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In part I of this paper we have deduced generalised Einstein mass variation formulae assuming relative
frame velocities v < c. Here we present corresponding new expressions for superluminal relative frame
velocities v > c. We again use the notion of the residual mass m0ðvÞ which for v > c is defined by the

equation mðvÞ ¼ m0ðvÞ½ðv=cÞ2 � 1��1=2
for the actual mass mðvÞ. The residual mass is essentially the

actual mass with the Einstein factor removed, and we emphasise that we make no restrictions on
m0ðvÞ. Using this formal device we deduce corresponding new mass variation formulae applicable to
superluminal relative frame velocities, assuming only the extended Lorentz transformations and their
consequences, and two invariants that are known to apply in special relativity. The present authors have
previously speculated a dual framework such that both the rest mass m�

0 and the residual mass at infinite
velocity m�

1 (by which we mean p�
1=c, assuming finite momentum at infinity) are equally important

parameters in the specification of mass as a function of its velocity, and the two arbitrary constants
can be so determined. The new formulae involving two arbitrary constants may also be exploited so that
the mass remains finite at the speed of light, and two distinct mass profiles are determined as functions of
their velocity with the rest mass assumed to be alternatively prescribed at the origin of either frame. The
two profiles so obtained ðMðUÞ;mðuÞÞ and ðM�ðUÞ;m�ðuÞÞ although distinct have a common ratio
MðUÞ=M�ðUÞ ¼ mðuÞ=m�ðuÞ that is a function of v > c, indicating that observable mass depends upon
the frame in which the rest mass is prescribed.

� 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

In part I of this paper [4] we have deduced new Einstein mass
variation expressions for relative frame velocities v < c. In this
paper we present corresponding new formulae for superluminal
relative frame velocities v > c. In two recent papers [2,3] the pre-
sent authors have proposed extensions of the Lorentz transforma-
tions for superluminal motion, and we have described a duality
involving both sub and super luminal velocities, such that any
observer in either set of frames (subluminal or superluminal)
would be unable to distinguish whether they belong to the sub
or super set of frames. In other words, the present authors have
proposed in [3] a dual world view, and one immediate conse-
quence of this is that if the rest mass m�

0 is perceived to be a defin-
ing parameter of some importance, then pursuing this duality, so
also is the limiting value m�

1 ¼ p�
1=c where p�

1 is defined to be
the limiting value of the momentum as the velocity becomes infi-
nite. For superluminal relative frame velocities, one observer per-
ceives a subluminal particle velocity, while the other observer
necessarily perceives a superluminal particle velocity. In this paper
we produce new special relativistic mass variation formulae
involving both sub and super luminal motions, which we exploit
in the context of superluminal relative frame velocity to produce
explicit new formulae corresponding to E ¼ mc2, and involving
both the rest mass m�

0 and the residual mass (as defined by (2.6))
at infinite relative velocity m�

1.
In this paper, assuming only the extended Lorentz transforma-

tions (2.1) and their consequences, we seek to develop the formal-
ism of special relativity without making any assumptions on the
variation of mass with velocity. To facilitate the analysis, we intro-
duce the concept of the residual mass m0ðvÞ as being defined by

the equation mðvÞ ¼ m0ðvÞ½ðv=cÞ2 � 1��1=2
for v > c, namely the

residual mass is the actual mass with the Einstein factor removed.
Again we emphasise that initially we make no restrictions on
m0ðvÞ, and that this formal device merely facilitates the analysis.
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Of course for zero velocity, both the actual mass and the residual
mass happen to coincide and are both equal to the rest mass. This
seemingly trivial remark nevertheless implies that both the rest
mass m�

0 and the limiting residual mass m�
1, in fact have the same

status as being the values of the residual mass at zero and infinite
velocities respectively.

Based on two invariances which are known to apply in special
relativity, we deduce new expressions for the variation of mass
with velocity involving two arbitrary constants. The two assumed
invariances, are the usual force invariance in the direction of rela-
tive motion for two non-accelerating frames and a second invari-
ance involving mass which is not so well known, but
nevertheless applies in special relativity. In this way the new
expressions have a corresponding status to the Einstein formula
but involve an additional arbitrary constant. As an example, the
additional degree of freedom can be exploited to incorporate both
the rest mass m�

0 and the value of the residual mass m�
1 at infinite

relative velocity. Alternatively, the additional degree of freedom
can be exploited to ensure that the actual mass remains finite at
v ¼ c, namely the arbitrary constants can be chosen to satisfy
m0ðcÞ ¼ 0.

In the following section we present a brief summary of the
extended Lorentz transformations and their consequences. In the
subsequent section we show how corresponding mass-
momentum relations might be deduced without any assumptions
on the variation of mass with velocity. Using these relations
together with the force invariance and another invariance involv-
ing mass (see Eq. (2.5)) we deduce in the section thereafter the
governing ordinary differential equation restricting the variation
of mass with velocity (namely Eq. (3.9)). On solving this equation
we eventually deduce new mass variation formulae, which include
the Einstein expression as a special case. In two subsequent sec-
tions we examine two possible applications of the new formulae,
and some brief concluding remarks are made in the final section
of the paper.

Extended Lorentz transformations of special relativity

We consider a rectangular Cartesian frame ðX;Y ; ZÞ and another
frame ðx; y; zÞ moving with constant velocity v relative to the first
frame and the motion is assumed to be in the aligned X and x direc-
tions as indicated in Fig. 1. We note that the coordinate notation
adopted here is slightly different to that normally used in special
relativity involving primed and unprimed variables. We do this
purposely because it is convenient to view the relative velocity v
as a parameter measuring the departure of the current frame
ðx; y; zÞ from the rest frame ðX;Y ; ZÞ, and for this purpose the nota-
tion employed in nonlinear continuum mechanics is preferable.
Time is measured from the ðX;Y ; ZÞ frame with the variable T and
from the ðx; y; zÞ frame with the variable t. Following normal prac-
tice, we assume that y ¼ Y and z ¼ Z, so that ðX; TÞ and ðx; tÞ are the
variables of principal interest.

