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Abstract. In order to define semantics of non deterministic recursive programs we are led to
consider infinite computations and to replace the structure of cpo on computation domain by the
structure of complete metric space. In this setting we prove the two main theorems of semantics:
(i) equivalence between operational and denotational semantics, where this last one is defined
as a greatest fixed point for inclusion,
(ii) the one-many function computed by a program is the image of the set of trees computed by
the scheime associated with it.

1. Introduction

In the now standard theory of computation in an ordered domain (see [5, 6, 8, 9,
13, 16)) one proves the equivalence between the definition of the computed function
as the smallest fixed point of certain functional and the definition of the same
function by means of terminating computation sequences of the program at a given
point. This equivalence holds when the computation domain is a flat, or discrete,
domain in which different defined values are incomparable: the only converging
sequences are stationary sequences whose terms are all equal, for sufficiently large n
to the limit of the sequence. In such a domain itis clear that any computed value is the
result of some finite terminating computation sequence.

The situation is entirely different if, following Scott, one starts computing in a
partially ordered domain which contains infinite ascending chains. A computed value
may then be the lub of such a chain and as such can well be the result of no finite
computation: a typical example is the domain of real numbers, if basic functions are
the four arithmetic operations and the initial values are rational numbers after any
finite amount of time one will have computed only a rational number when the result
may well be irrational.
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We propose in this situation to give a meaning to successful infinite computation
sequences which will be said to produce a result and to define the computed function
by stating that its value at a given point is the set of results of both finite terminating
and infinite successful computation sequences at that point. Obviously doing so one
accepts the idea that a computed function is many valued since there is absolutely no
reason why all computation sequences would lead to the same result. But indeed
many-valued functions were aiready considered as the normal output of non
deterministic programs.

Our point of view thus amounts to consider deterministic programs as special cases
of non deterministic programs with the advantage that our result will hold in the
general case of non deterministic programs (this was in fact the original motivation of
the whole study).

In order to give a meaning to successful computation sequences we found it
extremely convenient to replace the order structure on the computation domain by a
complete metric topology. (This is not at all to say that one cannot use the structure of
a cpo to buiid a theory in many respects analogous to ours and indeed it has been
done, see for example [14, 17].)

The results we get to are mainly conditions for the equivalence of this definition of
the computed function and a mathematical definition by means of fixed point: it
happens that in a very natural way one is lead to consider greatest fixed points rather
than smallest. Intuitively this corresponds to the idea that, at the beginning of the
computation we only know that the value of the computed function lies in a certain
range, a priori the whole computation domain and in the course of the computation
this range is reduced (may be to just one value but usually to a set of values). This is
dual of the point of view expressed by Scott that an a priori undefined initial value
gets more and more defined in the course of the computation. We have borrowed for
a large part this idea of decreasing range to L. Nolin (in a uncountable number of
discussions).

In the course of this study we will consider infinite trees for the following reason:
algebraic infinite trees which can be generated by a recursive program scheme are at
the basis of the theory called ‘algebraic semantics’ of recursive programs (see [5, 6, 8,
9,11).

The algebraic tree thus attached to a program scheme incorporates the
whole semantics of the program in the sense that an interpretation being
defined as a morphism, the function computed by the program resulting of the
. interpretation of the scheme is the morphic image of this algebraic infinite tree.
Whence many results concerning classes of interpretation and families of
computation domains.

Here infinite trees also play a role, in fact a crucial role. For the link between a
semantics defined in an ordered structure and the semantics defined in a topological
structure lies in the fact that the set of infinite trees M *(F, V') has bcth an ordered
structure and a topological structure which are closely related (in fact an increasing
function is order continucus iff it is continuous for the topology). The free complete
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F-magma M*(F, V) which is studied in [4] thus appears as the mother structure in
which the phenomena of computation can be better described.

2. Preliminaries

Here we recall some definitions, notations and properties about the metric space of
finite and infinite trees, which are given in [4].

2.1. The complete metric space of infinite trees

A graded alphabet F is a finite set of function symbols, each f € F is given with its
arity p(f) e N. We note F; the set {f € F|c(f) =i}. The set X ={x;|i >0} is a set of
variables; we note Xo=0 and X; ={x1, ..., x¢} so that X =Ui=0 Xi.

For any set E disjoint from F, the set M (F, E) is defined inductively by
- EOFycM(F,E);

- iffeF, withn>0,ift,...,t, € M(F, E), then f(t;,...,t,)e M(F, E).

It is clear that M(F, E) is the free F-magma generated by E. The elements of
M (F, E) can be regarded as finite trees.

In the sequel of this paper we shall often use structural induction on the set of finite
trees, like in the following definitions.

The depth of a finite tree ¢ is the integer |¢| defined inductively by
- if te EUF,, then |t]=1;

- ift=f(t1,..., 1), then |t| =1 +max{|t]|1<i<n}.

We define the truncation at depth n of a tree t as the image of ¢ under the mapping
a,:M(F, E)> M(F, E u{{2}), where {2 is a new symbol of arity 0, not in F UE,
which indicates that a branch of a tree has been cut off in the truncation. This
mapping is defined by

ao(t)= foreveryt,

t, ifte EUF,,

flan(ty), ..., an(t)), ft=f(t1,...,1).

If t; # t, there exists an n such that a, (#,) # a,(f;); thus we note @(t,, t,) the least

integer in the non-empty set {n|a,(f;) #a,(t,)} and we define the mapping
d:M(F,E)xM(F,e)>R., by

) ifr=1",
d(t, 1) ={, s

an+l(t)={

, otherwise.

It is proved [4] that d is an ultrametric distance on M(F, E), i.e. d fulfills the
following conditions:

dit',t")=0 if ¢'=1¢",
ait',t"y=du", t),
d, t")<max(d(, '), d(t, t").
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It is weli known that the metric space M (F, E) can be isometrically embedded in a
complete metric space (i.e. where every Cauchy sequence has a limit) which is noted
M®(F, E) and which is still an ultrametric space. It turns out that the elements of
M™(F, E)- M(F, E) are just infinite trees.

