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Abstract This paper presents a broad account of the lid-driven cavity flow problem which is an

important benchmark problem for the validation of CFD codes. A comprehensive review of the lit-

erature on the problem is presented and discussed, and available benchmarking results are com-

pared in tabulated format to provide a comprehensive source of validation data. In addition, the

problem was solved using a Graphical Processing Unit (GPU) accelerated in-house code developed

by the authors (https://github.com/TamerAbdelmigid/DrivenCavity_FVM.git), which solves the

steady Navier-Stokes equations, using the Finite Volume Method (FVM) in primitive variable for-

mulation. Case studies of steady incompressible flow in a 2D lid-driven square cavity are investi-

gated for 100 < Re < 5000. Detailed second order spatially accurate results are verified and

presented in a tabulated form for the sake of serving as benchmark dataset for future works on

the same problem. In the present work, collocated grid arrangement along with a uniform struc-

tured Cartesian grid up to 1301 � 1301 was used.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The driven cavity flow for over the past half a century served

as a benchmarking case for anyone to validate their techniques
and methods against, and over this period it has been studied
by hundreds of authors with nearly every numerical method

that exists, and yet only a handful of accurate and complete
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benchmark results are available in the literature. In the present
paper, all available data on the problem have been reviewed
and discussed in details. In addition, a GPU accelerated finite

volume code has been developed and utilized to produce accu-
rate benchmarking results using grids of resolution up to
1301 � 1301 cells. The purpose of the existing review was to

make some of the most important work done on the steady
state square driven cavity flow in the past 50 years available
in one source. However, it is worth mentioning that the pre-

sented review is by no means intended to be comprehensive.
The discussion proposed in the present paper concentrates

on the discretization technique, spatial accuracy, grid, and
Reynolds number range considered in the literature.

Though all the methods have been used to study the driven

cavity case, the Finite Difference method is by far the most

used one, from as old as Burggraf [1] to as new as Kalita

and Gupta [2]. Most of the authors formulated the governing

equations in stream function-vorticity variables, most famous

of which are Ghia et al. [3] who used coupled strongly implicit

multigrid (CSI-MG) based on the work of Rubin and Khosla

[4] method in the solution of the driven flow in a square cavity,

for Reynolds number Re 6 10; 000. They used a uniform mesh

of 257 * 257. They presented a Second-order accurate tabu-

lated benchmark results that have served as ‘‘The” result to

compare against ever since. Recently, Erturk et al. [5] using

a fine uniform grid mesh of 601 � 601, computed a steady

solution for the driven cavity flow for Reynolds number

Re 6 21; 000 with maximum absolute residuals of the govern-

ing equations that were less than 10�10, although their solution

was second order spatially accurate, but they provided a six

order accurate solution for some variables using Richardson

extrapolation.

On the other hand other authors formulated their equations

using only the stream function as a variable. Of those we men-

tion Schreiber and Keller [6] who presented fourth-order spa-

tially accurate results for Reynolds number Re 6 10; 000. Their

numerical methods combined an efficient linear system solver,

an adaptive Newton-like method for nonlinear systems, and a

continuation procedure for following a branch of solutions

over a range of Reynolds numbers, on a 180 � 180 uniform

grid. Also, Poochinapan [7] obtained a solution up to Rey-

nolds number Re= 5000 with second-order spatial accuracy

on a 122 � 122 grid.

However, some authors used primitive variables like Vanka

[8] who presented a second order accurate solutions for steady

flows up to Reynolds Number Re ¼ 5000. He used a uniform

grid of 321 � 321. Bruneau and Saad [9] obtained a steady

and periodic solutions for various Reynolds numbers by solv-

ing the unsteady Navier-Stokes equations on a 1024 � 1024

uniform staggered grid. Their numerical simulation lies on a

multigrid solver with a cell-by-cell relaxation procedure. Clas-

sical Euler or Gear time schemes are coupled to a second-order

approximation of the linear terms in space. Convective terms

were treated explicitly and approximated by third-order

schemes.

Standing apart from them Gupta and Kalita [10], they used

stream function-velocity formulation to obtain a second order

accurate solution for Reynolds Number 100 6 Re 6 10; 000.

Their computation was done on uniform 161 � 161 grid. They

used a biconjugate gradient method to obtain the numerical

solutions of the aforementioned fluid flow problem.
Please cite this article in press as: T.A. AbdelMigid et al., Revisiting the lid-driven cav
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Second in popularity was the Finite volume method in
primitive variable formulation as an example, Wright and
Gaskell [11] presented a second and fourth order spatially accu-

rate steady solution for Reynolds number 100 6 Re 6 1000
using the staggered grid arrangement and control volume for-
mulation. They used the Block Implicit Multigrid Method

(BIMM) on a very fine uniform mesh of 1024. Similarly,
Magalhães et al. [12] presented a second order spatially and
temporally accurate solution for Reynolds Number