For c < v < 1, the two extended Lorentz transformations
derived in [2] can be expressed as

x ¼ e X � vTð Þ
ðv=cÞ2 � 1
h i1=2 ; t ¼ e T � vX=c2

� �
ðv=cÞ2 � 1
h i1=2 ; ð2:1Þ
T

X x

t

v
uU

Fig. 1. Two inertial frames moving along x-axis with relative velocity v.
where e ¼ �1 corresponding to the two distinct cases which arise
from the two distinct sets of constraints,

x ¼ �ecT; t ¼ �eX=c; v ¼ 1:

Subsequent to the publication of [2], the work of Vieira [8]
appearing at about the same time, was brought to our attention,
who proposed two alternative derivations of the same extended
Lorentz transformations. One algebraic in character and the other
geometric. The almost simultaneous appearance of the same
extended Lorentz transformations for superluminal motion is an
entirely positive outcome, in that there is now some considerable
commonality of agreement in the basic equations underlying
superluminal motion. After the publication of [2], Andréka et al.
[1] confirmed this giving yet another derivation of the above
extended transformations in one spatial and one time dimensions.
However, motivated by [2], Jin and Lazar [5] point out that these
extended Lorentz transformations are not entirely new and have
a prior history and we refer the reader to this paper for details of
these earlier contributions. In some of these earlier contributions
the transformations for v > c are presented but not formally
derived as such, and the main original contribution of [2] is the
mode of their derivation as arising from the tangent vector for spe-
cial relativity, combined with an initial condition for infinite rela-
tive velocity. The particular derivation of [2] is entirely
mathematical in nature, not dependent on any ad-hoc physical rea-
soning, and quite distinct from all previous derivations including
those cited by Jin and Lazar [5]. Quite recently Mantegna [6] makes
use of an idea from [2] to formulate a possible solution to the prob-
lem of spinless tachyon localisation.

Irrespective of sub or super luminal relative frame motion, with
velocities U ¼ dX=dT and u ¼ dx=dt, (2.1) yields the well known
Einstein addition of velocity law

u ¼ U � v
1� Uv=c2ð Þ ; ð2:2Þ

and as an immediate consequence of (2.2) is the identity

½1� ðu=cÞ2�ð1� Uv=c2Þ2 ¼ ½1� ðv=cÞ2�½1� ðU=cÞ2�; ð2:3Þ
which is not so well-known, but is nevertheless fundamental to the
development of the formulation of special relativity. Another
important formula arising from (2.2) is

1þ U=c
1� U=c

� �
¼ 1þ u=c

1� u=c

� �
1þ v=c
1� v=c

� �
; ð2:4Þ

and both (2.3) and (2.4) apply for both sub and super luminal
motions. These two formulae reveal that at least one of the veloci-
ties u;v or U must not exceed the speed of light, and clearly both
formulae need re-arrangement depending upon the particular val-
ues of the three velocities. In this paper we need to take the square
root of (2.3) and the logarithm of (2.4).

As described in part I of this paper [4], in the following develop-
ment of special relativity we adopt the two invariances, namely

dp
dt

¼ dP
dT

;
dm
dx

¼ dM
dX

; ð2:5Þ

which are known to apply in special relativity, and in this sense we
claim that the resulting new mass variation formulae carry a corre-
sponding status as the Einstein expression. The new formulae
involve two arbitrary constants, while the Einstein expression
involves only the rest mass as a single arbitrary constant. We have
previously noted in part I that together the above two invariances
imply that the energy-mass rates are the same in both frames,
namely dE=dm ¼ dE=dM, which is clearly the case in conventional
special relativity when both energy-mass rates are then equal to c2.
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In the next section for relative frame velocities v > c, we sup-
pose that U < c, while u > c, and we extend the newmass variation
expressions given in [4] assuming only the validity of the extended
Lorentz transformations (2.1) and their consequences (2.2)–(2.4),
but not making any assumptions of the mass variation with veloc-
ity, other than adopting the structure,

mðuÞ ¼ m0ðuÞ
½ðu=cÞ2 � 1�1=2

; MðUÞ ¼ M0ðUÞ
½1� ðU=cÞ2�1=2

; ð2:6Þ

where m0ðuÞ and M0ðUÞ are referred to as the residual masses, and
denote arbitrary functions to be determined subsequently. The par-
ticular assumed structure (2.6) is not restrictive in any sense and
merely facilitates the mathematical analysis. Together with the for-
mal identities (2.3) and (2.5) it is sufficient to duplicate the essential
structure of the Lorentz invariant mass-momentum relations.

In particular, as fully described in [4] we may again introduce
the variable parameter kðu;UÞ ¼ m0ðuÞ=M0ðUÞ to extend the Lor-
entz invariant mass-momentum relations and to derive new mass
variation formulae based on maintaining the two invariances (2.5),
and noting that the Einstein mass variation arises from k � 1. For
superluminal relative frame motion with u;v > c and U < c, we
define the variables (n;g; c) by

n ¼ log
1þ U=c
1� U=c

� �
; g ¼ log

u=c þ 1
u=c � 1

� �
; c ¼ log

v=c þ 1
v=c � 1

� �
;

ð2:7Þ
for which again n ¼ gþ c while the inverses are given by

U ¼ c tanhðn=2Þ; u ¼ c cothðg=2Þ; v ¼ c cothðc=2Þ: ð2:8Þ
In the following section the above relations are exploited to

deduce new mass variation formulae for superluminal relative
frame velocities v.