The set F is always finite; if the set E is also finite, then M (F, E) is a compact
space, i.e. every sequence contains an infinite subsequence which has a limit.

Let T be an element of M (F, E); we note BY (T) the set {t € M(F, E)|d(T, t)<e}
and B.(T) the set {T'e M (F,E)|d(T, T')<e}. It is obvious that BY(T)=
B.(T)NM(F, E) and it can be proved [4] that B,(T) = BE (T), where, for any subset
P of M™(F, E), P is the closure of P for the topology on M (F, E) induced by the
distance 4. Now let P be a subset of M™(F,E); we note B.(P)=
{T'e M®(F,E)|3T P s.t. d(T, T")<e} and BY(P)=B.(P)nM(F, E); we have
B?(P)=B(P)=UrcpB:(T) and B.(P) = B{(P) = Urep B.(T).

2.2. The composition product

Here we give in a simplified way some definitions and properties about the
composition product. The full study of this product is done in [4], upon a more formal
framework which will not be given here.

Let YeM(F,EuX,) and t,...,t,e M(F,EuX,). We note 7 the vector
(ti....,t,); then ¢’ - ¥ is the element of M (F, E u X,) defined by induction on ¢’ by

-ift'e EuFy, thent - =t

-if'=x;eX, thent - F=t¢,

-if =f(r5,.. . tp), thent' - F=f(t1 - F,...,tp D).

If i'=(,...,t"w, where t'e M(F,EuX,), and if F=(t,...,t,), where te
M(F,E uX,), then ' - F=(ty - f,...,tn ). The product defined in this way is
associative. It is extendcd to set of trees in the following way:

Let P=(P,,...,P,), where ,<cM(F,EuX,)andlet O = (Q1, ..., Qn), where
Q cM(F,EuX,).ThenP-Q=(P,-0,...,P,-Q),where P, O=Ucp {1}- O
and {t} - O is the subset of M(F, E U X,) defined by induction on ¢ by
- if te EUFy, then {t}- O ={1};

-ift=x;€ X,, then {t}- O = Q;;
-if t=f(ty,..., ), then {1} O={f(t},...,t})|t,c{t;}- O.
This product is still associative. ‘

This product is extended to sets of infinite trees as follows:

Let P=(P,,...,F,), where <M F,EuX,) and let Q=(Q,,...,Qn),
where Q;c M*(F,EuX,). Then PO QO =(P,00,...,P, O Q), where

P.O Q=N BYP) - (BYQy),...,B%Q,).

Itis proved in [4] that this product is also associative. Moreover if each of the sets Q,
contains only one tree, say U, and if P, contains only the tree T, then P; ® 0]
contains only one tree which will be noted T; ©® (U;, . . ., U,)=T; © U. In this case if
the trees T; and U are finite, we have T, Q U =T, - U.
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At last it is proved in [4] that the composition product is continuous in the
following sense (see [10]):
Let (A;); be a sequence of subsets of M*(F, E U X,); Let

LI(A) ={Te M (F, ELX,)¥e>0,3n=0,Vi=n,3T € A,

such that d(T, T") < ¢}
and

LS(A) ={TeM™(F,EuX,)|Ve>0,Vn=0,3i=n,3T c A,
such that d(T, T')<e}.

We say that the sequence (A;); P-converges to A =Lim;(A;) iff LS;(A;)=
LI,(A,) = A,

A useful property of this notion of limit is that a decreasing sequence of closed sets
P-converges to its infinite intersection.

This notion of ?-convergence is obviously extended to vector of sets.

Let now (B,); and (Q;); two sequences of vectors of sets which 2- converge to P and
Q respectively. It is proved in [4] that if each component of each @, is not empty,
then the sequence (P, © @;); P-converges to P O Q.

2.3. Konig’s lemma

In iuis paper we use several times Konig’s lemma in the following form:

Let E be any set and let (A;); a sequence of finite non-empty subsets of E; let R be
a binary relation on E such that Vi =0, Vy € A,:,, 3x € A; s.t. xRy. Then there exists
an infinite sequence (a;); of elements of E such that Vi =0, a; € A; and a;Ra;+;.

3. Metric interpretations

Let F be a graded alphabet. A metric interpretation of F is a structure I =
(Ep dr, {fi|f € F}) such that
- (Ep, {f1|f € F} is an F-magma (or F-algebra);
- dp is a distance on E; and (E}, d;) is a complete metric space;
- each operation f; from E5” into E; is continuous with respect to the topology
induced by the distance d|.
For any subset A of E; we denote by C1(A) the topological closure of A in E.

3.1. Continuity of an interpretation

Let I be a metric interpretation of . With every finite tree r in M(F, E;) we
associate the element I(¢) of E; defined inductively by '
- if te Ej, then I(t) =t;
- if tEFo, then I(f)= trs
-ift=f(t,...,t), with fe F,, then I(¢) =fr(I(t), ..., I(t,)).
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Thus I can be seen as a mapping from M (F, E;) into E;; we can partially extend this
mapping to M*(F, E;) as follows:

Let T be an infinite tree in M™(F, E;). We say that I is continuous at T relative to
M(F, E;) [7; p. 105] (for short: rel-continuous at T) if

There exists e € E; such that for any sequence (t;); of trees in M(F, E;)

(D1) which converges to T, the sequence (I(#;)); converges to e.

which is clearly equivalent to

There exists e € E; such that Ve >0, 39 >0, Vte M(F, E;), d(t, T)<n

DY) implies dy(I(t), e) <.

In this case we extend I by setting I\T) =e.

Since, for every infinite tree T, the unit set {T'} is equal to the infinite intersection
M. B%(T) =, B.(T), we want to express the rel-continuity of I at T by mean of the
infinite intersection (), C1I(B2(T)), where I(B2(T))={I(t)|teB2(t)} is well
defined since B2(T) contains only finite trees.

