
[−1 0 0

0 −1 0

]
s2 =

[−1.5
0

]
�s

2 =
[

<

<

]

αT
1,2 = [0 0 0] β1,2 = 0

αT
2,2 = [0 0 0] β2,2 = 1

i = 3 S3 =
⎡

⎣
−1 0 0

0 1 0
0 −1 0

⎤

⎦ s3 =
⎡

⎣
−1.5

0
1

⎤

⎦ �s
3 =

⎡

⎣
<

≤
≤

⎤

⎦

αT
1,3 = [0 − 1 0] β1,3 = 0

αT
2,3 = [0 1 0] β2,3 = 1

i = 4 S4 =
[−1 0 0

0 1 0

]
s4 =

[−1.5
−1

]
�s

4 =
[

<

<

]

αT
1,4 = [0 0 0] β1,4 = 1

αT
2,4 = [0 0 0] β2,4 = 0

Note that the inequality �(k − 1) ≤ 1.5 represents the case �(k − 1) = 1, and the
inequality −�(k − 1) < −1.5 represents the case �(k − 1) = 2.

The presented system is a type-1 SMPL system. We will now rewrite this system
as a type-2 SMPL system. Consider a uniformly distributed stochastic scalar signal
d(k) ∈ [0, 1], and define z(k) = [

wT(k) d(k)
]T .

First we discuss the case �(k − 1) = 2. Let �(k) = 1 if x(k − 1) + d(k) < 0 and let
�(k) = 2 if x(k − 1) + d(k) ≥ 0. This defines the regions

	1,1 = {z(k) | �(k − 1) > 1.5, x(k − 1) + d(k) < 0},
	2,1 = {z(k) | �(k − 1) > 1.5, x(k − 1) + d(k) ≥ 0}

For the case �(k − 1) = 1, we always have �(k) = 2, and so

	2,2 = {z(k) | �(k − 1) ≤ 1.5}
Now we can compute the matrices for i = 1, 2:

R1,1 =
[ −1 0 0 0

0 1 0 1

]
r1,1 =

[−1.5
0

]
�r

1,1 =
[≤

<

]

R2,1 =
[ −1 0 0 0

0 −1 0 −1

]
r2,1 =

[−1.5
0

]
�r

2,1 =
[≤

≤
]

R2,2 = [
1 0 0 0

]
r2,2 = [1.5] �r

2,2 = [<]
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To be able to recast the SMPL system as a type-d piecewise affine system using
Proposition 3, we will rewrite this type-2 SMPL system as follows. We introduce 3
modes κ = 1, 2, 3, with

x(k) = max
(

x(k − 1) + 1, u(k) + 0.2
)

for κ(k) = 1

x(k) = max
(

x(k − 1) − 0.1, u(k) + 0.1
)

for κ(k) = 2, 3

y(k) = x(k) (26)

We define

R̄1 = R̄1,1 r̄1 = r̄1,1 �−
1 = �1,1

R̄2 = R̄2,1 r̄2 = r̄2,1 �−
2 = �2,1

R̄3 = R̄2,2 r̄3 = r̄2,2 �−
3 = �2,2

and we obtain that the now mode κ(k) = m if

z̄(k) = [
κ(k − 1) xT(k − 1) uT(k) d(k)

]T ∈ 	̄m

where

	̄m = { z̄(k) | R̄m z̄(k)�−
mr̄m }

Now it is straightforward to derive the type-d piecewise affine system: Note that

x(k) = x(k−1) + 1 if κ(k) ≤ 1.5, x(k−1) + 1 ≥ u(k) + 0.2

x(k) = u(k) + 0.2 if κ(k) ≤ 1.5, x(k−1) + 1 < u(k) + 0.2

x(k) = x(k−1) − 0.1if κ(k) > 1.5, x(k−1) − 0.1 ≥ u(k) + 0.1

x(k) = u(k) + 0.1 if κ(k) > 1.5, x(k−1) − 0.1 < u(k) + 0.1

This translates into the following type-d piecewise affine system:

i = 1 : x(k) = x(k − 1) + 1 if R̄1 z̄(k) ≤ r̄1, x(k−1) + 0.8 ≥ u(k)

i = 2 : x(k) = u(k) + 0.2 if R̄1 z̄(k) ≤ r̄1, x(k−1) + 0.8 < u(k)

i = 3 : x(k) = x(k − 1) + 1 if R̄2 z̄(k) ≤ r̄2, x(k−1) − 0.2 ≥ u(k)

i = 4 : x(k) = x(k − 1) + 1 if R̄3 z̄(k) ≤ r̄3, x(k−1) − 0.2 ≥ u(k)

i = 5 : x(k) = u(k) + 0.1 if R̄2 z̄(k) ≤ r̄2, x(k−1) − 0.2 < u(k)

i = 6 : x(k) = u(k) + 0.1 if R̄3 z̄(k) ≤ r̄3, x(k−1) − 0.2 < u(k)

We conclude that this system is a type-d piecewise affine system with 6 polyhedral
regions.

Finally we rewrite the system as a constrained MMPS system. Assume the input
is in the bounded set −1 ≤ u(k) ≤ 2 and that the initial state is in the bounded set
−1 ≤ x(0) ≤ 1. Introduce the binary variables δm(k) ∈ {0, 1}, for m = 1, 2, 3 such that
δm(k) = 1 ⇔ R̄m z̄(k)�−

m r̄m. It is easy to derive that in that case x(k) for k ≥ 0 will
be bounded:

−1.1≤x(k)≤2.2 .
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We compute

ρ∗
m = max

¯z(k)∈Z
R̄m z̄(k) − r̄m = −3.5

and

σ ∗ =
[

max
m

max
i

max
θ(k)∈E

max
j

(
h(m)

i, j + θ j(k)
)]

−
[

min
m

min
i

min
θ(k)∈E

max
j

(
h(m)

i, j + θ j(k)
)]

= 3.2 − (−1.2)

= 4.4

Now we obtain the following model:

x(k) = max
[(

max(x(k−1) + 1, u(k) + 0.2) + (1−δ1(k))σ ∗
)
,

(
max(x(k−1) − 0.1, u(k) + 0.1) + (1−δ2(k))σ ∗

)
,

(
max(x(k−1) − 0.1, u(k) + 0.1) + (1−δ3(k))σ ∗

)]

x(k) = max
[(

max(x(k−1) + 1, u(k) + 0.2) + (1−δ1(k))σ ∗
)
,

(
max(x(k−1) − 0.1, u(k) + 0.1) + (1−δ2(k)−δ3(k))σ ∗

)]

for δm(k) ∈ [0, 1] and subject to

R̄m z̄(k) ≤ r̄m + ρ∗
m(1 − δm(k)) for m = 1, 2, 3

3∑

m=1

δm(k) = 1

This is a constrained MMPS system.