Generalised Lorentz invariant mass-momentum relations for
v > c

As fully described in part I of this paper [4] we determine
new mass variation formulae assuming that the Lorentz invari-
ant mass-momentum relations of special relativity may be
extended, and in this section we present the analytical details
for superluminal motion with v > c, assuming that U < c and
u > c. Accordingly, one observer registers a subluminal velocity
while the other identifies the motion as superluminal. The resid-
ual masses m0ðuÞ and M0ðUÞ are defined through the relations
(2.6) and that the appropriate square root relation arising from
(2.3) becomes

ðu=cÞ2 � 1
h i1=2

Uv=c2 � 1
� � ¼ 1� U=cð Þ2

h i1=2
ðv=cÞ2 � 1
h i

; ð3:1Þ

noting that for U < c and u;v > 0; Uv=c2 > 1 from (2.2). On multi-
plication of (2.2) by mðuÞ, we have

p ¼ m0ðuÞ v � Uð Þ
ðu=cÞ2 � 1
h i1=2

Uv=c2 � 1ð Þ
¼ k Mv � Pð Þ

ðv=cÞ2 � 1
h i1=2 ; ð3:2Þ

on using (3.1), P ¼ MU and k is as previously defined, namely
k ¼ m0ðuÞ=M0ðUÞ. Further, from (2.6)2 and (3.1) we have

m ¼ m0ðuÞ
M0ðUÞ

M0ðUÞ Uv=c2 � 1
� �

1� ðU=cÞ2
h i1=2

ðv=cÞ2 � 1
h i1=2 ¼ k

Pv=c2 �M
� �
ðv=cÞ2 � 1
h i1=2 ;

ð3:3Þ
and (3.2) and (3.3) constitute the appropriate generalisation of the
Lorentz invariant mass-momentum relations, with inverse relations
characterised by 1=k, thus
P ¼ mv þ pð Þ
k ðv=cÞ2 � 1
h i1=2 ; M ¼ pv=c2 þm

� �
k ðv=cÞ2 � 1
h i1=2 :

The above equations constitute the formal generalisation of the
equations of special relativity, without making any assumptions on
the variation of mass with velocity. In the subsequent analysis, we
supplement these equations with the two invariances (2.5), the
first representing force invariance, while the second is an assumed
invariance that is known to hold in special relativity.

On differentiating (3.2) and (3.3), making use of the superlumi-
nal Lorentz transformations (2.1), we may deduce from the two
invariances (2.5), the two differential relations

k v dM � dPð Þ þ dk Mv � Pð Þ ¼ edP 1� Uv=c2
� �

;

k v dP=c2 � dM
� �þ dk Pv=c2 �M

� � ¼ edM 1� v=Uð Þ; ð3:4Þ

which we may view as two equations for the two unknowns
Q ¼ dP=dM and l ¼ dk=dM. On solving (3.4) we find the intermedi-
ate relation

Q ¼ c2

kv l M � Pv
c2

� �
þ kþ e 1� v

U

� �� 	
;

and eventually after a long calculation we have

Q ¼
ð1� bÞeMc2=U þ P bðkþ eÞ � ev=U½ �
n o

ðbkþ eÞM � ePv=c2½ � ;

l ¼ � kþ eð Þ bkþ e 1� v=Uð Þ½ �
ðbkþ eÞM � ePv=c2½ � ;

ð3:5Þ

where it is convenient to introduce b defined by

b ¼ ðv=cÞ2 � 1
Uv=c2 � 1

; ð3:6Þ

noting that b� 1 ¼ uv=c2. Now from P ¼ MU, we may deduce from
(3.5)

M
dU
dM

¼ �
e 1� U

c

� �2h i
v þ ðb� 1Þ c2

U

h i
bkþ eð1� Uv=c2Þ½ � ;

M
dk
dM

¼ �ðkþ eÞ bkþ e 1� v
U

� �
 �
bkþ eð1� Uv=c2Þ½ � ;

ð3:7Þ

and division of these two equations provides the basic determining
equation for k, thus

dU
dk

¼
e 1� U

c

� �2h i
v þ ðb� 1Þ c2

U

h i
ðkþ eÞ bkþ e 1� v=Uð Þ½ � : ð3:8Þ

On making use of the relations (2.8), and after much simplifica-
tion, Eq. (3.8) eventually reduces to the standard first order ordi-
nary differential equation

dr
dn

� r
2

sinhðn� c=2Þ
coshðn� c=2Þ ¼

�e sinh n
4 coshðc=2Þ coshðn� c=2Þ ; ð3:9Þ

where r ¼ 1=ðkþ eÞ and e ¼ �1. For the two cases e� 1, Eq. (3.9)
can be formally written as

d
dn

r
coshðn� c=2Þ½ �1=2

( )
¼ �e sinh n

4 coshðc=2Þ coshðn� c=2Þ½ � ; ð3:10Þ

and on writing sinh n as sinhðn� c=2þ c=2Þ and expanding can be
integrated to yield

r ¼ e
2
� e
4
tanh

c
2

� �
cosh n� c

2

� �h i1=2 Z n�c
2

0

dq
ðcoshqÞ1=2

þ C1 cosh n� c
2

� �h i1=2
; ð3:11Þ

where C1 denotes on arbitrary constant of integration.
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From (3.11) and r ¼ ðkþ eÞ�1 we may deduce

k¼m0ðuÞ=M0ðUÞ

¼
1
2þ tanhðc=2Þ

4 coshðn�c=2Þ½ �1=2 R n�c=2
0

dq
ðcoshqÞ1=2�eC1 coshðn�c=2Þ½ �1=2

e
2� etanhðc=2Þ

4 coshðn�c=2Þ½ �1=2 R n�c=2
0

dq
ðcoshqÞ1=2þC1 coshðn�c=2Þ½ �1=2

;

ð3:12Þ
and we comment that all the integrals given in this paper, can if
necessary, be expressed in terms of elliptic integrals. Conceptually
and in terms of understanding the structure of the new solutions,
it is perhaps easier to leave them in the above form.