Proposition 3.1. If 1 is rel-continuous at T, then (. CIUI(B2(T))) is a unit set. The
converse implication hold« if E; is a compact set. In both cases I(T) is equal to the
unique element in the infinite intersection.

Proof. Since E; is a complete space, for (). CII(B2(T))) to be a unit set it is
sufficient that the diameter of CI(I(B2(T))) goes to 0 when ¢ goes to 0. This is an
immediate consequence of (D2).

Now let us assume that E; is compact, that (). CI(I(B2(T))) = {e} and that (D2) is
false. There exists r >0 and for every integer n there exists ¢, € M(F, E;) such that
d(t,, T)<1/n and d;(I(t,), e) =r. Since E; is compact, the sequence (I(t,)). has an
accumulation point ¢’ and clearly d; (e’, e) = r. On the other hand, for every integer n,
e’'e CI(t;)|i=n}< CI(I(BY,.(T))) and thus ¢’ = ¢, a contradiction.

Let now 1€ M(F, X). We define the mapping #; : E§ » E; by: for every ¢ in Ef,
11(€) =I(t - €) where - is the composition product of trees. Clearly ¢; is continuous. In
the same way, with T € M™(F, X,) we associate the partial mapping T} : Ef - E;
defined by: for every é € E7, Ty is defined at & iff I is rel-continuous at T ® € and thus
T(e)=1(T ©é).

3.2. Extended interpretations

Since our purpose is to deal with nondeterminism, we need to define mappings
from P(E;)* into P(E;) associated with trees in M *(F, Xx). The classical way to do
that is extending additively the mapping T;:E} - E;. But since we are defining
muitivocal mappings, we no longer need the condition that T;(€) = I(T © &) must be
single-valued, thus we can generalize the definition of I(T © ¢é) following from
Proposition 3.1; this leads to an alternative definition of T7.
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Let P be a closed subset of M (F, E;). We set [(P) =(, CI(I(B2(P))).

Let us notice that if P is not closed in M (F, E;) we can define /(P) in the same
way and we get [(P) = [(P). Let us notice also that if P = {r} with t € M(F, E;), then
I(P)={I(1}. Thus [ : P(M™(F, E,)) - P(Er) is an extension of I : M(F, E;)- E; and
also, from Proposition 3.1, of the partial mapping: M*(F, E;) - E|.

Thus with every infinite tree T in M (F, X, ) we associate the mapping, noted still
Ty, from P(E;)* into P(E;) defined by: for every A € P(E;)*, T;(A)= (T} ® A).
The restriction of T; to E} is an extension of the partial function T;:Ef > E;
previously defined,; it is the reason for keeping the same notation.

In the same way we can associate multivocal functions with sets of trees as follows:
if P is a closed subset of M™(F, X), P; is the function from ?(E;)* into P(E;)
defined by: for every A in P(E;), Pi(A)=1(P © A).

The following lemma shows that functions interpreting sets of trees are additive
extensions of functions interpreting trees:

Lemma 3.2. Let P a closed subset of M™(F, Xi). For every A in P(E;)*, Pi(A)=
UTeP TI (A)

Proof. First we can assume, from [4], Lemmas 26 and 27 that for every T in P,
T O A is not empty.

It is cleai that for each T e P, T;(A) < P;(A).

Let e € P;(A) and let £ and ¢' > 0. From the definition of P;(A) = [(P © A), there
exist T, . ¢ P, T e{T..} O A and te B%(T’) such that d;(e, I(t))<e&'. Since P is
compact, there exists 7% € P an accumulation point of {7 .|e, ¢'>0}, such that
Ve,Ve',Ve",ATeP, T'e{T}Q A, te B2(T") such that d;(e, I(t))<e' and
d(T, T*)<e¢". But then, setting £" = ¢, we get t€ B (B.(T*) © A). Since

B.(T*)O A< BY(T*)- BS\Aj,

which is included, from [4, Proposition 21] in B, (T* O A), we get te BY(T* O A)
and I(r1)e I(B2(T* © A)) with d(e, I(t))<e'. As this is true for every &', ec
CI(I(B2(T* © A))) and therefore

e c N CII(BL(T* © A)) = [(T* ® A)=TF (A).

3.3. Uniform rel-continuity of extended interpretations

The final result of this section is that the function interpreting the composition
product of two sets of trees is equal to the product of the two functions interpreting
these sets. In order to prove it, we need some comditions on I. We split the proof of
this result in several lemmas, each one given with minimal hypothesis.

Lemma 3.3. Let Te M™(F, X,) and Q € P(M™(F, E;))*. Then I{T}® [(Q))<
I{TYO Q).
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Proof. We assume that {T} ® Q is not empty. Clearly {T} ® (Q) is included in
BY%(T)- B2(I(Q))=BS(T) - I(Q) for a given £ >0; Thus

B°({T) o [(0) < BY(BY(T)-f(Q)= U B4 f(Q)).
AV E ] (eB\g(T')

But we can easily prove by induction on t€ By (T) that

BY({}- F(Q)<=BXUT) - [(Q) (1)

B({T}O [(Q))= BAT) - 1(Q). (2)
By definition of I, we get

Q)= CI(BL(Q)) . 3)
and (2) becomes

BT} O 1(Q)<=BX(T) - CII(BL(Q))) 4)
and

I(BJ(TYO [(Q)) = I(BY(T) - CII(B2(Q)))). (5)

Since for every r in B2(T), #; is continuous,

I(t - CII(B(Q))) = t(CII(B2(Q)))) = Cl(t;(I(B2(Q))))

=CII (¢ - I(B2(Q))) (6)
and since one can easily prove by induction on ¢ that
I(¢- I(B2(Q))=I(t - B2(Q)) (7)
we get
I(t- CI(BZ(Q))) = Cill (¢ - B2(Q)) (8)
hence

I(BA(T)- CII(BL (@)= U CIU (- B2(Q))

te B (T)
=CIUI(B(T) - B2 (Q))). 9)
From [4, Proposition 21]
BX(T)- B2(Q)=B({T;© Q) (10)
thus, from (9) and (5)
I(B2(T}O [(Q)))= CII (BT} © Q))) (11)
and

CI(B2({T} O 1(Q))) = CII(BY (T} © Q))). (12)
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This being true for every ¢ we get
I{ryof)<=IidTio Q).