Re ¼ 100; 400; and 1000 on a non-uniform mesh of 51 � 51.
Finite element method takes the third place where Olson

and Tuann [13] recasted the full Navier-Stokes equations in
the form of a single, fourth order equation for stream function,

with an 18 degrees-of-freedom triangular element, such that
the velocities were continuous and the incompressibility was
satisfied exactly. They covered Reynolds Number from 10�4

to Re ¼ 3450, with a uniform mesh of 8 � 8, and produced a
remarkably accurate results for such coarse mesh. Likewise,
Barragy and Carey [14] used finite element for the solution

of the lid-driven cavity flow up to Reynolds number
Re 6 12; 500. They used a graded mesh of elements of degree
p= 8, and they also incorporated an under resolved solution

for Re ¼ 16; 000.
After that comes several other methods such as Lattice

Boltzmann which have been used by Hou et al. [15] with com-
pressibility effects, for the solution of the driven cavity flow for

Reynolds number Re 6 7500 using a 256 � 256 grid points.
Similarly, Lin et al. [16] used the multi relaxation time
(MRT) lattice Boltzmann equation (LBE) with D2Q9 model

to compute a steady solution at different Reynolds numbers
(100–7500), using a 129 � 129 grid.

Boundary Element has been used by Grigoriev and Dar-

gush [17] for Reynolds number Re 6 5000. They carried out
the simulation on a non-uniform mesh with 1680 hexagonal
regions. In addition Aydin and Fenner [18] used it to acquire

a solution for low-to-moderate-Reynolds number
0 6 Re 6 1200. They used four different mesh sizes (maximum
being 81 Boundary elements).

Smooth particle hydrodynamics has been used by Szewc

et al. [19] along with three different incompressibility treat-
ments namely WCSPH, weakly compressible smoothed parti-
cle hydrodynamics; ISPH, incompressible smoothed particle

hydrodynamics; with two variants PPS, particle-based Poisson
solver; GPS, grid-based Poisson solver, to obtain a solution fir
lid driven cavity at Re= 1000, with 57,600 particles. And

Khorasanizade and Sousa [20] computed a solution for flow
at moderate Reynolds numbers 100 6 Re 6 3200, employing
the mesh-free (SPH), with a new treatment for no-slip bound-
ary conditions. They carried out their study using different

spatial resolutions maximum of which is L/200.
Chebyshev collocation method has been used by Botella

and Peyret [21] to present a highly-accurate spectral solutions

with extensive benchmark results for the flow at Reynolds
number Re= 1000 using with a maximum of grid mesh of
N= 160 (polynomial degree).

Incremental unknowns were utilized by Goyon [22] to solve
the unsteady 2D Navier-Stokes equations on an un-regularized
driven cavity. They presented steady solution for Reynolds

number Re 6 7500. For Reynolds number
10; 000 6 Re 6 12; 500 they presented a periodic solution,
although they admit that this investigation field is less
exploited, because of the computational cost.
ity flow problem: Review and new steady state benchmarking results using GPU
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Differential quadrature (DQ) method was used by Nishida
and Satofuka [23] to present higher-order method for the
numerical simulation of square driven cavity flows. They dis-

cretized the spatial derivatives of the Navier-Stokes equations
by means of the modified differential quadrature (MDQ)

method. With this they have presented spatially Dh10 order

accurate solutions with grid size of 129 � 129 for Re 6 3200.
Fractional step was used by Kim and Moin [24] which is

second-order accurate in both space and time. They obtained

a numerical solutions for flows inside a driven cavity for Rey-
nolds number 1 6 Re 6 5000 on a mesh of 97 � 97.

Discrete singular convolution was utilized by Wan et al.

[25] for treating incompressible flows, which they used to
obtain an accurate solution for the driven cavity flow problem
up to Re = 10,000, on a uniform mesh of 201 � 201. Their

method was third order accurate in time.
Silva and de Moura [26] and Lima et al. [27] used control

volume finite element method CVFEM and nine-node ele-
ments to study the incompressible, and viscous fluid flow inside

a square driven cavity for Re= 100, 400, 1000 and 10,000.
Moreover, Ammara and Masson [28] used a fully coupled
control-volume finite element method (CVFEM) for solving

the two-dimensional incompressible Navier–Stokes equations
inside a square cavity for Re= 400, and 1000.

Table 1 summarizes the main feature of each reference men-

tioned and presents it in a chronological fashion. Discretiza-
tion scheme utilized is abbreviated in the following manner:
(FD) Finite Difference, (FE) Finite Element, (FV) Finite Vol-

ume, (MDQ) Modified Differential Quadrature, (LB) Lattice
Boltzmann, (IU) Incremental Unknowns, (DSC) Discrete
Table 1 The driven cavity flow literature arranged chronologically.