With k so determined from the above, we now proceed to inte-
grate (3.7)1 as follows

dM
M

¼ edU

1� ðU=cÞ2
h i e

U
c2

� bUðkþ eÞ
c2ðb� 1þ Uv=c2Þ

� 	

¼ UdU

c2 1� ðU=cÞ2
h i 1� be

rðb� 1þ Uv=c2Þ
� 	

¼ 1
2
tanhðn=2Þdn� e sinh ndn

4r coshðc=2Þ coshðn� c=2Þ ; ð3:13Þ

where we have exploited (3.6) and the transformations (2.7) and
their inverses (2.8). From (3.10) it is clear that (3.13) can be
reformulated

dM
M

¼ 1
2
tanhðn=2Þdnþ

d r= coshðn� c=2Þ½ �1=2
� �
r= coshðn� c=2Þ½ �1=2

;

for both e ¼ �1, so that in both cases

MðUÞ ¼ C2 coshðn=2Þr
coshðn� c=2Þ½ �1=2

;

where C2 denotes a further arbitrary constant. From this equation,

(2.6)2 and r ¼ ðkþ eÞ�1 we may deduce

m0ðuÞ þ eM0ðUÞ ¼ C2

coshðn� c=2Þ½ �1=2
; ð3:14Þ

which along with (3.12) provides two equations for the determina-
tion of the two unknown functions m0ðuÞ and M0ðUÞ. From (3.12)
and (3.14) we may deduce

M0ðUÞ ¼C2 C1� e
4
tanhðc=2Þ

Z n�c=2

0

dq
ðcoshqÞ1=2

þ e
2 coshðn�c=2Þ½ �1=2

( )
;

m0ðuÞ¼C2 �eC1þ1
4
tanhðc=2Þ

Z n�c=2

0

dq
ðcoshqÞ1=2

þ 1

2 coshðn�c=2Þ½ �1=2
( )

;

ð3:15Þ
and on adopting the notation M0ðUÞ ¼ N0ðnÞ and m0ðuÞ ¼ n0ðgÞ we
have

N0ðnÞ¼C2 C1� e
4
tanhðc=2Þ

Z n�c=2

0

dq
ðcoshqÞ1=2

þ e
2 coshðn�c=2Þ½ �1=2

( )
;

n0ðgÞ¼C2 �eC1þ1
4
tanhðc=2Þ

Z gþc=2

0

dq
ðcoshqÞ1=2

þ 1

2 coshðgþc=2Þ½ �1=2
( )

:

ð3:16Þ
From these expressions we may deduce

dN0ðnÞ
dn

¼ � eC2 sinh n

4 coshðc=2Þ coshðn� c=2Þ½ �3=2
;

dn0ðgÞ
dg

¼ � C2 sinhg
4 coshðc=2Þ coshðgþ c=2Þ½ �3=2

;

ð3:17Þ

which are required in the corresponding energy formulae
E ¼ MðUÞc2 � c2
Z n

0
sechðf=2ÞdN0ðfÞ

df
df;

E ¼ mðuÞc2 þ c2
Z g

0
cosechðw=2Þ dn0ðwÞ

dw
dw;

ð3:18Þ

noting that from (3.17)2 the integral in (3.18)2 is overall well-
behaved at the origin, and that both expressions in (3.18) are
assumed to adopt their mass energies as the datum energy.

Application of formulae using rest mass and residual mass at
infinite relative velocity

Pursuing the duality proposed by the authors in [2,3], if the rest
massm�

0, which happens to coincide with the residual mass at zero
velocity, is taken to be a defining parameter of some importance,
then so also is the value of the residual mass m�

1 at infinite veloc-
ity. These considerations lead us to propose the following bound-
ary conditions on (3.15) for the determination of the two
arbitrary constants C1 and C2; thus

U ¼ 0; n ¼ 0; g ¼ �c; M0ð0Þ ¼ m�
0;

u ¼ 1; n ¼ c; g ¼ 0; m0ð1Þ ¼ m�
1;

ð4:1Þ

and from (3.15) and (4.1) we obtain

m�
0 ¼ C2 C1 þ e

4
tanh

c
2

� �Z c=2

0

dq
ðcoshqÞ1=2

þ e
2 coshðc=2Þ½ �1=2

( )
;

m�
1 ¼ C2 �eC1 þ 1

4
tanh

c
2

� �Z c=2

0

dq
ðcoshqÞ1=2

þ 1

2 coshðc=2Þ½ �1=2
( )

:

ð4:2Þ
On solving (4.2) we may deduce

C1 ¼ em�
0�m�

1
m�

0þem�
1

� �
tanhðc=2Þ

4

Z c=2

0

dq
ðcoshqÞ1=2

þ 1

2 coshðc=2Þ½ �1=2
 !

;

C2 ¼ em�
0 þm�

1
2

tanhðc=2Þ
4

Z c=2

0

dq
ðcoshqÞ1=2

þ 1

2 coshðc=2Þ½ �1=2
 !�1

;

assuming that m�
0 þ em�

1 is non-zero. From the particular values
g ¼ �c and n ¼ c we may deduce respectively

m0ð�vÞ ¼ n0ð�cÞ ¼
m�

1 � em�
0 sinhðc=2Þ

2 coshðc=2Þ½ �1=2
R c=2
0

dq
ðcoshqÞ1=2

1þ sinhðc=2Þ
2 coshðc=2Þ½ �1=2

R c=2
0

dq
ðcoshqÞ1=2

0
@

1
A;

M0ðc2=vÞ ¼ N0ð�cÞ ¼
m�

0 � em�1 sinhðc=2Þ
2 coshðc=2Þ½ �1=2

R c=2
0

dq
ðcoshqÞ1=2

1þ sinhðc=2Þ
2 coshðc=2Þ½ �1=2

R c=2
0

dq
ðcoshqÞ1=2

0
@

1
A;

ð4:3Þ

noting the apparent symmetries, both with regard to being even
functions of c, and having the same and equal dependency on m�

0

and m�
1. We emphasize that m�

1 is the limiting value of the residual
mass m0ðuÞ in the limit of infinite velocity u, or alternatively
m�

1 ¼ p�
1=c where p�

1 denotes the limiting momentum. It is clear
from (4.3)1 that the given expressions represent a weighted average
of the values m�

0 and m�
1. Fig. 2 shows the variation of m0ðvÞ=m�

0 for
v=c in the interval ð1;1Þ as given by (4.3)1, again noting that m0ðvÞ
is an even function and that the actual mass is given by
mðvÞ ¼ sinhðc=2Þm0ðvÞ. The corresponding values for c lie in the
interval ð0;1Þ. In Fig. 3 we let V ¼ c2=v and the figure shows the
variation of M0ðVÞ=m�

0 as arising from (4.3)2 for V=c ¼ c=v in the
interval ð0;1Þ noting that the actual mass is determined from
MðVÞ ¼ coshðc=2ÞM0ðVÞ. In both of these figures, the value
m�

1 ¼ m�
0=2 is arbitrarily adopted, and the dashed curve corre-

sponds to e ¼ 1 while the solid curve corresponds to e ¼ �1. In



Fig. 2. Variation of residual mass m0ðvÞ=m�
0 from (4.3)1 for e ¼ 1 (dashed) and

e ¼ �1 (solid).