4 Conditions for stability

In this section we will derive conditions for stability in Theorem 1. These conditions
will be used in Section 5 to derive a stabilizing model predictive controller for SMPL
systems.

Just like in van den Boom and De Schutter (2002), we adopt the notion of stability
for discrete-event systems from Passino and Burgess (1998), in which a discrete-event
system is called stable if all its buffer levels remain bounded. In this paper we consider
discrete-event systems with a due-date signal. This due date signal is a reference for
the time that the output event should occur (e.g. in production systems the finished
part has to be removed from the output buffer before the due-dates). This means that
if the output event occurs after the given due-date there is a delay in the system. For a
proper operation of the system, the delays have to remain bounded. In the remainder
of the paper the due-date signal will be called “reference signal”, as is usual in MPC
literature.

All the buffer levels in a discrete-event system are bounded if the dwelling times of
the parts or batches in the system remain bounded. This implies for an MPL system
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with an asymptotically increasing reference signal r(k) that stability is achieved if and
only if there exist finite constants k0, Myr, Myx and Mxu such that

| yi(k) − ri(k) | ≤ Myr, ∀i (27)

| yi(k) − x j(k) | ≤ Myx, ∀i, j (28)

| x j(k) − um(k) | ≤ Mxu, ∀ j, m (29)

for all k > k0. Condition (27) means that the delay between the actual output date
y(k) and the reference r(k) has to remain bounded, and on the other hand, that
the stock time has to remain bounded. Conditions (28) and (29) mean that the
throughput time (i.e. the time between the starting date, u(k) and the output date,
y(k)) is bounded. Consider a reference signal vector defined as

r(k) = ρ k + ξ(k), where |ξi(k)| ≤ ξmax,∀i (30)

where ξ is a vector describing the bounded variation of the reference around an
average slope k ρ with ρ a positive scalar. (If r(k) is strictly increasing we need
the additional constraint ξi(k) > ξi(k − 1) − ρ.) For the asymptotically increasing
reference signal (30), the conditions (27)–(29) imply finite buffer levels.

Similar to max-plus-linear systems, stability is not an intrinsic feature of the SMPL
system, but it also depends on the reference signal. In van den Boom and De Schutter
(2002) we already observed that for max-plus-linear systems, the max-plus-algebraic
eigenvalue of the system matrix A gives an upper bound on the asymptotic slope
of the reference sequence. For a max-plus-linear system with a strongly connected
A-matrix6, this A-matrix only has one max-plus-algebraic eigenvalue λ and a corre-
sponding max-plus-algebraic eigenvector v �= ε, such that A⊗v = v⊗λ (Baccelli et al.
1992). For SMPL systems we cannot use the max-plus-algebraic eigenvalue, but we
use the concept of maximum autonomous growth rate:

Definition 8 Consider an SMPL system of the form (1) and (2) with system matrices
A(�), � = 1, . . . , nL. Define the matrices A(�)

α with [A(�)
α ]i, j = [A(�)]i, j − α. Define the

set Sfin,n of all n × n max-plus diagonal matrices with finite diagonal entries, so
Sfin,n = { S | S = diag⊕(s1, . . . , sn), si is finite }. The maximum autonomous growth
rate λ of the SMPL system is defined by

λ = min
{
α

∣∣∣ ∃S ∈ Sfin,n such that [ S⊗A(�)
α ⊗S⊗−1 ]i, j ≤ 0, ∀ i, j, �

}

Remark 9 Note that for any SMPL system the maximum autonomous growth rate λ

is finite, or more precisely:

λ ≤ max
i, j,�

[
A(�)

]
i, j .

This fact is easily verified by noting that if we define λ′ = maxi, j,�[A(�)]i, j and use the
max-plus identity matrix S = diag⊕(0, . . . , 0) we obtain

[
S⊗A(�)

λ′ ⊗S⊗−1
]

i, j
=

[
A(�)

λ′

]

i, j
= [

A(�)
]

i, j − λ′ ≤ 0, ∀ i, j, �,

6A matrix A is called strongly connected if its graph is strongly connected. This means that for any
two nodes i, j of the graph, node j is reachable from node i (Heidergott et al. 2006).
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and so λ ≤ λ′. The maximum autonomous growth rate λ can be easily computed by
solving a linear programming problem:

min
α,s1,...,sn

α

subject to

[
A(�)

]
i, j + si − s j − α ≤ 0, ∀ i, j, �

The optimizer now gives the maximum autonomous growth rate λ = α∗.

Remark 10 For a max-plus-linear system (so nL = 1), the maximum autonomous
growth rate λ is equivalent to the largest max-plus-algebraic eigenvalue of the
matrix A(1).

For a given integer N, let the set LN = { [ �1 · · · �N ]T | �m ∈ {1, . . . , nL}, m =
1, . . . , N} denote the set of all possible consecutive mode switchings vectors.