Year Reference Disc. scheme Formulated va

1966 Burggraf [1] FD w� n
1979 Olson and Tuann [13] FE w
1982 Ghia et al. [3] FD w� n
1983 Schreiber and Keller [6] FD w
1984 Kim and Moin [24] FS u; v; p

1985 Vanka [8] FD u; v; p

1990 Bruneau and Jouron [32] FD u; v; p

1991 Gupta [33] FD w� n
1992 Nishida and Satofuka [23] MDQ w� n
1995 Wright and Gaskell [11] FV u; v; p

1995 Hou et al. [15] LB BGK model

1996 Goyon [22] IU w� n
1997 Barragy and Carey [14] FE w� n
1998 Botella and Peyret [21] Cheb. u; v; p

1999 Grigoriev and Dargush [17] BE u; v; p

2001 Aydin and Fenner [18] BE u; v; p

2001 Silva and de Moura [26] CVFEM u; v; p

2002 Wan et al. [25] DSC u; v; p

2004 Lima et al. [27] CVFEM u; v; p

2004 Ammara and Masson [28] CVFEM u; v; p

2005 Gupta and Kalita [10] FD w� u; v

2010 Kalita and Gupta [2] FD w� n
2011 Lin et al. [16] LB D2Q9 model

2012 Szewc et al. [19] SPH u; v; p

2012 Poochinapan [7] FD w
2013 Magalhães et al. [12] FV u; v; p

2014 Khorasanizade and Sousa [20] SPH u; v; p

Please cite this article in press as: T.A. AbdelMigid et al., Revisiting the lid-driven cav
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Singular Convolution, (Cheb.) Chebyshev collocation, (BE)
Boundary Element, (SPH) Smooth Particle Hydrodynamic,
and (CVFEM) Control Volume Finite Element Method.

It can be seen from the review how important the driven

cavity case is. It’s importance was stated elegantly and suc-

cinctly by Shankar and Deshpande [29] ‘‘. . . internal recirculat-
ing flows generated by the motion of one or more of the

containing walls. . . . are not only technologically important,

they are of great scientific interest because they display almost

all fluid mechanical phenomena in the simplest of geometrical

settings. Thus corner eddies, longitudinal vortices, nonunique-

ness, transition, and turbulence all occur naturally and can be

studied in the same closed geometry”.
2. Numerical method

The developed code is based on a one developed by Peric 1998

and described by Ferziger and Peric´ [30]. It was ported from

FORTRAN 77 to C++. The code uses Finite Volume

Method in primitive variable formulation on a staggered grid.

More information on FVM and its advantages can be found in

Ferziger and Peric´ [30] and Versteeg and Malalasekera [31].

Fig. 1 illustrates the program flow chart which can be seen

mostly a Semi-Implicit Pressure Linked Equation scheme pre-
ceded by a grid generation. The numbered steps represent the
SIMPLE scheme and each step composed of both discretiza-
tion and solution of the resulted linear algebraic equation sys-

tem. Discretization and interpolation techniques will be
explained in details next.
riables Spatial D(O) Temp. D(O) Grid Re

2 – 40 * 40 0–400

4 – 8 * 8 0.0001–3450

2 – 257 * 257 100–10,000

4 – 180 * 180 1–10,000

2 2 97 * 97 1–5000

2 – 321 * 321 100–5000

2 – 512 * 512 100–15,000

4 – 41 * 41 1–2000

10 4 129 * 129 100–3200

4 – 1024 * 1024 100–1000

– – 256 * 256 100–7500

2 2 257 * 257 100–7500

P = 8 – 31 * 31 1000–10,000

N= 160 – N= 160 1000

– – 1680 Hex 1000–5000

– – 81 0–1200

– – 30 * 30 100–10,000

– 3 201 * 201 1000–10,000

– – 161 * 161 100–10,000

– – 128 * 128 400–1000

2 – 161 * 161 100–10,000

2 2 161 * 161 1000–10,000

– – 129 * 129 100–7500

– – 57,600 1000

2 – 122 * 122 100–5000

2 2 6910 1000

– – L/200 100–3200

ity flow problem: Review and new steady state benchmarking results using GPU
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Figure 1 Ported code flowchart.
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Next, discretization and interpolation techniques will be
explained in details, and we start by presenting an implicit

finite volume scheme that uses the pressure-correction method
on a staggered two-dimensional Cartesian grid.

The Navier-Stokes equations in integral form reads:Z
S

qv � ndS ¼ 0 ð2:1Þ

Z
X
quidXþ

Z
S

quiv � n dS ¼
Z
S

sijij � n dS�
Z
S

pii � n dS

þ
Z
X
ðq� q0ÞgidX ð2:2Þ

The macroscopic momentum flux vector si, is split into a
viscous contribution sijij and a pressure contribution pii. We

assume the density constant. The mean gravitational force is
incorporated into the pressure term. Typical staggered con-

trol volume which are shown in Fig. 2 was used, where
the control volumes for ux and uy are displaced with respect

to the control volume for the continuity equation. Cell faces
‘e’ and ‘w’ for u and ‘n’ and ‘s’ for v lie midway between the

nodes.
Please cite this article in press as: T.A. AbdelMigid et al., Revisiting the lid-driven cav
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We now consider the approximation of the convective, dif-
fusive fluxes and the source terms. The surface integrals may

be split into four CV face integrals. The second order central
difference approximations were adopted. Fluxes are approxi-
mated by assuming that the value of a quantity at a CV face

center represents the mean value over the face (midpoint rule
approximation). On the mth outer iteration, all nonlinear
terms are approximated by a product of an ‘old’ (from the pre-
ceding outer iteration) and a ‘new’ value. Thus, in discretizing

the momentum equations, the mass flux through each CV face
is evaluated using the existing velocity field and is assumed
known.