Lemma 3.4. Let t(xy,...,x,)e M(F, X,) and W1, ..., W,e M™(F, E;). If L is rel-
gontinuous at each W, then I is rel-continuous at t(W,,...,W,) and
I(t(Wy, ..., Wp))=Tt(I(W)),...,[(W,)).

Proof. Let ¢,=[(W;) and W=t(W,,...,W,)={}O(W,,..., W,). Let e=
tr(er(er, ..., e) =TI (Wy),..., I( W,))). Let (w,,), asequence of trees in M (F, E;)
which converges to W. For n large enough w,, = t(w{”, ..., w) and the sequences
(w{™), converge to W;; then, because of the rel-continuity of I at W,, (I(w'™)),
converges to [(W;)=e. Hence I(w,)=I(twi",...,w)=uTW"),
R § (wf,"’)) and since # is continuous, the sequence I(w,) converges to
ey, ..., e,,) =e.

Let P< M (F, E;). We say that I is uniformly rel-continuous on P if

Ve>0,3n>0,VT e P, V1, t'e M(F, E,),

(D3) d(t, T)<nand d(t', T)<qn implies d;(I(t), I(t)) <e.

It is just an exercise in topology to prove that if I is uniformly rel-continuous on P,
then it is rel-continuous at every point P. Hence for every T € P, I{T) can be
identified to an element of E; and we get

Ve>0,an>0,YVTeP,Vte M(F,E;),d(t, T)<n

(D4) implies d;(I(¢r), I(T))<e.

Lemma 3.5. Let Te M™(F, Xi) and Q=(Q:,..., Qu)e P(M™(F, E)))*. If I is
rel-contiriious at every point of each Q; and uniformly rel-continuous on {T} © Q, then

I{TYo Q)< idT) O 1(Q)).

Proof. We can assume that {T}® Q #0. For any ¢ >0, let ¢, € BY(T). Clearly
limgo(t.)=T, and, from the %P-continuity of the composition product [4],
Lim,.o({t.} © Q)={T} ® Q. Hence, from the definition of Lim [4],

VVe{T}® Q,Ve1,Vez, AU €{t.,} © Q such that d(V, U)<e>. (13)

Nowletee f {T}O© Q) and let ¢, €', £”">0. From the definition of I we get

AV e{T}O Q,ve M(F, E;)such that d(V, v)<e'and d;(e, I(v))<e.
(14)

Applying (13) with e2=¢' and &, = " we get
AU e{t,}©® Qsuchthatd(V, U)<¢'. (15)
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Letuswrite t.-= t(xi,, .. ., x;,); then U = t(W;, ..., W,) with W; € Q,. From Lernma
3.4 we get
Uy =16d(Wy), ..., (W) el [(Q)<=IBMHT)-[(Q)  (16)

Moreover, as I is rel-continuous at U,

3u € M(F, Ey) such that d(u, U)<¢' and d;(I(u), [(U)) <e. (17)
From (15) it comes, since d is ultrametric,

d(u, V)<eg' (18)

Since I is uniformly rel- continuous on {T} © Q, we can apply (D4) and from (14) and
(18) it comes, with ¢’ = n(e)

di(F(V), I(v))<e and d;(F(V), I(w)<e. (19)
Thus from (14), (17) and (19)

di(e, [(U)) < 4e. (20)
Since this is true for every ¢ and since, from (16), f(U) e I(B%(T) - [(Q)) we get

e cCII(B2(T) - 1(Q))). (21)
From [4, Proposition 21] it comes

B2(T)- [(Q)<=BL-(T}O 1(Q)) (22)
hence

e e CIUI(B2-(T} O 1(Q)) = CII(BL, (T} © (Q)))). (23)

This being true for every ¢, we get e € [{T} © [(Q)).
From the previous lemmas it comes.

Proposition 3.6. Let P a closed subset of M™(F, X,), Q=(Qys,..., Q) a closed
elementof P(M™(F, X,))’ and A=(A,, ..., A an element of P(M™(F, E))°. If Iis
rel-continuous at every point of each Q, ® A and if for every T in P, I is uniformly
rel-continuous on {T}© Q ® A, then P;(Q, (A))=P0O Q)1 (A).

Proof. Since PO Q=Urp{T}© Q we get, from Lemma 3.2 (PO Q)/(A)=
Urer (T} © Q)1(A). Also from Lemma 3.2, P;(Q;(A)) = Urep T1(Qi(A)). Thus it
is sufficient to prove the result when P is equal to {T}.

_But Ti(Qi(A)=I(T}OI(QOA) and (T}OQ)(A)=I(T}OQOA)=
I{T} © (Q ©® A)). The wanted equality is then a direct consequence of Lemmas 3.5
and 3.3.

We say that an interpretation I =(E,, dy, {f, f € F}) is strongly contractive if
- the diameter of E; is bounded;
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- each f; is a contracting mapping, i.e. there exists ¢; < 1 such that for e, e}.. . . , e,
enin E di(files, ..., en), filel, ..., en))<c/xmax{di(e, e})|1<i<n]}.

These conditions are used in [3]. We prove here that they are sufficient in order to

prove Proposition 3.6.

Proposition 3.7. If I is strongly contractive, then it is uniformly rel-continuous on all
M®(F, Ey).