Definition 9 (Baccelli et al. 1992) Let α ∈ R be given. Define the matrices A(�)
α with

[A(�)
α ]i, j = [A(�)]i, j − α. An SMPL system is structurally controllable if there exists a

finite positive integer N such that for all �̃ = [�1 . . . �N]T ∈ LN the matrices

�N
α (�̃)=

[
A(�N)

α ⊗· · ·⊗A(�2)
α ⊗B(�1) . . . A(�N)

α ⊗A(�N−1)
α ⊗B(�N−2) A(�N)

α ⊗B(�N−1) B(�N)

]

are row-finite, i.e. in each row there is at least one entry different from ε.

Definition 10 (Baccelli et al. 1992) Let α ∈ R be given. Define the matrices A(�)
α with

[A(�)
α ]i, j = [A(�)]i, j − α. An SMPL system is structurally observable if there exists a

finite positive integer M such that for all �̃ = [�1 . . . �M]T ∈ LM the matrices

OM
α (�̃) =

⎡

⎢⎢⎢⎢⎢⎣

C(�N)
α ⊗A(�N)

α ⊗· · ·⊗A(�2)
α

...

C(�N)
α ⊗A(�N)

α ⊗A(�N−1)
α

C(�N)
α ⊗A(�N)

α

C(�N)
α

⎤

⎥⎥⎥⎥⎥⎦

are column-finite, i.e. in each column there is at least one entry different from ε.

Remark 11 Note that the structural controllability and structural observability are
structural properties and do not depend on the actual value of α. If a SMPL system
is structurally controllable (observable) for one finite value of α it is structurally
controllable (observable) for any finite value of α.
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Theorem 1 Consider an SMPL system with maximum autonomous growth rate λ and
consider a reference signal (30) with growth rate ρ. Def ine the matrices A(�)

ρ with
[A(�)

ρ ]i, j = [A(�)]i, j − ρ. Now if

1. ρ > λ, (31)

2. the system is structurally controllable, and (32)

3. the system is structurally observable, (33)

then any input signal

u(k) = ρ k + μ(k), where | μi(k) | ≤ μmax, ∀i, ∀k (34)

for a f inite value μmax, will stabilize the SMPL system.

Proof First note that the condition ρ > λ holds if and only if there exists a max-plus
diagonal matrix S such that

[
S⊗A(�)

ρ ⊗S⊗−1
]

i, j
< 0, ∀ i, j, �. (35)

Let S be the max-plus diagonal matrix with finite diagonal elements such that (35) is
satisfied, and define the signals

z(k) = S⊗(x(k) − ρ k)

w(k) = y(k) − ρ k

μ(k) = u(k) − ρ k

and the matrices Ā(�)
ρ , B̄(�), and C̄(�) with

Ā(�)
ρ = S⊗A(�)

ρ ⊗S⊗−1
(36)

B̄(�) = S⊗B(�) (37)

C̄(�) = C(�)⊗S⊗−1
. (38)

Just like we did in Necoara et al. (2007) for max-plus-linear systems we can associate
to every ρ a shifted system

z(k) = Ā(�)
ρ ⊗z(k − 1)⊕B̄(�)⊗μ(k) (39)

w(k) = C̄(�)⊗z(k). (40)

Stability means that all signals in this system should remain bounded. In other words,
we are looking for finite values zmax, wmax, such that

|z(k)| ≤ zmax , |w(k)| ≤ wmax.
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Now consider the SMPL system (39) and (40) for the input signal | μi(k) | ≤ μmax,
∀i, k for a given finite value μmax. Let z̄(k) = maxi zi(k) and b̄ max = max�,i, j([B̄(�)]i, j),
then

zi(k) = max
(

max
j

([
Ā(�)

ρ

]
i, j

+ z j(k − 1)
)

, max
m

([
B̄(�)

]
i,m + μm(k)

))

≤ max
(

max
j

([
Ā(�)

ρ

]
i, j

)
+ z̄(k − 1), max

�,i,m

([
B̄(�)

]
i,m

)
+ μmax

)

≤ max
(

z̄(k − 1), b̄ max + μmax

)

where we use the fact that [Ā(�)
ρ ]i, j < 0 because Eqs. 35 and 36. We find

zi(k) ≤ z̄(k)

≤ max
(

z̄(k − 1), b̄ max + μmax

)

≤ max
(

z̄(0), b̄ max + μmax

)

= zmax

where we defined zmax = max
(

z̄(0), b̄ max + μmax

)
. This means that all entries of the

shifted state z(k) have a finite upper bound zmax.
Now again consider the SMPL system (39) and (40) for the input signal μi(k) ≥

−μmax, ∀i, k, and let N and M be such that γi,max(�̃) = max j([�N
ρ (�̃)]i, j) are finite for

all i, �̃, and ωi,max(�̃) = max j([OM
ρ (�̃)]i, j) are finite for all i, �̃. Note that a finite N and

a finite M exist due to condition 2 and 3 of the theorem (see also Definitions 9 and
10). Now define

�̃(k) =

⎡

⎢⎢⎢⎣

�(k)
...

�(k+N−2)

�(k+N−1)

⎤

⎥⎥⎥⎦ , μ̃N(k) =

⎡

⎢⎢⎢⎣

μ(k)
...

μ(k+N−2)

μ(k+N−1)

⎤

⎥⎥⎥⎦ ,

z̃M(k) =

⎡

⎢⎢⎢⎣

z(k)
...

z(k+M−2)

z(k+M−1)

⎤

⎥⎥⎥⎦ ,
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then by successive substitution we find that for any m ≥ N there holds

z(k + m) = Ā(�(k+m))
ρ ⊗ Ā(�(k+m−1))

ρ ⊗ . . . ⊗ Ā(�(k+m−N+1))
ρ ⊗ z(k+m− N)

⊕ Ā(�(k+m))
ρ ⊗ Ā(�(k+m−1))

ρ ⊗ . . . ⊗ B̄(�(k+m−N+1)) ⊗ μ(k+m− N + 1)

⊕ Ā(�(k+m))
ρ ⊗ B̄(�(k+m−1)) ⊗ μ(k+m− 1) ⊕ . . . ⊕ B̄(�(k+m)) ⊗ μ(k+m)

= S⊗A(�(k+m))
ρ ⊗ A(�(k+m−1))