Fig. 3. Variation of residual mass M0ðvÞ=m�
0 from (4.3)2 for e ¼ 1 (dashed) and

e ¼ �1 (solid).
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the figures, the Einstein expression corresponds to the lines
m0ðvÞ=m�

0 ¼ 1=2 in Fig. 2 and M0ðVÞ=m�
0 ¼ 1 in Fig. 3.

Further from (3.17) and (3.18) we find

E ¼ MðUÞc2 � C2c2e
coshðc=2Þ

coshðn� cÞ=2
coshðn� c=2Þ½ �1=2

� coshðc=2Þ½ �1=2
( )

;

E ¼ mðuÞc2 � C2c2

coshðc=2Þ
sinhðgþ c=2Þ=2
coshðgþ c=2Þ½ �1=2

� sinhðc=2Þ
coshðc=2Þ½ �1=2

( )
;

and by making use of Eq. (3.14), these expressions can be simplified
to yield
E ¼ MðUÞU � emðuÞu v
c

� �2
� 1

� 1=2( )
c2

v þ E0;

E ¼ mðuÞu� eMðUÞU v
c

� �2
� 1

� 1=2( )
c2

v þ E0;

ð4:4Þ

where E0 and E0 are defined by

E0 ¼ m�
0 þ em0ð�vÞ


 �
c2;

E0 ¼ m�
1 þ eM0ðc2=vÞ


 �ðc3=vÞ;
and these relations can be shown from (4.3) and (4.4) to become

E0 ¼ ðm�
1 þ em�

0Þc2 1þ sinhðc=2Þ
2 coshðc=2Þ½ �1=2

Z c=2

0

dq
coshq½ �1=2

 !�1

;

E0 ¼ ðm�
0 þ em�

1Þ c
3

v 1þ sinhðc=2Þ
2 coshðc=2Þ½ �1=2

Z c=2

0

dq
coshq½ �1=2

 !�1

:

We may provide an independent check on the relations (4.4) by
confirming that they satisfy the following Lorentz invariant
energy-momentum relations

E ¼ eðE� PvÞ
ðv=cÞ2 � 1
h i1=2 þ const; E ¼ � eðEþ pvÞ

ðv=cÞ2 � 1
h i1=2 þ const;

ð4:5Þ

where the arbitrary constants are determined by assumed initial
data. We may readily verify that the derived expressions (4.4)
indeed satisfy (4.5).

The Lorentz invariant energy-momentum relations (4.5) are
most easily verified as follows. From the energy and momentum
equations in both frames, and noting that f ¼ dp=dt and
F ¼ dP=dT are assumed to coincide, we have using the extended
Lorentz transformation (2.1)2

d
dT

E� eðE� PvÞ
ðv=cÞ2 � 1
h i1=2

8><
>:

9>=
>; ¼ fueð1� Uv=c2Þ

ðv=cÞ2 � 1
h i1=2 � eðfU � fvÞ

ðv=cÞ2 � 1
h i1=2

¼ f e

ðv=cÞ2 � 1
h i1=2 ðU � vÞ � ðU � vÞf g

¼ 0;

and similarly

d
dT

Eþ eðE� pvÞ
ðv=cÞ2 � 1
h i1=2

8><
>:

9>=
>;

¼ fU þ e

ðv=cÞ2 � 1
h i1=2 fuþ fvf g eð1� Uv=c2Þ

ðv=cÞ2 � 1
h i1=2

¼ f

ðv=cÞ2 � 1
h i U

v
c

� �2
� 1

� 
þ ðU � vÞ þ v 1� Uv

c2

� �� 	
¼ 0;

and therefore we may deduce the energy-momentum relations
(4.5). We emphasise that the results (4.5) must hold irrespective
of any assumed mass variation, since they apply assuming only
the energy and momentum equations dE=dT ¼ FU; F ¼ dP=dT and
force invariance F ¼ f .
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On re-writing (4.4) as

E ¼ P � ep ðv=cÞ2 � 1
h i1=2� �

ðc2=vÞ þ E0;

E ¼ � pþ eP ðv=cÞ2 � 1
h i1=2� �

ðc2=vÞ þ E0;

ð4:6Þ

we see that (4.6) admits the following interesting identity

ðE� E0Þ2 þ ðE� E0Þ2 ¼ ðp2 þ P2Þc2:
Although the relations (4.6) have been derived within the con-

text of a particular mass variation (namely (3.15) or (3.16)) the
relations (4.6) can be confirmed directly for any mass variation
since

d
dT

E� c2

v P � ep ðv=cÞ2 � 1
h i1=2� �� 	

¼ f U � c2

v þ c2

v 1� Uv
c2

� �� 	
¼ 0;

and

d
dT

Eþ c2

v pþ eP ðv=cÞ2 � 1
h i1=2� �� 	

¼ f e

ðv=cÞ2 � 1
h i1=2 ðU � vÞ þ c2

v 1� Uv
c2

� �
þ c2

v
v
c

h i2
� 1

� �� 	

¼ 0;

using only the extended Lorentz transformation (2.1)2, the energy
and momentum Eqs. (2.5) and force invariance. Together with
(4.5) and (4.6) may be combined to give

E� E0 ¼ e ðE� E0Þ � Pv½ �
ðv=cÞ2 � 1
h i1=2 ; p ¼ e P � ðE� E0Þv=c2


 �
ðv=cÞ2 � 1
h i1=2 ; ð4:7Þ

and the inverse relations

E� E0 ¼ � e ðE� E0Þ þ pv½ �
ðv=cÞ2 � 1
h i1=2 ; p ¼ e pþ ðE� E0Þv=c2


 �
ðv=cÞ2 � 1
h i1=2 ; ð4:8Þ

again emphasising that (4.7) and (4.8) apply independently of any
assumed mass variation.