For the pressure-velocity decoupling SIMPLE algorithm
was used, where the linearized momentum equations are
solved with the sequential solution method, using the ‘old’

mass fluxes and the pressure from the previous outer iteration.
As for the boundary condition, at walls the no-slip bound-

ary condition applies, i.e. the velocity of the fluid is equal to
the wall velocity, a Dirichlet boundary condition. However,

there is another condition that can be directly imposed in a
FV method; the normal viscous stress is zero at a wall. This
follows from the continuity equation, e.g. for a wall at y = 0.
ity flow problem: Review and new steady state benchmarking results using GPU
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Figure 2 Control volumes for a staggered grid: for mass conservation and scalar quantities (left), for x-momentum (center) and for y-

momentum (right).
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du
dx

� �
wall

¼ 0 ) dv
dy

� �
wall

¼ 0 ) syy ¼ 2l
dv
dy

� �
wall

¼ 0

ð2:3Þ
Therefore, the diffusive flux in the v equation at the south

boundary is as follows:

Fd
s ¼

Z
Ss

syyds ¼ 0 ð2:4Þ

This was done directly, rather than using only the condition
that v = 0 at the wall. Since up – 0, we would obtain a non-

zero derivative in the discretized flux expression if this was
not done; v = 0 is used as a boundary condition in the conti-

nuity equation. The shear stress can be calculated by using a
one-sided approximation of the derivative du=dy; one possible
approximation is as follows:

Fd
s ¼

Z
Ss

sxyds ¼
Z
Ss

l
du
dy

ds � lsSs

up � uS
yp � yS

ð2:5Þ

In a FV method using a staggered grid, the pressure is not
required at boundaries. This is due to the fact that the nearest
CV for the velocity component normal to the boundary

extends only up to the center of the scalar CV, where the pres-
sure is calculated.

When the approximations for all the fluxes and source

terms are substituted into Eqs. (2.1) and (2.2), we obtain a
set of algebraic equations, which we can put in the form:

Ax ¼ b: ð2:6Þ
Now, for the solution of the resulted system of linear equa-

tions, the strongly implicit procedure (SIP) Stone [34] was

used, and a brief explanation of the steps will be presented.
First the matrix A is decomposed in the following way:

A � LU ¼ M ¼ AþN: ð2:7Þ
L and U are a lower and upper triangle matrix. A multiplica-

tion of L and U yields diagonals which are not part of matrix
A. These are put in N. N can be considered as some sort of
error of the decomposition. To minimize the deviation it is

required

ðAþ nÞx � b ) Nx � 0: ð2:8Þ
That the coefficients on these extra diagonals were to be

approximated by their neighbor coefficients. A linear approx-

imation with a parameter a can be made to determine these
coefficients. That is
Please cite this article in press as: T.A. AbdelMigid et al., Revisiting the lid-driven cav
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xNW � aðxW þ xN � xPÞ ð2:9Þ
It is now possible to receive a set of implicit rules for the

calculation of the coefficients of L and U. At step n we have

Axn ¼ b� rn ð2:10Þ
with rn as the residual. The deviation of xn from the real solu-

tion x is called convergence error en

en ¼ x� xn ð2:11Þ
Therefore one yields

Aen ¼ Ax� Axn ¼ b� bþ rn ¼ rn ) Aen ¼ rn ð2:12Þ
As the real x is unknown, we construct an iterative rule:

Aðxnþ1 � xnÞ ¼ rn

ADx ¼ LUDx ¼ rn

UDx ¼ L�1rn ¼ Rn

ð2:13Þ

Having done the decomposition we are now able to calcu-
late the residual rn, the vector Rn and finally Dx. The algorithm
can now be formulated as can be seen in Fig. 3.

In step 2 of the algorithm L�1 will not be calculated

directly. Instead, an implicit rule will be used, and hence the
method is named strongly implicit, Reeve et al. [35].

We used a 1D-array (index l) to store the nodes in order to

get optimal memory access. Therefore, a mapping from 2D- to
1D-coordinates was necessary. A parallel version of stone’s
strongly implicit procedure presented in Reeve et al. [35] was
used. Fig. 4 shows the modified iteration space dependence

graph after the nested loops have been skewed using wavefront
method, Wolfe [36], which enable parallel implementation of
the SIP solver.