ρ ⊗ . . . ⊗ A(�(k+m−N+1))
ρ ⊗S⊗−1 ⊗ z(k+m− N)

⊕ S⊗A(�(k+m))
ρ ⊗ A(�(k+m−1))

ρ ⊗ . . . ⊗ B(�(k+m−N+1))
ρ ⊗ μ(k+m− N + 1)

⊕ S⊗A(�(k+m))
ρ ⊗ B(�(k+m−1))

ρ ⊗ μ(k+m− 1) ⊕ . . . ⊕ S⊗B(�(k+m))
ρ

⊗ μ(k+m)

= S⊗A(�(k+m))
ρ ⊗ A(�(k+m−1))

ρ ⊗ . . . ⊗ A(�(k+m−N+1))
ρ ⊗S⊗−1 ⊗ z(k+m− N)

⊕ S⊗�N
ρ (�̃(k + m − N+1))⊗μ̃N(k+m− N + 1) .

For every element of z(k + m), m ≥ N we derive:

[z(k + m)]i ≥
[

S⊗�N
ρ

(
�̃ (k + m − N+1)

)
⊗μ̃N (k+m− N + 1)

]

i

= max
j

([
S⊗�N

ρ

(
�̃ (k + m − N+1)

)]

i, j
+ [

μ̃N (k+m− N + 1)
]

i

)

≥ min
p

([S]p,p) + max
j

([
�N

ρ

(
�̃ (k + m − N+1)

)]

i, j

)
− μmax

≥ min
p

(sp) + γi,max

(
�̃ (k + m − N+1)

)
− μmax

≥ smin + γmin − μmax

where smin = minp(sp) and γmin = min�̃,i γi,max(�̃). We conclude that after N event
steps we have a lower bound for the shifted state z(k).

By successive substitution we find that for any m ≥ N + M there holds

w(k + m) = C̄(�(k+m))
ρ ⊗ Ā(�(k+m))

ρ ⊗ Ā(�(k+m−1))
ρ ⊗ · · · ⊗ Ā(�(k+m−N+2))

ρ

⊗ z(k+m− N + 1) ⊕ . . . ⊕ C̄(�(k+m))
ρ ⊗ Ā(�(k+m))

ρ ⊗ z(k+m− 1)

⊕ C̄(�(k+m))
ρ ⊗ z(k+m)

= C(�(k+m))
ρ ⊗A(�(k+m))

ρ ⊗ A(�(k+m−1))
ρ ⊗ · · · ⊗ A(�(k+m−N+2))

ρ ⊗ S⊗−1

⊗z(k+m− M + 1) ⊕ C(�(k+m))
ρ ⊗A(�(k+m))

ρ ⊗ A(�(k+m−1))
ρ ⊗ S⊗−1

⊗z(k+m− 1) ⊕ . . . ⊕ C(�(k+m))
ρ ⊗ S⊗−1⊗z(k+m)

= OM
ρ

(
�̃ (k + m − M+1)

)
⊗S⊗−1⊗z̃M(k+m− N + 1) .



Discrete Event Dyn Syst (2012) 22:293–332 319

For every element of w(k + m), m ≥ N + M we derive:

[w(k + m)]i ≥
[
OM

ρ

(
�̃(k + m − M+1)

)
⊗S⊗−1⊗z̃M(k+m− M + 1)

]

i

= max
j

([
OM

ρ

(
�̃(k + m − M+1)

)
⊗S⊗−1

]

i, j
+ [

z̃M(k+m− M + 1)
]

i

)

≥ max
j

([
OM

ρ

(
�̃(k + m − M+1)

)]

i, j

)
− max

p
([S]p,p) − μmax

≥ ωi,max

(
�̃(k + m − M+1)

)
− max

p
(sp) + smin + γmin − μmax

≥ ωmin − smax + smin + γmin − μmax

where smax = maxp(sp) and ωmin = min�̃,i ωi,max(�̃). Now from (40) it follows that

[w(k + m)]i =
[
OM

ρ

(
�̃(k + m − M+1)

)
⊗S⊗−1⊗z̃M(k+m− M + 1)

]

i

≤ max
i, j,�̃

(
OM

ρ

(
�̃(k + m − M+1)

) )
− min

p
([S]p,p) + zmax

≤ ωmax − smin + zmax

where ωmax = maxi, j,�̃

(
OM

ρ (�̃(k + m − M+1))
)

, and so after N + M event steps wi(k)

will be bounded by

ωmin − smax + smin + γmin − μmax ≤ wi(k) ≤ ωmax − smin + zmax

Now for any k > N + M, there holds

yi(k) − ri(k) = [w(k) + ρ k]i − [ζ(k) + ρ k]i

= wi(k) − ξi(k)

≤ ωmax − smin + zmax + ξmax

= Myr1 (is finite),

ri(k) − yi(k) = ξi(k) − wi(k)

≤ ξmax − ωmin + smax − smin − γmin + μmax

= Myr2 (is finite),
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|yi(k) − ri(k)| = |wi(k) − ζi(k)|
≤ max(Myr1, Myr2)

= Myr (is finite),

yi(k) − x j(k) = [(S⊗−1⊗w(k)) + ρ k]i − [(S⊗−1⊗z(k)) + ρ k] j

= (−si + wi(k) + ρ k) − (−s j + z j(k) + ρ k)

= wi(k) + s j − z j(k)

≤ ωmax − smin + zmax + smax − smin − γmin + μmax

= Myx (is finite),

x j(k) − um(k) = [(S⊗−1⊗z(k)) + ρ k] j − [μ(k) + ρ k]m

= (−s j + z j(k) + ρ k) − (μm(k) + ρ k)

= z j(k) − μm(k) − s j

≤ zmax + μmax − smin

= Mxu (is finite) ,

In a similar way as yi(k) − x j(k) and x j(k) − um(k) we can prove that x j(k) − yi(k)

and um(k) − x j(k) are bounded. This proves stability for the SMPL system (1)
and (2).