Finally in this section, we comment that directly from the trans-
formations (2.7) and (2.8) and the integral (3.14) we may deduce

m0ðuÞ þ eM0ðUÞ ¼ C2

coshðn� c=2Þ½ �1=2

¼
C2 1� ðU=cÞ2
h i1=2

ðv=cÞ2 � 1
h i1=4

1þ U=cð Þ2
h i

v=cð Þ � 2 U=cð Þ
� �1=2 ;

and therefore from the two sets of conditions (4.1) we have
respectively

m0ð�vÞ þ em�
0 ¼ C2

coshðc=2Þ½ �1=2
¼ C2

c
v

� �1=2
ðv=cÞ2 � 1
h i1=4

;

m�
1 þ eM0ðc2=vÞ ¼ C2

coshðc=2Þ½ �1=2
¼ C2

c
v

� �1=2
ðv=cÞ2 � 1
h i1=4

:

ð4:9Þ
We may confirm the relations (4.9), since from (4.2) we have

m�
1 þ em�

0 ¼ C2

cosh c
2

� �
 �1=2 1þ sinh c
2

� �
2 cosh c

2

� �
 �1=2
Z c

2

0

dq
coshqð Þ1=2

 !
;

ð4:10Þ
while from the expressions (4.3) we obtain

m0ð�vÞ þ em�
0 ¼ m�

1 þ eM0
c2

v

� �
¼ m�

1 þ em�
0

� �
1þ sinh c

2ð Þ
2 cosh c

2ð Þ½ �1=2
R c

2
0

dq
coshqð Þ1=2

� � ;

ð4:11Þ

and (4.9) follows directly from (4.10) and (4.11). In the following
section, we consider another application of the formulae displaying
finite mass at the speed of light.
Application with finite mass at the speed of light

Finally, we present an application of the two parameter family
of mass variation (3.15) and the integral relation (3.14) for which
the arbitrary constant C1 is determined such that the mass
remains finite. It eventuates that with an appropriate choice of
the constant C1 we may arrange for both mðuÞ and MðUÞ to be
finite in the limit u;U ! c. From (3.15), it is clear that if the con-
stant C1 is such that

C1 ¼ e
4
tanhðc=2Þ

Z 1

0

dq
coshqð Þ1=2

¼ e
4
ffiffiffi
2

p tanhðc=2ÞB 1
4
;
1
2

� �
;

where Bð1=4;1=2Þ ¼ 5:244115 . . . denotes the usual beta function,
and then both m0ðuÞ and M0ðUÞ vanish in the limit u;U ! c. From
L’Hôpital’s rule we have

Mc ¼ lim
U!c

M0ðUÞ
1� ðU=cÞ2
h i1=2 ¼ lim

n!1
N0ðnÞ

sechðn=2Þ ¼ lim
n!1

dN0ðnÞ=dn
� 1

2
tanhðn=2Þ
coshðn=2Þ

;

mc ¼ lim
u!c

m0ðuÞ
ðu=cÞ2 � 1
h i1=2 ¼ lim

g!1
n0ðgÞ

cosechðg=2Þ ¼ lim
g!1

dn0ðgÞ=dg
� 1

2
cothðg=2Þ
sinhðg=2Þ

;

ð5:1Þ

and from (3.17) and (5.1) we may eventually deduce the limiting
values as follows

Mc ¼ eC2e5c=4ffiffiffi
2

p
ec þ 1ð Þ ¼

eC2 v=c þ 1ð Þ5=4
2
ffiffiffi
2

p
ðv=cÞ v=c � 1ð Þ1=4

;

mc ¼ C2e�c=4ffiffiffi
2

p
ec þ 1ð Þ ¼

C2 v=c � 1ð Þ5=4
2
ffiffiffi
2

p
ðv=cÞ v=c þ 1ð Þ1=4

;

mcMc ¼ eC2
2

8
sech2ðc=2Þ; mc ¼ eMce�3c=2;

M2
c ¼ C2

2

8
e3c=2sech2ðc=2Þ; Mc ¼ C2

2
ffiffiffi
2

p e3c=4

coshðc=2Þ ;

and from which we may deduce the interesting relations

mcMc ¼
eC2

2 ðv=cÞ2 � 1
h i
8ðv=cÞ2

;
mc

Mc
¼ e

ðv=cÞ � 1
ðv=cÞ þ 1

� �3=2

;

noting however that in the case e ¼ �1, both of the latter relations
imply that one of mc or Mc is necessarily negative. Although the
notion of negative mass is sometimes entertained as a physical con-
cept, this particular application may only be physically sensible in
the case e ¼ 1.

Assuming that C1 is determined such that the masses remain
finite at u ¼ U ¼ c, then for u;v > c and U < c we may deduce
the following expressions



Fig. 4. Variation of mass MðUÞ=m�
0 from (5.6)1, (2.6)2 and (5.3)1 for e ¼ 1.

�
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M0ðUÞ ¼ eC2
1

2 coshðn� c=2Þ½ �1=2
þ tanhðc=2Þ

4

Z 1

n�c=2

dq
ðcoshqÞ1=2

( )
;

m0ðuÞ ¼ C2
1

2 coshðgþ c=2Þ½ �1=2
� tanhðc=2Þ

4

Z 1

gþc=2

dq
ðcoshqÞ1=2

( )
;

ð5:2Þ
with variables (n;g; c) defined by (2.7) and (2.8). Now for U;v > c
and u < c and adopting the convention that the residual masses
M0ðUÞ and m0ðuÞ for U > c and u < c are defined respectively by

MðUÞ ¼ M0ðUÞ
ðU=cÞ2 � 1
h i1=2 ; mðuÞ ¼ m0ðuÞ

1� ðu=cÞ2
h i1=2 ; ð5:3Þ

we may show that the above Eqs. (5.2) still apply except that now
the variables (n;g; c) are defined by

n ¼ log
U=c þ 1
U=c � 1

� �
; g ¼ log

1þ u=c
1� u=c

� �
; c ¼ log

v=c þ 1
v=c � 1

� �
;