Two platforms were used throughout the work, platform 1
‘‘CPU: Intel i7 5820 K @3.6 GHz – 6C/12T||GPU: NVIDIA
GTX TITAN @876 MHz – 2688 cores” and platform 2

‘‘CPU: Intel i7 4710HQ @2.6 GHz – 4C/8T || GPU: NVIDIA
GTX 860 M @1029 MHz – 680 cores” From now own, refer-
ence will be made to the used platforms by platform 1 or plat-

form 2.

3. GPU implementation of SIP

In this section two implementations namely kernels will be dis-
cussed, and for clarity sake only forward substitution step will
be mentioned in detail. The same concepts are applied to
backward substitution step. All tests were run using grid
ity flow problem: Review and new steady state benchmarking results using GPU
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Figure 3 SIP algorithm.
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dimensions ranging from 10012 to 60012 a range that is limited

by available memory in the used testing platform ‘‘platform
2”. Only steps 3 and 4 are moved to the GPU for acceleration
as step 2 involves a variable update each iteration which would
Figure 4 Modified iteration space dep

Please cite this article in press as: T.A. AbdelMigid et al., Revisiting the lid-driven cav
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require a reduction algorithm if it was to be moved to the
GPU, as there is no instruction to provide such a function
directly in CUDA C as opposed to OpenMP, Dagum and

Menon [37].

3.1. Kernel 1 ‘‘Optimized Blocks of Threads”

With the first implementation LU decomposition step is done
on the CPU after that the necessary matrices are allocated and
transferred to GPU global memory. After that, an outer loop

that involves steps 2–5 is entered where the exit conditions are
either preset residuals or a preset loop counter is reached.
Inside that loop the residual calculation step is done on the

CPU and then the RES matrix is transferred to GPU as can
be seen in Fig. 5.

Then, the inner loop of the Forward substitution step is
executed on the GPU. It is of great importance to know that

compute resource partitioning requires special attention in
CUDA programming. The computer resources limit the num-
ber of active warps. Therefore, one must be aware of the

restrictions imposed by the hardware, and the resources used
by one’s kernel. In order to maximize GPU utilization, it is
required to maximize the number of active warps.

Table 2 presents the threads per block per iteration execu-
tion time for grid dimension of 60012. It can be seen that 64
threads per block give the best performance. For that the
blocks were chosen to consist of 2 warps which means each

block will contain 64 threads and the number of blocks will
be determined based on the currently executed wavelength.

Manipulating thread blocks to either extreme can restrict

resource utilization, Cheng et al. [38]:

� Small thread blocks: Too few threads per block lead to

hardware limits on the number of warps per SM to be
reached before all resources are fully utilized.

� Large thread blocks: Too many threads per block lead to

fewer per-SM hardware resources available to each thread.

As it can be seen in Fig. 6 Kernel 1 is slower than the par-
allel CPU implementation in grid sizes less than 40002 where
endence graph after loop skewing.

ity flow problem: Review and new steady state benchmarking results using GPU
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Figure 5 Kernel 1 ‘‘Optimized Blocks of Threads”.

Table 2 Threads per block execution time in seconds.

Threads per block Time in sec

32 41.8

64 41

128 42.5

256 43.9

512 42.6

1024 44.3

Figure 6 Speedup of Kernel 1 and 2 over parallel CPU

implementation of SIP algorithm.
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the initialization and data transfer to GPU memory overhead
exceed the acceleration in execution offered by the GPU. It is

also evident that Kernel 2 offers an increased acceleration over
Kernel 1 implementation due to the elimination of the initial-
ization overhead and reduced memory transfer. Yet, as the

grid size increases the problem becomes more dependent on
memory and hence the drop in acceleration noticed in Fig. 6.
So, still some work needs to be done to optimize memory

transfer and in order to prevent the memory dependence
enabling further acceleration.

3.2. Kernel 2 ‘‘Dynamic Parallelism”

By implementing dynamic parallelism kernel launching from
CPU overhead can be greatly reduced which in turn would
improve the performance. Using this concept the program

was adjusted as follows as can be seen in Fig. 7, where the
Please cite this article in press as: T.A. AbdelMigid et al., Revisiting the lid-driven cav
accelerated code, Alexandria Eng. J. (2016), http://dx.doi.org/10.1016/j.aej.2016.09.
forward substitution parent kernel is launched from the host,

and it encloses a call to forward substitution child kernel men-
tioned previously which will be launched repeatedly from the
device.
ity flow problem: Review and new steady state benchmarking results using GPU
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Figure 8 Schematic diagram of the lid-driven cavity case.
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By implementing the dynamic parallelism, the solution time
was managed to be reduced by 30% compared to the parallel
implementation on the CPU which is translated to a 1.43 X

speedup as can be seen in Fig. 6.