Remark 12 For a max-plus-linear system (so nL = 1), condition (31) is equivalent to
the condition that the growth rate ρ of the reference signal should be larger than the
largest max-plus-linear eigenvalue λ of the matrix A(1) (cf. van den Boom and De
Schutter 2002).

Remark 13 Note that the conditions of structural controllability and structural ob-
servability for stability have already been mentioned in Baccelli et al. (1992) and
Commault (1998) for the case with one mode.

5 A stabilizing model predictive controller

In this section we develop a stabilizing model predictive controller for SMPL systems
with both deterministic and stochastic switching. Model predictive control (MPC)
(Maciejowski 2002) is a model-based control approach that has its origins in the
process industry and that has mainly been developed for linear or nonlinear time-
driven systems. Its main ingredients are: a prediction model, a performance criterion
to be optimized over a given horizon, constraints on inputs and outputs, and a
receding horizon approach. Just as for time-driven systems (where more than 80%
of the advanced controllers are model predictive controllers), we like to use the
advantages of the model predictive control strategy for SMPL discrete-event systems.
The main advantage of using MPC is that it is the only closed-loop control method
that can handle constraints in an adequate way. Feedback is incorporated into MPC
by repeating the state measurement and control input calculation at regular time
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instants. Furthermore, MPC features an simple tuning process and can easily adapt
to model changes. The algorithms to compute the optimal input signal are mostly
linear programming algorithms, with means that the computational effort is usually
very low. In more complicated situations where we deal with different modes and the
switching mechanism has stochastic properties, MPC gives a framework to deal with
these issues and the controller computes an optimal control input.

A Model Predictive Control (MPC) approach for MPL systems has been intro-
duced in De Schutter and van den Boom (2001). In De Schutter and van den Boom
(2001) and van den Boom and De Schutter (2002) it has been shown that for a broad
range of performance criteria and constraints, max-plus linear MPC results in a linear
programming problem, which can be solved very efficiently. In van den Boom and
De Schutter (2006, 2007, 2008a) we have extended this approach to SMPL systems
with both stochastic and deterministic switching. In this paper we review these results
and discuss the algorithms to solve the MPC problem for different types of switching
(stochastic and/or deterministic).

Consider a type-1 SMPL system. In MPC we use predictions of future signals
based on this model. Define the prediction vectors

ỹ(k)=

⎡

⎢⎢⎢⎣

ŷ(k|k)
...

ŷ(k+Np−2|k)

ŷ(k+Np−1|k)

⎤

⎥⎥⎥⎦ , ũ(k)=

⎡

⎢⎢⎢⎣

u(k)
...

u(k+Np−2)

u(k+Np−1)

⎤

⎥⎥⎥⎦ ,

�̃(k)=

⎡

⎢⎢⎢⎣

�(k|k)
...

�(k+Np−2|k)

�(k+Np−1|k)

⎤

⎥⎥⎥⎦ , r̃(k)=

⎡

⎢⎢⎢⎣

r(k)
...

r(k+Np−2)

r(k+Np−1)

⎤

⎥⎥⎥⎦ ,

where ŷ(k+ j|k) denotes the prediction of y(k+ j) based on knowledge at event step
k, u(k+ j) denotes the (future) input at event step k+ j, �(k+ j) denotes the (future)
mode at event step k+ j, r(k+ j) denote the (future) reference at event step k+ j, and
Np is the prediction horizon (so it determines how many event steps we look ahead
in our control law design).

Define

Ãm(�̃(k)) = A(�(k+m−1|k)) ⊗ . . . ⊗ A(�(k|k)),

B̃m,n(�̃(k)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A(�(k+m−1|k)) ⊗ . . . ⊗ A(�(k+n|k)) ⊗ B(�(k+n−1|k)) if m>n

B(�(k+m−1|k)) if m=n

ε if m<n

,

and

C̃m(�̃(k)) = C(�(k+m−1|k)) ⊗ Ãm(�̃(k)),

D̃m,n(�̃(k)) = C(�(k+m−1|k)) ⊗ B̃m,n(�̃(k)).
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For any mode sequence �̃(k) the prediction model for Eqs. 1 and 2 is now given by:

ỹ(k) = C̃(�̃(k)) ⊗ x(k − 1) ⊕ D̃(�̃(k)) ⊗ ũ(k) (41)

in which C̃(�̃(k)) and D̃(�̃(k)) are given by

C̃(�̃(k)) =
⎡

⎢⎣
C̃1(�̃(k))

...

C̃Np(�̃(k))

⎤

⎥⎦ , D̃(�̃(k)) =
⎡

⎢⎣
D̃1,1(�̃(k)) · · · D̃1,Np(�̃(k))

...
. . .

...

D̃Np,1(�̃(k)) · · · D̃Np,Np(�̃(k))

⎤

⎥⎦

Furthermore we can write

x(k+ j) = Ã j(�̃(k)) ⊗ x(k−1) ⊕ B̄ j(�̃(k)) ⊗ ũ(k), (42)

where

B̄ j(�̃(k)) = [
B̃ j,1(�̃(k)) · · · B̃ j,Np(�̃(k))

]
.