Proof. Let b a real number bounding the diameter on E; and let ¢ = max(c;|f e F}.
Since F is finite, c <1. Thus (D3) is a consequence of the following property:

Vt, t'e M(F, Ep), d(t, t')<2"" implies d;(I(t), I{(t'))<b xc".

which is easily proved by induction on n
- ifn=0,then d;(I(t), F(*))<b=bxc%
- if d(t, t)<27*D,
- if tety UF, then t'=t and d;(I(t), I(t))=0<b=c""!,
-ift=f(ts,...,t,), then ' =f(13,...,t,) with d(s, t})<27".
By induction hypothesis d;(I(#), I(t;))<bxc" and

di(I(), I(t)<cpxbxc"<bxc".

4. Non deterministic recursive programs and their computations

4.1. Definitions

As in [11] we consider that a (non deterministic) recursive program P is a pair
(2, I), where £ is a (non deterministic) recursive program scheme on a graded
alphabet F and I an interpretation of F. Hereafter this interpretation will be a metric
one.

A non deterministic recursive program scheme (ndrps) on a graded alphabet F is a
set of equations

- ¢.-(x1,...,x,.,.)=r,-
E—{i=1,...,k,

where @ ={¢, ..., &} is a set of unknown function symbols disjoint from F, with
p(d:) = m;, o2 is a binary symbol not in Fu @ and 7, € M(F U @ U {02}, X,,).

In the sequel we shall note F, the set F U{sz}.

An elementary step of computation with P has one of the three following forms:
- making a non deterministic choice;
- replacing an unknown function symbol by its definition (copy rule);
- executing an operation f;.
Grouping together the first two cases we get the form:al definition:
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Lett, e M(F.u®, E; U X,); we define the two relations ¢t »>s¢' and ¢ -, ¢’ by
(1) t->5riff
(1.1) t=oe(ty,tr)and (' =t or t' =1,),
(1.2 t=¢i(tr,..., ty)and t'=7, - (t1, ..., tn),
(1.3) i=Y(ty,...,tn) with Y e F, U® and there exists ¢; such that ¢, > ¢
and =Y (ty, ... .t ..., tm);
(2) t = ¢iff
(2.1) t=f(e1,...,en) WithfeF,ey,...,e,€ Erand t'=fi(ey,...,e.)€Ey,
(2.2) t=Y(ty,...,tn) with Y e F, uU®d and there exists ¢; such that ¢; >}
andt'=Y(t,...,th ..., tn).
Then we call a computation from te M(F. u @, E;) with P, any finite or infinite
sequence fo, 1, &2, ... of elements of M (F,u @, E;) such that o=t and for every
iZ0,4; 25t OF b; >l

4.2. Rezult of a computation: intuitive approach

Now we have to define the result of a computation. The usual way for doing it is to
assume that the computation domain E; is a cpo; then by replacing each unknown
function symbol, and also the symbol 52, by the least value L of Ej, one gets an
increasing sequence, of which the L.u.b. is, by definition, the result of the computation
(see, for example, [11, 12, 15]).

In[3, 4] we introduced a new definition of the result of a computation in which we
need not an order on the computation domain. This definition is based upon the
foliowing remark: Let t=¢(ty,...,t,) a term, where ¢ is an unknown function
symbol. Since we do not yet know this function ¢ we cannot assign to ¢ a definite
value; but we do not express this fact by assigning to ¢ a special value L intended to
mean ‘uncefined’; we prefer to say that the possible values of ¢, if any, are in the
computation domain, that we express by replacing ¢ by E;. In this way we associate
with a computation a decreasing sequence of sets and the computation is said
successful if the infinite intersection of these sets contains only one element of E;,
which is the result of the computation.

Let us give an example, where we use this way of defining the result of a
computation.

Let X be the scheme

@ (x)=f(x, (x))
and let [ be its interpretation which has as domain the inte:val [0, 1] of the real line

with the usual distance and where f;(x, y) = 1/(1+ xy). Thus the program P = (3, I
can be written

1
(x)=— .
¢x) 1+xp(x)
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The only computation from ¢ (1) with P is
é(1) —;f(l, #(1)) —;f(l,f(l, $(1)))

—;f(l,f(l,f(l, 4;(1))))_;. .

which can also be written as

1 1
£1+¢(1)21+1 ;(1)21+ 11 s
+
10
or
h—>b—>1t3: 0,
=z P

where y=¢(1) and t;,1 =f(1,6)=1/(1+1¢).

To t; we assign the set [0, 1], thus to #, we assign the set 1/(1 +[0, 1)) =1/[1, 2] =
[3, 1] and we can prove easily by induction that the interval associated with ¢, is
defined by

_rfib2n—1) ﬁb(2n)] _[ﬁb(2n+1) ﬁb(2n)]
“22 =1 Tb2n) fib2r+ D))’ 2n1= | b (2n +2) fib2n + 1))’

where fib(n) is the nth element of the Fibonacci sequence defined by
fib(0) =0, fib(1) = 1, fib(n +2) =fib(n + 1) +fib(n).

Then we can prove that the length of the interval u,., is less than the haif of the
length of u,; hence the infinite intersection [ ), u, of intervals contains a single point
which is

. _fibn) _—1+V5
nsofib(n+1) 2

4.3. Result of a computation: formal definition

Let us define the mapping #; from M(F, u &, E;) into P(E;) by induction on ¢
- if te E;, then () ={t};
- if te Fo, then m(¢) ={t:};
- if t=f(t1, ey tm), then 171([) ={f1(€1, Ceay em}|e,- € ﬁ’](ti)};
- if t =g2(t', "), then (¢) = (t) U w1 (2");
-ift=¢i(tr, ..., 1), then m((t) = E}
It should be noticed that if t€ M(F, E;) < M(F. u @, E;), then 7 (t) ={I()}.