4. Result and discussion

Fig. 8 illustrates the configuration utilized in solving the driven
cavity case, where at top wall ‘‘the lid” moves in the positive x
direction with unit velocity, and the velocity at the remaining

three walls equals zero. The range of Reynolds Numbers con-
sidered 100 6 Re 6 5000 which according to [39–44] these
Reynolds numbers Re 6 5000 are well in the steady state

range. The Reynolds number was controlled using various val-
ues for the dynamic viscosity l. Solution is believed to be con-
verged when maximum RMS of the residuals is less than or

equal to 10�8.
For each case a three consecutive refined meshes were used

to obtain the solution in order to use Richardson extrapolation
on some of the key results to obtain a more accurate solution

up to Dh^6. A uniform mesh of 601 * 601 is used for Reynolds
number R_e 6 3200. For Reynolds number Re= 5000 it was
difficult to obtain steady solution on such a mesh so the mesh

was refined further to reach 1301 * 1301, although a converged
solution was obtained on 801 * 801, but we choose to display
the results from the former. Also, as mentioned a three consec-

utive refined mesh is needed for Richardson extrapolation.
Figure 7 Kernel 2 ‘‘Dy

Please cite this article in press as: T.A. AbdelMigid et al., Revisiting the lid-driven cav
accelerated code, Alexandria Eng. J. (2016), http://dx.doi.org/10.1016/j.aej.2016.09
4.1. Vortices main properties

Tables 3–7 contain primary, secondary, and tertiary vortices
main properties (Stream function, vorticity, and location),
namic Parallelism”.
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Table 3 Primary and secondary vortices main properties at Re = 100.

Reynolds number 100

Reference Present Ghia Schriber Vanka Wright

Primary vortex W �0.103516 �0.103423 �0.1033 0.1034 0.103516

x 3.156202 3.16646 �3.182 – 3.17044

(x, y) 0.6156, 0.7371 0.6172, 0.7344 0.6167, 0.7417 0.6188,0.7375 0.6157, 0.7378

BR1 W 0.000013 1.25374E�05 0.0000132 �0.0000114 �1.25374E�05

x �0.035775 �0.0330749 0.0255 – �0.0330749

(x, y) 0.9418, 0.0616 0.9453, 0.0625 0.9417, 0.05 0.9375, 0.0563 0.9453, 0.0625

BL1 W 1.80683E�06 1.74877E�06 0.00000205 �0.00000194 �1.79705E�06

x �0.01340214 �0.0155509 0.00798 – �0.0146139

(x, y) 0.0333,0.0349 0.0313, 0.0391 0.0333, 0.025 0.0375, 0.0313 0.0337, 0.0347

Table 4 Primary and secondary vortices main properties at Re = 400.

Reynolds number 400

Reference Present Ghia Schriber Vanka Shuling Hou

Primary vortex W �0.113964 �0.113909 �0.11297 0.1136 0.1121

x 2.295985 2.29469 2.281 – –

(x, y) 0.5541, 0.6057 0.5547, 0.6055 0.5571, 0.6071 0.5563, 0.6 0.5608, 0.6078

BR1 W 0.000645 0.000642352 0.000644 �0.000645 �0.000619

x �0.44839 �0.433519 0.394 – –

(x, y) 0.8852, 0.1215 0.8906, 0.1250 0.8857, 0.1143 0.8875, 0.1188 0.8902, 0.1255

BR2 W �1.94847E�08 �1.86595E�08 – – –

x 0.003591006 0.00438726 – – –

(x, y) 0.9917, 0.0067 0.9922, 0.0078 – – –

BL1 W 1.43588E�05 1.41951E�05 0.0000145 �0.00146 0.000013

x 0.05471926 0.0569697 0.0471 – –

(x, y) 0.0516, 0.0466 0.0508, 0.0469 0.05, 0.0429 0.05, 0.05 0.0549, 0.0510

Table 5 Primary and secondary vortices main properties at Re = 1000.

Reynolds number 1000

Reference Present Ghia Schriber Botella Erturk

Primary vortex W �0.118866 �0.117929 �0.11603 0.1189366 �0.118781

x 2.066581 2.04968 �2.026 2.067753 �2.06553

(x, y) 0.5308, 0.5657 0.5313, 0.5625 0.5286, 0.5643 0.5308, 0.5625 0.53, 0.565

BR1 W 0.001732 0.00175102 0.0017 �0.00175102 0.0017281

x �1.113969 �1.15465 0.999 �1.15465 1.115505

(x, y) 0.8636, 0.1115 0.8594, 01094 0.8643,0.1071 0.8594, 0.1094 0.8633, 0.1117

BR2 W �5.46775E�08 �9.31929E�08 – 5.03944E�08 �5.4962E�08

x 0.006969814 0.00852782 – – �0.0077076

(x, y) 0.9917, 0.0067 0.9922, 0.0078 – 0.9923, 0.0077 0.9917, 0.0067

BL1 W 0.000233412 0.000231129 0.000217 –0.000233453 0.00023261

x �0.3409262 �0.36175 0.302 �0.3522861 0.353473

(x, y) 0.0832, 0.0782 0.0859, 0.0781 0.0857, 0.0714 0.0833, 0.0781 0.0833, 0.0783

Revisiting the lid-driven cavity flow problem 9

Please cite this article in press as: T.A. AbdelMigid et al., Revisiting the lid-driven cavity flow problem: Review and new steady state benchmarking results using GPU
accelerated code, Alexandria Eng. J. (2016), http://dx.doi.org/10.1016/j.aej.2016.09.013

http://dx.doi.org/10.1016/j.aej.2016.09.013


Table 6 Primary and secondary vortices main properties at Re = 3200.