With Eq. 42 the probability of switching to mode L(k+ j) = �(k+ j) given �(k+ j−
1), x(k+ j−1), u(k+ j), v(k+ j)) can be written as

P
[
L(k + j) = �(k+ j|k)|�(k+ j−1|k), x(k+ j−1), u(k+ j), v(k+ j)

]

= P
[
L(k + j) = �(k+ j|k)|�(k+ j−1|k), Ã j(�̃(k)) ⊗ x(k−1) ⊕ B̄ j(�̃(k))

⊗ ũ(k), u(k+ j), v(k+ j)
]

where P denotes the switching probability (see Section 2.2). Note that from (42) we
find that for a fixed �̃(k) the state x(k+ j) is piecewise affine on polyhedral sets in the
variables x(k−1) and ũ(k). From that we can conclude that for a fixed �̃(k), x(k − 1)

and �(k − 1) the probability P is piecewise affine on polyhedral sets in the variables
ũ(k) and ṽ(k). The probability for the switching sequence �̃(k) ∈ LNp , given �(k−1),
x(k−1), ũ(k), ṽ(k) is computed as

P̃
[
L̃(k) = �̃(k)|�(k−1), x(k−1), ũ(k), ṽ(k)

]

= P
[
L(k) = �(k)|�(k−1), x(k−1), u(k), v(k)

]

· P
[
L(k+1) = �(k+1)|�(k), x(k), u(k+1), v(k+1)

] · . . . ·
· . . . · P

[
L(k+Np−1) = �(k+Np−1)|�(k+Np−2), x(k+Np−2),

u(k+Np−1), v(k+Np−1)
]

The probability function P̃ is a product of piecewise affine functions P, and will
therefore be a piecewise polynomial function on polyhedral sets in the variables ũ(k),
ṽ(k)) (for a given �̃(k), x(k − 1), and �(k − 1)).

In MPC we aim at computing the optimal ũ(k), ṽ(k) that minimize the expectation
of a cost criterion J(k), subject to linear constraints on the inputs. The cost criterion
reflects the input and output cost functions (Jin and Jout, respectively) in the event
period k, . . . , k + Np − 1:

J(k) = Jout(k) + β Jin(k) , (43)



Discrete Event Dyn Syst (2012) 22:293–332 323

where β ≥ 0 is a tuning parameter, chosen by the user. The output cost function is
defined by

Jout(k) = IE

⎧
⎨

⎩

Np−1∑

j=0

ny∑

i=1

max(yi(k + j) − ri(k + j), 0)

⎫
⎬

⎭

= IE

⎧
⎨

⎩

ny Np∑

i=1

max(ỹi(k) − r̃i(k), 0)

⎫
⎬

⎭

= IE

⎧
⎨

⎩

ny Np∑

i=1

[(ỹ(k) − r̃(k))⊕0̄]i

⎫
⎬

⎭

= IE

⎧
⎨

⎩

ny Np∑

i=1

[(
(C̃(�̃(k)) ⊗ x(k − 1) ⊕ D̃(�̃(k)) ⊗ ũ(k)) − r̃(k)

)
⊕ 0̄

]

i

⎫
⎬

⎭

=
∑

�̃∈LN

⎧
⎨

⎩

ny Np∑

i=1

[(
C̃(�̃) ⊗ x(k−1) ⊕ D̃(�̃) ⊗ ũ(k))−r̃(k)

)
⊕0̄

]

i

· P̃
[

L̃(k) = �̃|�(k−1), x(k−1), ũ(k), ṽ(k)
]
⎫
⎬

⎭ (44)

where IE stands for the expectation over all possible switching sequences, and 0̄
is a column vector consisting of zeros. The output cost function Jout measures the
tardiness of the system, which is equal to the delay between the output dates ỹi(k)

and reference dates r̃i(k) if ỹi(k) − r̃i(k) > 0, and zero otherwise.
The input cost function is chosen as

Jin,u(k) = −
Np−1∑

j=0

nu∑

i=1

ui(k + j) +
Np−1∑

j=0

nv∑

i=1

αi, jvi(k + j)

= −
nu Np∑

i=1

[ũ(k)]i +
nv Np∑

i=1

α̃i[ṽ(k)]i . (45)

where α̃ = [
α1,1 α2,1 . . . αnv ,(Np−1)

]T ≥ 0 is a weighting vector. The first term in the
input cost function Jin maximizes the input dates ũi(k) for just-in-time production, the
second term can be used to (possibly) penalize specific actions of the variable ṽi(k).

Note that the input cost function is linear in ũ(k) and ṽ(k).
The MPC problem for structurally controllable and structurally observable SMPL

systems with reference signal (30), satisfying Eq. 31 can be defined at event step k as

min
ũ(k),ṽ(k)

J(k) (46)
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subject to

ỹ(k) = C̃(�̃(k)) ⊗ x(k − 1) ⊕ D̃(�̃(k)) ⊗ ũ(k) (47)

u(k + j) − u(k + j − 1) ≥ 0, j=0, . . . , Np−1 (48)

| ui(k + j) − ρ · (k + j) | ≤ μmax, for i = 1, . . . , nu, j=0, . . . , Np−1 (49)

Qṽ(k) ≤ q (50)

R ũ(k) ≤ s, (51)

where Eq. 47 describes the system dynamics, Eq. 48 guarantees a non-decreasing
input sequence, Eq. 49 guarantees stability (cf. Theorem 1), and Eq. 50 defines
the admissible set for the auxiliary input variables ṽ(k). Finally Eq. 51 gives the
possibility to include linear constraints on ũ.

So the optimization in the MPC algorithm boils down to a nonlinear optimization
problem, where the cost criterion is piecewise polynomial and the inequality con-
straints are linear. This problem can be solved in several ways. Let P = {P1, . . . ,PK}
be the set of polyhedral regions formed by the intersection of linear constraints (47)–
(51) and the regions on which the piecewise polynomial functions expressing J are
defined. If the number K of polyhedral regions in P is small, one could apply for
each region Pi a multi-start optimization method for smooth, linearly constrained
functions such as steepest descent with gradient projection or sequential quadratic
programming (Pardalos and Resende 2002), and afterwards take the minimum over
all regions Pi. If K is larger, global optimization methods like tabu search (Glover
and Laguna 1997), genetic algorithms (Davis 1991), simulated annealing (Eglese
1990), or (multi-start) pattern search (Audet and Dennis 2007) could be applied.7

Note that in the special case where each probability P is a piecewise constant
function, J will be a piecewise affine function, and then it can be shown (using
an approach similar to the one used in Bemporad and Morari 1999) that the
optimization problem reduces to a mixed-integer linear programming problem, for
which reliable and efficient algorithms are available (Atamtürk and Savelsbergh
2005; Fletcher and Leyffer 1998). If some of the control variables are integer-valued,
we get a mixed-integer nonlinear programming problem, which could be solved using
branch-and-bound methods (Leyffer 2001).