Lemmad.d. Lett, e M(F,u®, E;). Ift >st', then~ t'Y< m(t) and if t >, then
mr(t) = mr(r').
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Proof. We prove this lemma by induction on the definition of >z and -;:

-if t=02(t;, ;) and t' =1, or ' =1y, then 71 (t") S () U i (t2) = m,(2);

- if t=¢i(th,..., ), then for any t'm;(t') < 7 (t) = E;

-ifr=Y(y, ..., tn)and '=Y(Ty, ...t} ..., tm) With t; >s¢i and thus 7 (t;) <
(1), then

if Ye®d, m(t)=m()=E,
if Y=00, m(t)cm(t),
ifY=f m()={filer,...,em)|er€m(t1),...,
eicm(ti),...,emEm(tn)}
<{filer,...,em)|erem(tr),...,
eem(ti),...,emE€m(tm)}=m(1);

- if t=f(ela ceey em) and t':,fl(ﬁa ceey em)a then ﬂ[(t) ={t,}= ﬂl(t,);
-ift=Y(ty,...,tm)and '=Y(ty, ..., t5,.... t,) With £, > ¢; and thus 7;(f;) =
mi(t;) the proof is like above but replacing < by =.

Thus for any computation o, 1y, . . . , 1, . . . the sequence (1 (2,)). is decreasing for
inclusion. We say that this computation is successful if lim, . 8(m(¢,)) =0, where
8(m(1,)) is the diameter of 7 (t,) (i.e. 6(m;(t,)) = max{d; (e, e')| e, e' € m;(t,)}). In this
case (m(t,)). is a Cauchy filter base and since E; is a complete space the infinite
intersection { ), Cl(s;(t,)) contains one and only one element of £ which is the limit
of the Cauchy fiter base [7]. This element is the result of the successful computation
c=to, t1,..., ... andis noted Res(c).

Let us notice that this definition is compatible with the classical definition of the
result of a finite computation. Let ¢, ¢;, .. ., ¢, be a finite computation with ¢, € E;
which is of course the result of this computation; we get

1!;_1" Cl (71 (£;) = Cl(mr( (1)) = {tn}~
We have seen that fo, #1,...,1,.. is a successful computation implies that
(Yn Cl(mr;(2,)) is a unit set. The converse implication holds whenever E; is compact.
The proof is exactly like in Proposition 3.1.
Finally, for every t in M(F,u®, E;) we note Val,(t) the set {Res(c)|c is a
- successful computation from ¢ with P}.

5. Formal and effective computations

We want now to prove that the result of a successful computation with a program
(2, I is the interpretation of the result of a formal computation, dorie in the space of
trees using only the scheme J, like in the case of deterministic programs [11]
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5.1. Formal computations

Lettbeatreein M(F, U ®, X,,,). A formal computation from t with the scheme X is
a finite or infinite sequence to, t1, . . ., t,, . . . of elements of M (F, u &, X,,,) such that
to=1t and for every i =0, t; > 5 t;11.

Let us define the mapping IT from M{F,ud®, X,,) into P(M™(F, X,.)) by
induction on ¢
- if te X, then II(¢t) ={t};
if t € Fo, then IT(t) ={t};
if t=200(t', "), then II()=TI (YO II(t");
ift=f(t1,...,t), then II(t) ={f O {I(t1), . .., II(t,));
if t=ai(t, ..., ), then I1(t) = M™(F, X,,).

It is clear that, by definition, I7(¢) is a closed subset of M (F, X,,) for every ¢ in
M(F,.vd, X,).

Moreover it is easy to prove, like in Lemma 4.1, that if r > 5 ¢, then IT(¢t') < I1(¢).

We say that a formal computation c=fty, ti,...,%,... is successful if
lim, - 8(IT(t,)) = 0. Then, since M (F, X,,,) is complete, (), I(t,) contains one and
only one element which is the result, noted Res(c), of the successful computation c.

Unfortunately this definition of successful computations is not exactly the same as
the one used in [1, 2]: it is straightforward, taking into account some results of [4]
comparing the set of infinite trees as a cpo and as a complete metric space, that the
definition of successful computation s given in [1, 2] that we shall call here successful’
computations is equivalent to the following definition:

Let IT' be the mapping from M(F,u &, X,,) into M (F, X,,) which is defined
exactly like IT except that IT'(o2(t', t"))= M (F, X,»). We say that the formal
computation to, t1, ..., ly, ... is successful iff lim,.o 6(II'(z,))=0 and its result,
Res'(c), is the unique element in (), IT(z,).

The difference between IT and II' comes from the fact that, in order to define the
result of an infinite computation we associated, in [1, 2], with every tree ¢ with non
terminal symbols occurring in a computation sequence the tree obtained by substi-
tuting the ‘bottom element’ to any non terminal symbol and, in particular, to o2. As
mentioned in the introduction we present in this paper another point of view: with
such a tree ¢ is associated the set of values that this trze can have and thus o2 is
interpreted as the set-theoretical union.

Since the main result of this paper (Theorem 6.7) relies upon Theorem 6.3 which
was proved in [1, 2] using successful’ computations, and upon Theorem 5.9 which is
proved in this paper using successful computations, we have to prove the equivalence
of these two notions.

From the previous definitions of IT and IT’ it follows that for every ¢, II'(f) is a
closed set containing I7(¢). And we have still, by the same proof as in Lemma 4.1,
t > st implies IT'(¢') < IT'(¢).

Since I1(t,) < II'(t,), if the formal computation ¢ =g, t1,. .., ln, - . . IS successful’,
it is also successful and Res(c) =Res'(c).
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Proposition 5.1. If the formal computation c from to is successful, there exisis a
successful' formal computation c' from t, such that Res(c') = Res(c).

Proof. With every te M(F.u @, X,,) we associate the finite set S(¢)c
M(F.u @, X,,) defined inductively by

- if t€ X.., then S(1)={t};

if t € Fp, then S(2) ={t};

if t=204(¢', "), then S(£)=8(t") U S(¢");

if r=ei(ry,...,1,), then S()={t};

ift=f(t1,...,1), then S()={f(t1, ..., th)|t; € S(£,)}.

It can be easily proved by inducticn that for every ¢ € S(¢) we have ¢ >% ¢ and
II(¢')=IT'(t') and that IT(t) =Ures (1.