ð5:4Þ
for which as usual n ¼ gþ c while the inverses are given by

U ¼ c cothðn=2Þ; u ¼ c tanhðg=2Þ; v ¼ c cothðc=2Þ:
With mass solutions so defined, we may plot mass variation

profiles for both sub and superluminal velocities. We might for
example position the particle at the origin of the ðX; TÞ frame and
impose the conditions

U ¼ 0; u ¼ �v ; n ¼ 0; g ¼ �c; Mð0Þ ¼ m�
0; ð5:5Þ

wherem�
0 denotes the assumed known rest mass, and in this case C2

is determined from the equation

m�
0 ¼ eC2

1

2 coshðc=2Þ½ �1=2
þ tanhðc=2Þ

4

Z 1

�c=2

dq
ðcoshqÞ1=2

( )
;

and (5.2) becomes

M0ðUÞ ¼ N0ðnÞ ¼ m�
0

1
2 coshðn�c=2Þ½ �1=2 þ

tanhðc=2Þ
4

R1
n�c=2

dq
ðcoshqÞ1=2

n o
1

2 coshðc=2Þ½ �1=2 þ
tanhðc=2Þ

4

R1
�c=2

dq
ðcoshqÞ1=2

n o ;

m0ðuÞ ¼ n0ðgÞ ¼ em�
0

1
2 coshðgþc=2Þ½ �1=2 �

tanhðc=2Þ
4

R1
gþc=2

dq
ðcoshqÞ1=2

n o
1

2 coshðc=2Þ½ �1=2 þ
tanhðc=2Þ

4

R1
�c=2

dq
ðcoshqÞ1=2

n o :

ð5:6Þ
Figs. 4 and 5 show the mass variations MðUÞ=m�

0 and mðuÞ=m�
0

for both sub and superluminal velocities as determined respec-
tively from (5.6)1 and (5.6)2.

Alternatively, we might fix C2 by positioning the particle at the
origin of the ðx; tÞ frame and imposing the conditions

U ¼ v ; u ¼ 0; n ¼ c; g ¼ 0; mð0Þ ¼ m�
0; ð5:7Þ

where m�
0 is the assumed known rest mass such that

m�
0 ¼ C2

1

2 coshðc=2Þ½ �1=2
� tanhðc=2Þ

4

Z 1

c=2

dq
ðcoshqÞ1=2

( )
;

and (5.2) becomes

M�
0ðUÞ ¼ N�

0ðnÞ ¼ em�
0

1
2 coshðn�c=2Þ½ �1=2 þ

tanhðc=2Þ
4

R1
n�c=2

dq
ðcoshqÞ1=2

n o
1

2 coshðc=2Þ½ �1=2 �
tanhðc=2Þ

4

R1
c=2

dq
ðcoshqÞ1=2

n o ;

m�
0ðuÞ ¼ n�

0ðgÞ ¼ m�
0

1
2 coshðgþc=2Þ½ �1=2 �

tanhðc=2Þ
4

R1
gþc=2

dq
ðcoshqÞ1=2

n o
1

2 coshðc=2Þ½ �1=2 �
tanhðc=2Þ

4

R1
c=2

dq
ðcoshqÞ1=2

n o ;

ð5:8Þ
noting that we have appended an asterisk to designate that the
solution (5.8) is an alternative solution to (5.6). Generally, the two
alternative conditions (5.5) and (5.7) generate distinct mass trajec-
tories as functions of velocity, namely (5.6) and (5.8) respectively.
Notice however, the necessary correspondence that (5.8) is
obtained from (5.6) with the interchanges c to �c;m0 to M0 and g
to n. Figs. 6 and 7 show the mass variations M�ðUÞ=m�

0 and
m�ðuÞ=m�

0 for both sub and superluminal velocities as determined
respectively from (5.8)1 and (5.8)2.

The figures are obtained in the following manner. For example,
for the conditions (5.5) n lies in the interval ð0;1Þ while the vari-
able g lies in the interval ð�c;1Þ. Now it is important to emphasise
that with the mass solutions defined by either (5.6) and (5.8), the
same expressions apply for both sub and superluminal velocities
except that in the two regions n and g are defined differently;
namely (2.7) for U < c and u > c, while (5.4) applies for U > c
and u < c. As described in part I, we might visualise the solution
Fig. 5. Variation of mass mðuÞ=m0 from (5.6)2, (2.6)1 and (5.3)2 for e ¼ 1.



Fig. 6. Variation of mass M�ðUÞ=m�
0 from (5.8)1, (2.6)2 and (5.3)1 for e ¼ 1.

Fig. 7. Variation of mass m�ðuÞ=m�
0 from (5.8)2, (2.6)1 and (5.3)2 for e ¼ 1.

Fig. 8. Variation of mass ratio MðUÞ=M�ðUÞ ¼ mðuÞ=m�ðuÞ from (5.9), for v > c and
e ¼ 1.
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as a symmetrically folded sheet with the fold corresponding to
n ¼ g ¼ 1 and any prescribed data on the residual mass at one
edge of the sheet is automatically inherited at the other edge of
the sheet. Thus for example, for u; v > c and U < c and the condi-
tions (5.5), the assumed initial condition M0ð0Þ ¼ m�

0 implies for
U;v > c and u < c that M0ð1Þ ¼ m�

0. There is a corresponding rela-
tion arising from the value of m0ð�vÞ for u;v > c and U < c, which
generates the same value for m0ð�c2=vÞ for U;v > c and u < c. This
is because as functions of n and g the curves above and below the
speed of light are the same curve, and it is only the re-
interpretation to the velocity that changes for below and above c.
This means that to determine the actual masses MðUÞ and mðuÞ,
we multiply M0ðUÞ by coshðn=2Þ for U < c and sinhðn=2Þ for U > c
for MðUÞ; and coshðg=2Þ for u < c and sinhðg=2Þ for u > c for
mðuÞ. Thus, with these definitions of n and g, any prescribed values
for U ¼ 0, namely at n ¼ 0 are inherited at U ¼ 1 since the value
n ¼ 0 corresponds to both U ¼ 0 and U ¼ 1, so that for the condi-
tions (5.5) we have that M0ðUÞ � m�

0 at both U ¼ 0 and U ¼ 1. This
means that MðUÞ � m�

0 at U ¼ 0, while at U ¼ 1;MðUÞ � cm�
0=U.