We can rewrite the SMPL system with both deterministic and stochastic switching
as a stochastic MMPS system or as a stochastic PWA system using the algorithms
given in Section 3. Necoara et al. (2004) solves the model predictive control problem
using a stochastic MMPS system description. In Kerrigan and Mayne (2002), Lazar
et al. (2007) and Rakovic et al. (2004) the model predictive control problem using a
stochastic PWA system description is solved.

MPC for SMPL systems with deterministic switching In some applications the mode
switching is deterministic, which means that the switching probability is either zero
or one (so P[L(k) = �(k)|�(k − 1), x(k − 1), u(k), v(k)] ∈ {0, 1}). If we rewrite such
an SMPL system into the type-2 form, the stochastic signal d(k) will not be needed.

7Note that often these global optimization algorithms will not give satisfactory results within an
acceptable computation time, even for small problems.
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We can then use the transformation formulas of Section 3 to rewrite the system as a
deterministic PWA system or a deterministic MMPS system. For PWA systems there
are many MPC algorithms available (see e.g. Alessio and Bemporad 2009; Johansson
2003) and for MMPS systems we can use the MPC algorithm of De Schutter and van
den Boom (2004).

Sometimes the mode switching only depends on the auxiliary variable v(k). In that
case the MPC problem can be directly recast into a Mixed Integer Linear Program
(MILP).

MPC for SMPL systems with mode-dependent stochastic switching We will now
study the MPC algorithm in the special case of a mode-dependent stochastic switch-
ing. We will show that for this subclass of SMPL systems the optimization that arises
from the MPC problem boils down to a linear programming problem. For SMPL
systems with mode-dependent stochastic switching the probability of switching to
mode �(k) depends entirely on the previous mode �(k − 1) (and not on the previous
state or input signals), so we now define a new probability function Ps such that

P[L(k) = �(k)|�(k − 1), x(k − 1), u(k), v(k)] = Ps[L(k) = �(k)|�(k − 1)] (52)

P̃[L̃(k) = �̃(k)|�(k − 1), x(k − 1), ũ(k), ṽ(k)] = P̃s[L̃(k) = �̃(k)|�(k − 1)] (53)

The performance index (44) then becomes:

Jout(k) =
∑

�̃∈LN

⎧
⎨

⎩

ny Np∑

i=1

[(
C̃(�̃) ⊗ x(k − 1) ⊕ D̃(�̃) ⊗ ũ(k)) − r̃(k)

)
⊕ 0̄

]

i

⎫
⎬

⎭

× P̃s[L̃(k) = �̃|�(k − 1)] (54)

Theorem 2 Consider a type-1 SMPL systems with mode-dependent stochastic switch-
ing, so the switching probability is given by Eq. 52 and 53. Assume that LNp can be
rewritten as LNp = {�̃1, �̃2, . . . , �̃M} for M = nL

Np . The MPC problem (46)–(49) can
be recast as a linear programming problem:

min
ũ(k),ti,m

ny Np∑

i=1

M∑

m=1

ti,m P̃s

[
L̃(k) = �̃m

∣∣�(k − 1)
]

− β

nu Np∑

i=1

ũi(k) (55)

subject to

ti,m ≥
[
C̃
(
�̃m

)]

i,l
+ xl(k − 1) − r̃i(k) , ∀i, m, l (56)

ti,m ≥
[

D̃
(
�̃m

)]

i,l
+ ũl(k) − r̃i(k) , ∀i, m, l (57)

ti,m ≥ 0 , ∀i, m (58)

ui(k + j ) − ui(k + j − 1) ≥ 0, ∀i, j (59)

| ui(k + j ) − ρ · (k + j ) | ≤ μmax, ∀i, j (60)

R ũ(k) ≤ s, (61)
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Proof From Eq. 44 we obtain:

Jout(k) =
ny Np∑

i=1

M∑

m=1

max
{[

C̃
(
�̃m(k)

)
⊗ x(k − 1) ⊕ D̃

(
�̃m(k)

)
⊗ ũ(k)

]

i
− r̃i(k), 0

}

× P̃s

[
L̃(k) = �̃m|�(k − 1)

]

=
ny Np∑

i=1

M∑

m=1

max
{

max
l

( [
C̃
(
�̃m(k)

)]

i,l
+ xl(k − 1) − r̃i(k)

)
,

max
j

( [
D̃

(
�̃m(k)

)]

i, j
+ũ j(k)−r̃i(k)

)
, 0

}
P̃s

[
L̃(k)= �̃m|�(k−1)

]

=
ny Np∑

i=1

M∑

m=1

ti,m P̃s

[
L̃(k) = �̃m|�(k − 1)

]

where

ti,m = max
(

max
l

([
C̃
(
�̃m(k)

)]

i,l
+ xl(k − 1) − r̃i(k)

)
,

max
j

([
D̃

(
�̃m(k)

)]

i, j
+ ũ j(k)

)
− r̃i(k), 0

)
(62)

If we would minimize Jout(k) + β Jin(k) subject to Eqs. 56–61 then, given the fact
that the values of P̃s[L̃(k) = �̃m|�(k − 1)] are nonnegative, and that the variables ti,m
only appear on the left-hand side of the inequalities (56)–(58), one of the inequalities
indeed becomes an equality for at least one of the indices and so ti,m will be equal to
the maximum (62).

This implies that the MPC problem (46)–(49) can indeed be written as the linear
programming problem (55)–(61). ��

So the optimization in the MPC algorithm boils down to a linear programming
problem, which is polynomially solvable (Khachiyan 1979). Usually we will find
that M � nL

Np (as not all mode transitions are possible and so the corresponding
probabilities will be zero) and we can efficiently solve the optimization.