Reynolds number 3200

Reference Present Ghia Goyon Grigoriev Nishida

Primary vortex W �0.121566 �0.120377 �0.1122 �0.1218 �0.121154

x 1.957201 1.9886 – – �1.950781

(x, y) 0.5175, 0.5408 0.5165, 0.5469 0.5234, 0.5468 0.518, 0.540 0.5156, 0.5391

BR1 W 0.002837 0.00313955 0.00262 0.00288 0.00281924

x �2.234296 �2.27365 – – 2.10559

(x, y) 0.8236, 0.0849 0.8125, 0.0859 0.8281, 0.0859 0.824, 0.085 0.8281, 0.0859

BR2 W �2.07365E�07 �2.51648E�07 0.00000015 – 1.59854E�07

x 0.01371044 0.0097423 – – �0.0153772

(x, y) 0.9884, 0.0099 0.9844, 0.0078 0.9844, 0.0078 – 0.9922, 0.0078

BL1 W 0.001113952 0.00097823 0.000993 0.00113 0.00110595

x �1.137424 �1.06301 – – 1.22436

(x, y) 0.08153, 0.1198 0.0859, 0.1094 0.0859, 0.1171 0.082, 0.119 0.0781, 0.125

TL1 W 0.000710328 0.000727682 0.000638 0.000721 0.000745436

x �1.69611 �1.71161 – – 1.58028

(x, y) 0.0533, 0.9002 0.0547, 0.8984 0.0546, 0.9062 0.054, 0.897 0.0547, 0.8984

Table 7 Primary and secondary vortices main properties at Re = 5000.

Reynolds number 5000

Reference Present Ghia Erturk Burnea 1990 Gupta

Primary vortex W �0.122069 �0.118966 �0.121289 �0.1142 �0.122

x �1.938057 1.86016 �1.926601 – –

(x, y) 0.5155, 0.5355 0.5117, 0.5352 0.515, 0.535 0.5156, 0.5313 0.5125, 0.5375

BR1 W 0.003078 0.00308358 0.0030604 0.00465 0.00296

x �2.750446 �2.66354 2.274481 – –

(x, y) 0.8052, 0.07293 0.8086, 0.0742 0.805, 0.0733 0.8301, 0.0703 0.8, 0.075

BR2 W �1.45098E�06 �1.43226E�06 �0.000001401 �0.0000247 �0.0000017

x 0.03590488 0.0319311 �0.034108 – –

(x, y) 0.9780, 0.0189 0.9805, 0.0195 0.9783, 0.0183 0.9668, 0.0293 0.975, 0.0188

BL1 W 0.001375483 0.00136119 0.001517 0.00222 �0.00132

x �1.494181 �1.53055 1.838156 – –

(x, y) 0.0729, 0.1369 0.0703, 0.1367 0.79, 0.065 0.0664, 0.1484 0.075, 0.1313

TL1 W 0.001447732 0.00145641 0.0021119 0.00175 0.00154

x �2.065072 �2.08843 2.201598 – –

(x, y) 0.0639, 0.9091 0.0625, 0.9102 0.0667, 0.9133 0.0625, 0.9102 0.0688, 0.9125
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each of which is compared to four results found in the

literature. Vortices are coded with two letters and a number,

the first letter indicates either bottom (B) or top (T), while

the second letter indicates right (R) or left (L); finally, the

number indicates either its secondary (1) or tertiary (2). Ex.

BR1 = Secondary Bottom Right.

In each table the present study results are presented along

with four of which is believed to be the most accurate results

found in the literature, for the sake of comparison.

It can be seen from Table 3 the absence of top left vortices
at Re = 100, and the presence of only secondary vortices can

be detected. At Re= 400, the first tertiary vortex is noticeable
Please cite this article in press as: T.A. AbdelMigid et al., Revisiting the lid-driven cav
accelerated code, Alexandria Eng. J. (2016), http://dx.doi.org/10.1016/j.aej.2016.09
at the bottom right corner. As can be seen from Table 4 only
Ghia et al. [3] were able to observe and present it, and our

results are in good agreement with theirs.
For Re = 1000, it’s apparent that there was an excellent

agreement of our results with those found in the literature.
As indicated in Table 6 at RE = 3200 the top left vortex starts

to appear.

4.2. Velocities

Tables 8 and 9 contain a u, and v-velocity along a vertical and
horizontal lines passing through the geometrical center of the
ity flow problem: Review and new steady state benchmarking results using GPU
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Table 8 Tabulated u-velocity profiles along a vertical line passing through the geometric center of the cavity at various Reynolds

numbers.