We prove also by induction the follcwing property:

If t; - s 15, for every t5 € S(t,) there exists ¢} € S(t,) such thai i} >% £5:

- if h=di(uy,...,u,), then S(t))={t;}, hence t1 =1, > s, >% 13,

- if ti =c2luy, us), then
- either 1, = u; with j €{1, 2}, hence S(#,) = S(#1) and we take 1} =15,

- or there exist je{1,2}, uj, us such that u; >suj, us_;j=ujs_j; tr=o2(u, Uz);
since S(t2) = S(u) uS(ub), there eixts i € {1, 2} such that t5 € S(u;); if i =3},
S(ui)=S(us-;)< S(t;) and we take 11 = t3; if i = j, by induction hypothesis there
exists 17 € S(u;) < S(t:) such that 1] >% ¢5;

- if 4=f(uy,...,u,) there exist i and u; such that u; >su; and t,=f(ur....,
Ui, ..., u,); but t5=f(vy,...,v,) with v,€Sy),..., 0 €SUi), .., V€ S(Un);
by induction hypothesis there exists v} € S(u;) such that v; »>%v;; hence ¢} =
foy,...,0},...,0,)€8(t) and £] >% 15.

Let now c =1y, t1,..., I, ... be a successful formal computation and let {T} =
(. II(t,). Let S'(2,) be the finite set {t' € S(¢,) | T € I (¢')}. Since IT(t,) = Uresq, H (2)
there exisis ' € 8{2,) such that T € I1(t'), hence S'(¢.) is not empty. Moreover for any
t"in 5'(t,+1) < S(t,+1) there exists 1€ S(1,,) such that " >% ¢, hence IT(¢') = I1(t"),
Tell(t")and "€ S'(t,).

We can apply Konig’s lemma:

There exists a sequence 2o, . . ., ty, . . .suchthat t, € S'(t,), t =% th., and to > % 10.
From this sequence we extract a formal computation ¢'=#t=13,...,¢m, ... (not
necessarily infinite). We have

fim 8(IT'(r7)) = lim 8{IT'(t,)) = lim 8(I1{t,)).

Since I1(t,,)< I1(t,), 8(I1(t,))<é6(I1(t,)) and since c is successful, ¢’ is successful'.
Moreover

n

T () =('(e;)=(1Key) and Te(\Ien) < (1) ={T},

thus Res(c’)=Res{c)=T.
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It follows that the set Vals(r) equal to {Res(c)| ¢ is a successful computation from ¢
with 3} is also equal to {Res'(c) | ¢’ is a successful’ computation from ¢ with 2} which is
considered in [1, 2].

Asin[1,2]we note L;"(Z) the set Vals(i(x1, . . . , X)) € M™(F, X,,,) and we note
L) the k-uple (LT(Z),. .., LY(Z)).

5.2. Interpretation of formal results

Let us define the mapping I7; from M (F.. U @, E;) into Z(M(F, E;)) by induction
on ¢
- if e Fyu Ey, then I1;(1) ={r};
- if t=ou(t', "), then IT;(¢) = IT; (') O IT; (t");
- if £=flty, ..., 1,), then Iy (1) ={f(u, ..., un)|us € Mr(t)};
- if t=a¢i(ty,..., t,,‘.), then I;(t) = E..
It is immediate, from the definitions, that m;(t) =1 (11 (1))

LemmaS$.2. Letie M(F,u ®, X,,) and é € ET. The diameter of I1,(t - &) is less than
or equal to the diameter of I1(t).

Proof. We prove byinduction on 7 that for every u in I7; (¢ - &) there exist v, v'in IT(?)

such that d(u, v - é)<d(v, v'):

- if t = x; € X,,,, then ﬁ,(t - €)={e¢;} and we take v =0v' =x;;

- if te F,, then IT; (1) = I1(1) ={t} and we take v =v' =1;

- if t=¢i(t1,..., 1), then II;(t - &)=E; and II(t) = M>™(F, X,,); we take v, v' in
M(F. X,,) with different roots and we have d(u, v - &) <d(v, v') =3.

-if t=f(ty,..., 1), then u=f(u, ..., u,) with y; e I (t; - &); by induction hypo-
thesis there exist v, viefI(f;) such that d(u,v;-é)<d(v,vi); hence v=
floy,...,vp)and o' =f(v},...,v,) belongto IT(t),v - é=f(vi-é,...,v, " é)and

d(u, v - &)=3max{d(u, v; - &)|i=1,...,n}
<jimax{d(v, v})|i=1,...,n}=d(v, v").

- if t=04(t1, 12), then there exists i €{1, 2} such that u e IT;(t; - ¢); by induction
hypothesis, there exist v, v’ € IT(¢;) < IT(t) such that d{u, v - é)<d(v, 1').
Let now uy, us€ IT;(t - €). We have d(u, uz) <max(d(uy, vy, &), d(vy * 3, v2 + €),
d(uz, v2-¢8)). Since d(v,:8, v2:é)<d(vy,v2) and from the previous result,
d(uy, uz) <max(d(vi, v1), d(vy. v2), d(v2, v3)) < 8{II(1)), hence the result.

Proposition 5.3. Let T € M™(F, X,,) be the result of a formal successful computation
fromte M(F.u @, X,,) and leté € ET. If Iis rel-continuous at T © €, then there exists
a successful computation from t - é with (X, I), which has I(T © ¢€) as result.

Proof. Let f, t1,..., 1, ... be a formal computation such that t=1, and {T}=
(M II(t,). The sequence ¢ =t - é,..., 1, « € is a computation from : - € =1, - € with

(2, 1).
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Since lim, .. 8(I1(t,)) =0 we get, from Proposition 5.3, lim, .« (I (t, - &)=
andsince lim,.« t, - € =T © ¢, for every £ >0 there exists n. such that ﬁ,(t )
BY(T O é); thus m(t,, - &)< I(BX(T © ¢&)). Since I is rel-continuous at T O é
follows that lim, .. 8(7(t, - €)) =0. Thus the computation ¢ is successful and 1ts
result is

N Cl(mri(t, - €)M CUI(BAUT O é)))=I1(T O é).
Before proving the converse of Proposition 5.3 we need some lemmas.