Timing issues Switching max-plus-linear systems are different from conventional
time-driven systems in the sense that the event counter k is not directly related to a
specific time. So far we have assumed that at event step k the state x(k) is available
(recall that x(k) contains the time instants at which the internal activities or processes
of the system start for the kth cycle). Therefore, we will present a method to address
the availability issue of the state at a certain time instant t. Since the components of
x(k) correspond to event times, they are in general easy to measure. So we consider
the case of full state information. Also note that measurements of occurrence times
of events are in general not as susceptible to noise and measurement errors as
measurements of continuous-time signals involving variables such as temperature,
speed, pressure, etc. Let t be the time instant when an MPC problem has to be solved.
We can define the initial cycle k as follows:

k = arg max
{

l|xi(l) ≤ t , ∀i ∈ {1, 2, . . . , nx}
}
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Fig. 6 a Tracking error y(k)−r(k), b control variable wrt. reference u(k)−r(k), and c switching
sequence �(k)

Hence, the state x(k) is completely known at time t and thus u(k − 1) is also available
(due to the fact that in practical applications the entries of the system matrices
are nonnegative or take the value ε). Note that at time t some components of the
future8 states and of the forthcoming inputs might be known (so xi(k + l) ≤ t and
u j(k + l − 1) ≤ t for some i, j and some l > 0). Due to causality, these states are
completely determined by the known forthcoming inputs. During the optimization at
time instant t the known values of the input have to be fixed by equality constraints,
which fits perfectly in the framework of a (mixed-integer) linear programming
problem. Due to the information at time t it might be possible to conclude that
certain future modes (�(k + l) for l > 0) are not feasible any more. In that case we
can set the switching probabilities for this mode at zero, and normalize the switching
probabilities of the other modes. With these new probabilities we can perform the
MPC optimization at time t.

8Future in the event counter sense.
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Fig. 7 a Reference error y(k)−r(k), b control variable wrt. reference u(k)−r(k), and c switching
sequence �(k)

Examples The production systems of Examples 4 and 5 are used to demonstrate
the design procedure for stabilizing model predictive controllers for SMPL systems
with both types of switching procedures. In the first example the switching is purely
stochastic, while in the second example the switching is both deterministic and
stochastic.

Example: Production system I
Consider the production system of Example 4. Note that the matrices �1

ρ(�̃) =
B(�), � ∈ {1, 2, 3} are all row-finite, and the matrices O1

ρ(�̃) = C(�), � ∈ {1, 2, 3} are
all column-finite. This means that the SMPL system is structurally controllable and
structurally observable. The maximum growth rate of the system is equal to λ = 6.5.
We choose a reference signal given by r(k) = ρ · k , where ρ = 7.15 > λ. The initial
state is taken equal to x(0) = [5 5 5]T , and J is given by Eq. 43 for Np = 4, and
β = 10−4. In the experiment, the true switching sequence is simulated for a random
sequence with the switching probability (4). We apply the presented MPC algorithm
to this system. The optimization is done using a linear programming algorithm.
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Figure 6a gives the tracking error between the reference signal and the output
signal y(k), for the switching sequence given in Fig. 6c, when the system is in closed
loop with the receding horizon model predictive controller. It can be observed that
y(k)−r(k) is initially larger than zero, which is due to the initial state. The error
decreases rapidly and for k ≥ 13 the error is always equal to zero, which means that
the product is delivered in time for all k ≥ 13. Figure 7b gives the difference between
the input signal u(k) and the reference signal r(k).

Example: Production system II
Consider the production system of Example 5. Note that also this SMPL system

is structurally controllable and structurally observable. The maximum growth rate of
the system is equal to λ = 6.5. We choose a reference signal given by r(k) = ρ · k ,
where ρ = 7.15 > λ. The initial state is equal to x(0) = [5 5 5]T , and J is given by
Eq. 43 for Np = 4, and β = 10−4. In the experiment, the true switching sequence
is simulated for a random sequence with the switching probability (5). We apply the
MPC algorithm as presented in Section 5 to this system. The optimization turns out to
be a mixed-integer linear programming problem. Figure 7a gives the reference error
between the reference signal r(k) and the output signal y(k), for a switching sequence
given in Fig. 7c, when the system is in closed loop with the receding horizon model
predictive controller. It can be observed that y(k)−r(k) is initially larger than zero,
which is due to the initial state. The error decreases rapidly and for k ≥ 9 the error
is always equal to zero, which means that the the product is delivered in time for
all k ≥ 9. Note that for v(k) = 0 we choose recipe B1 (so �(k) = 2) and for v(k) = 1
we choose recipe B2 (so �(k) = 3). For �(k) = 1, the value v(k) is indefinite (which
means that for mode 1 the value of signal v(k) has no influence). Figure 7b gives the
difference between the input signal u(k) and the reference signal r(k).

6 Discussion

We have considered the control of switching max-plus-linear (SMPL) systems, a
subclass of the discrete-event systems, in which the system can switch between
different modes of operation. The switching between the modes can be deterministic
or stochastic, and in each mode the discrete-event system is described by a max-plus-
linear state space model with different system matrices for each mode.

In this paper we have revisited type-1 SMPL and type-2 SMPL systems, and we
have shown that these two classes of SMPL systems are equivalent. Furthermore we
have proven that every structurally finite SMPL system of these two types can be
written as a type-d piecewise affine system or as a constrained max-min-plus-scaling
system (provided that the output and state variables are bounded). An advantage of
the equivalency is that we can use many tools, derived for piecewise affine system
and max-min-plus-scaling systems, to analyze our SMPL systems.

We have also derived a stabilizing model predictive controller for SMPL systems.
The resulting optimization problem is nonlinear with a piecewise polynomial cost cri-
terion and linear inequality constraints. In the case of stochastic switching depending
only on the previous mode, the resulting optimization problem can be solved using
linear programming.
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In future research we will continue our study on the relation between the various
classes of SMPL systems. Further we will extend the SMPL system by the introduc-
tion of stochasticity in the system parameters, as was done in van den Boom and
De Schutter (2004) for MPL systems. In this way we will be able to capture more
stochastic issues in SMPL systems.
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