Similar comments apply to the conditions (5.7) and the variable
g. In this case the variable n lies in the interval ðc;1Þ while the
variable g lies in the interval ð0;1Þ. We note that from (5.6) and
(5.8) the ratios M0ðUÞ=M�

0ðUÞ and m0ðuÞ=m�
0ðuÞ coincide and are

both equal to

MðUÞ
M�ðUÞ ¼

mðuÞ
m�ðuÞ ¼ e

1
2 coshðc=2Þ½ �1=2 �

tanhðc=2Þ
4

R1
c=2

dq
ðcoshqÞ1=2

n o
1

2 coshðc=2Þ½ �1=2 þ
tanhðc=2Þ

4

R1
�c=2

dq
ðcoshqÞ1=2

n o ; ð5:9Þ

which for a prescribed relative frame velocity v > c provides the
mass scaling arising from the two alternative prescriptions of the
rest mass. Fig. 8 shows the variation of the mass ratio
MðUÞ=M�ðUÞ ¼ mðuÞ=m�ðuÞ as determined from (5.9), for v > c and
e ¼ 1.

Conclusions

The unresolved issues associated with dark energy and dark
matter imply that our understanding of mass may not be quite
adequate, see for example [7]. In special relativity, mass as a func-
tion of its velocity is prescribed by a single arbitrary constant, ter-
med its rest mass. In parts I and II of this paper we have posed the
question as to whether there might exist other mass variations,
and we have determined new mass variations involving two arbi-
trary constants.

As usual in special relativity we have considered two moving
frames such that the ðx; tÞ frame is moving with constant velocity
v with respect to the ðX; TÞ frame. We consider a moving particle
having velocity uwith respect to the ðx; tÞ frame and Uwith respect
to the ðX; TÞ frame. If v < c the standard Lorentz transformations
apply, while if v > c, then the so-called extended Lorentz transfor-
mations (2.1) have been proposed by the authors [2,3], noting that
there are two possible versions corresponding to e ¼ �1. At the
outset we have assumed that the Einstein variation of mass

formula mðvÞ ¼ m�
0 1� ðv=cÞ2
h i�1=2

does not apply, and we have
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proposed the question of determining other mass variation formu-
lae that preserve the structure of the Lorentz invariant mass-
momentum relations as well as force invariance in the direction
of relative motion and another invariance (see (2.5)) that is known
to apply in special relativity. Based only on these assumptions, we
have determined new mass variation expressions such as (3.15)
involving two arbitrary constants C1 and C2, and m0ðuÞ and
M0ðUÞ for u > c and U < c are defined by

mðuÞ ¼ m0ðuÞ
ðu=cÞ2 � 1
h i1=2 ; MðUÞ ¼ M0ðUÞ

1� ðU=cÞ2
h i1=2 ; ð6:1Þ

where mðuÞ and MðUÞ denote the perceived masses from the two
frames, and we have termed m0ðuÞ and M0ðUÞ as the perceived
residual masses, being the actual mass with the Einstein factor
removed. The two arbitrary constants C1 and C2 can be determined
in terms of M0ð0Þ ¼ m�

0 and m0ð1Þ ¼ m�
1, noting that m�

0 coincides
with the accepted notion of rest-mass (Mð0Þ) while m�

1 ¼ p1=c,
where p1 denotes the finite momentum at infinite velocity. We
note that m�

1 ¼ p1=c is immediately evident from (6.1), in the limit
of infinite velocity u. Further, it is clear from either (4.4) or (4.6) that
finite momentum for infinite velocity ensures that the resulting
energies remain finite. We note however, that from (6.1)1,
mðuÞwcm�

1=u as u ! 1, so the actual mass is necessarily zero for
infinite velocity.

For subluminal relative frame motion v < c, the new formulae

involve the integral
R xdq=ðsinhqÞ1=2, while for superluminal rela-

tive frame motion v > c, the new formulae are in terms of the inte-

gral
R xdq=ðcoshqÞ1=2. Both of these integrals can, if necessary, be

expressed in terms of standard elliptical functions, but the result-
ing expressions are not particularly helpful in terms of generating
insight. It is clear that the integral involving sinh generates imagi-
nary numbers for negative values of the integration variable and as
detailed in part I of this paper [4], care must be exercised in
proposing specific initial data for a boundary value problem to
have real outcomes. For subluminal v there are two branches for
the new solutions depending on the sign of n� c=2, giving rise to
allowable ðU;uÞ regions. This apparent limitation for v < c tends
to reinforce the robustness of the Einstein formula

mðvÞ ¼ m�
0½1� ðv=cÞ2��1=2

for subluminal relative frame velocities.
For v > c the integral involving cosh does not exhibit this difficulty,
there are no corresponding restrictions on allowable initial data,
and two illustrative boundary value problems are formulated. In
Section ‘‘Application of formulae using rest mass and residual mass
at infinite relative velocity” for U < c and u;v > c, new formulae
are presented for the relativistic mass variation assuming that both
the rest mass m�

0 and the residual mass m�
1 ¼ p1=c are known val-

ues. In [2,3] a dual set of frames (i.e. sub and super) are proposed,
so that if this approach has any veracity, it means that both m�

0 and
m�

1 are defining parameters of equal importance. Further, for both
v < c and v > c, the new mass variations also admit finite mass
solutions at the speed of light, and for which the residual mass
vanishes at v ¼ c, namely m0ðcÞ ¼ 0. The existence of finite mass
solutions at the speed of light essentially means that there is more
mass as compared to that predicted by Einstein’s formula for mass,
since the singularity at the speed of light becomes steeper.

Finally, mass profiles having finite mass at the speed of light are
exploited to determine two mass profiles as functions of velocity
assuming that the rest mass is alternatively prescribed at the origin
of either frame. The two profiles so obtained ðMðUÞ;mðuÞÞ and
ðM�ðUÞ;m�ðuÞÞ are distinct but have common ratios
MðUÞ=M�ðUÞ ¼ mðuÞ=m�ðuÞ which are functions of v > c given by
(5.9), indicating that observable mass magnitudes are dependent
upon the frame in which the rest mass is adopted.
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