Point Y RE= 100 RE = 400 RE = 1000 RE = 3200 RE = 5000

1302 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1272 0.9766 0.8500 0.7698 0.6756 0.5360 0.5015

1262 0.9688 0.8057 0.7061 0.6009 0.4886 0.4782

1252 0.9609 0.7512 0.6333 0.5284 0.4661 0.4771

1241 0.9531 0.6982 0.5695 0.4776 0.4610 0.4780

1109 0.8516 0.2398 0.2931 0.3383 0.3491 0.3494

957 0.7344 0.0070 0.1648 0.1908 0.2035 0.2047

804 0.6172 �0.1379 0.0221 0.0580 0.0780 0.0818

651 0.5000 �0.2091 �0.1150 �0.0620 �0.0369 �0.0321

590 0.4531 �0.2140 �0.1711 �0.1079 �0.0808 �0.0752

367 0.2813 �0.1580 �0.3286 �0.2794 �0.2414 �0.2359

224 0.1719 �0.1019 �0.2441 �0.3883 �0.3445 �0.3375

133 0.1016 �0.0648 �0.1472 �0.3018 �0.4314 �0.4169

92 0.0703 �0.0469 �0.1038 �0.2238 �0.4081 �0.4456

82 0.0625 �0.0419 �0.0947 �0.2019 �0.3839 �0.4360

72 0.0547 �0.0368 �0.0809 �0.1794 �0.3530 �0.4153

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 9 Tabulated v-velocity profiles along a horizontal line passing through the geometric center of the cavity at various Reynolds

numbers.

Point X RE= 100 RE = 400 RE = 1000 RE = 3200 RE = 5000

1302 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1262 0.9688 �0.0580 �0.1157 �0.2103 �0.4106 �0.5121

1252 0.9609 �0.0747 �0.1538 �0.2798 �0.5049 �0.5689

1241 0.9531 �0.0911 �0.1928 �0.3464 �0.5560 �0.5726

1231 0.9453 �0.1041 �0.2240 �0.3948 �0.5671 �0.5460

1181 0.9063 �0.1750 �0.3855 �0.5265 �0.4462 �0.4314

1119 0.8594 �0.2323 �0.4539 �0.4306 �0.3799 �0.3776

1048 0.8047 �0.2536 �0.3883 �0.3221 �0.3148 �0.3112

651 0.5000 0.0575 0.0521 0.0258 0.0142 0.0117

306 0.2344 0.1796 0.3033 0.3240 0.2864 0.2809

296 0.2266 0.1794 0.3037 0.3333 0.2954 0.2883

204 0.1563 0.1652 0.2840 0.3767 0.3753 0.3649

123 0.0938 0.1266 0.2319 0.3330 0.4318 0.4407

102 0.0781 0.1127 0.2123 0.3112 0.4224 0.4468

92 0.0703 0.1040 0.1994 0.2968 0.4109 0.4433

82 0.0625 0.0947 0.1849 0.2802 0.3949 0.4336

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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cavity, taken at the same location as Ghia et al. [3], and several
others for ease of comparison.

4.3. Extrapolated values

Table 10 presents the extrapolated values for primary eddy

strength for various Reynolds numbers up to O(Dh6), and it
is worth noticing how close our second order accurate results
are from the extrapolated six order results, which account

for near grid dependence is achieved and that’s why the change
is nearly negligible.
Please cite this article in press as: T.A. AbdelMigid et al., Revisiting the lid-driven cav
accelerated code, Alexandria Eng. J. (2016), http://dx.doi.org/10.1016/j.aej.2016.09.
5. Conclusion

Numerical solution of the 2D incompressible steady Navier-

stokes equations is obtained for lid-driven square cavity case
for Reynolds Numbers 100 < Re < 5000, using Finite Vol-
ume Method with primitive variable formulation on a uniform

grid. Convective terms are discretized using second order cen-
tral differencing scheme, and SIMPLE algorithm is used to
decouple velocity and pressure. Strongly Implicit Procedure
was used to solve the resulted linear algebraic equations.

Results are presented in tabulated form and agree well with
ity flow problem: Review and new steady state benchmarking results using GPU
013
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Table 10 Richardson’s extrapolated values for main eddy strength up to six order for various Reynolds numbers.

RE Grid WO(Dh2) WO(Dh4) WO(Dh6)

100 401 0.1035100

501 0.1035130 0.1035183

601 0.1035160 0.1035228 0.1035330

400 401 0.1139330

501 0.1139530 0.1139887

601 0.1139640 0.1139836 0.1139721

1000 401 0.1187800

501 0.1188360 0.1189358

601 0.1188660 0.1189195 0.1188822

3200 401 0.1212600

501 0.1214570 0.1218082

601 0.1215660 0.1217603 0.1216513

5000 801 0.1219920

901 0.1220340 0.1221089

1001 0.122069 0.1221314 0.12218269
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those found in the literature. Tertiary vortices in the bottom
right corner were observed and reported, and their values are

in good agreement with those found in the literature. Velocity
profiles agree well with Burggraf [1] prediction.
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