LemmaS54. Letty, ty,..., 1, ... beacomputation fromt=tye M(F. L ®, E;) with
(Z, I). There exists a sequence ty, ..., t,, ..., such that for every n =0 t, > t, and
tn Pstne1 OF by = 1hyq.

Proof. *Ve construct the sequence (¢,,), by induction. First we set to = lo.

Let us assume that we have constructed ¢,,. We have ¢, »7 t,,. If t, = t,+1, then we .
set I+ —t,,, if t, >st,4+1, it is proved in [11] that there exists .., such that'
fn s tht ”l | A

We say that a scheme X is reduced if for every ie{1,..., k} the set L; (%) is not -
empty.

Lemma 5.5. If X is reduced, then for any i in M(F, L @, X,,), Vals(t) is not eripty.

Proof. Let 1 be in M(F.u @, X,,) and let ¢’ be the tree obtained by deriving each
occurrence of a symbol o2 in ¢ so that ¢’ does not contain 52, and t >% ¢

Since X is reduced, for each i €{1, . . ., k} there exists a successful formal compu-
tation «¢3,...,¢" ... with § = ¢>,- (X1,...,%,); we have, by definition,
lim, o 5(17(:“’ ))=0.

Let to=1 and for every n >0 let 1, be the tree obtained by replacing in ¢’ every

occurrence of each ¢; by 1D, Clearly t, > % t,.1. Moreover it can be easily proved by
induction on ¢’ that

ST (t,)) <max{s(IT(¢"

hence lim,, .o 6(I1(t,))=0.

It follows that there exists a successful formal computation from ¢, hence Vals(¢) is
not empty.

si<k},

7

Lemma5.6. Letty, ty,..., ¢, ... be a formal computation from toe M(F. U @&, X,,,),

not necessarily successful. If X is reduced, there exists T € Vals(to) such that T €
(M M(2,).

Proof. From Lemma 5.5 each Vals(t,) is not empty. Since t, »xt,41, clearly
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Vals(t,+1) € Vals(#,). Hence (Valg(t,)). is 2 decreasing sequence of nonempty
closed subsets of the compact space M*(F, X,,). Therefore A =("), Vals(t,) is not
empty. Let T be in A; we have T € Vals(); moreover, since, by definition every
element of Vals(z,) belongs to II(t,) we have Vals(t,)<II(t,) =1I(t,), hence
Te(N. ).

Lemma5.7. Lette M(F.u®, X,,) andéc E; lete <27 and T e I1(¢). For every
ueM(F, E;),d(u, T © é)< ¢implies I(u) € m(t - é).

Proof. This result is proved by induction on #:

-ift=xieXmthenT=x,t-é=TOé=e;and|t|=1;hence u =¢,and I(u)=¢; €
mi(t - €)=1e};

-ift=acFythenT=t=t-é=TOé=aand|t|=1;henceu=aand I(u)=a; €
mi(t - €)={a};

- if t=ai(n, ..., 1,), then I(u)€ m(t - €) = E; for every u € M(F, Ey);

- if t=o02(t, 1), then 3je{l,2} such that Tell(y) and [f]|<|t|—1, hence
d(u, T © &)<2 "< 27" and by induction hypothesis I(u)€ m(t; - €) S mi (¢ - €);

-if t=f(t1,..., 1), then T=f(Ty,..., T,) with T;€T(t;) and u =f(ur,..., u,)
with d(u;, T; © €)<2e. But |f|<|t|—1, hence Z& <27 1<27 and, by
induction hypothesis, I(w;)em(t;-€); thus T(u)=fi(I(u1),...,1(u,))e
W[(f(tl . E,. ey ln® é.))=7T[([ - é).

From these lemmas we deduce

Proposition5.8. Lette M(F. U ®, X,,) andé € E'. If X is a reduced scheme, then for
any successful computation ¢ from t - € with (3, I), there exists T € Vals(t) such that I
is rel-continuous at T © € and Res(c)=I(T © é).

Proof. Let c=1ty, t1,..., tn, . . . a computation with (X, I') such that z,=¢- ¢ and
lim, -0 71'1(["} =0.

From Lemma 5.4, there exists a sequence tj, t1,..., ty,...suchthatty =1t,=1 - ¢,
tn—> st and limg.co 7y (ts) =lim, .o 71 () = 0.

It can be easily proved that there exists a sequence (t5), of elements of M (F. U
@, X,,) such that t,=¢ and forevery nt, =t} € and 1, > 5 th.1.

From Lemma 5.6 there exists T € Vals(¢) such that T e[, II(t7).

From Lemma 5.7 we get Vi, 3¢ >0 such that

I(BX(T © &))< my(tn) = mi(th - é),
hence, since lim, .« 8(m(t,)) =0, Y7 >0, 3¢ >0 such that S(I(BA(T O é)))<n
which implies that [ is rel-continuous at 7 O €.

Moreover
I(T ©é&)=NCIIBUT ®© é)N) =\ Tilmi (),

hence (T © €) =Res(c).
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From Propositions 5.3 and 5.8 we get

Theorem 5.9, Let te M(F,u @, X,,) and éc E}". If X is a reduced scheme and if
Valg(¢) is closed, then

Valis. (2 - €)={I(T © é)| T € Valx(t) and I is iel-continuous at T © é}.

Let us remark that it follows from [1, 2, 4] that Vals(¢) is closed whenever X is a
Greibach scheme.

6. Greatest fixed points

Given a program (X, I) we can associate with each unknown function symbol ¢;
the function g; from E} into 2(E;) defined by g:(€) = Vals ,(¢;(¢)) which can be
viewed as the meaning assigned to ¢; by the program.

In this section we prove that under some natural conditions the functions g; can be
defined as fixed points of a functional mapping attached to the program.

6.1. Programs and program schemes as functional mappings

For every integer n let %,(E;) be the set of mappings from 2(E;)" into P(E;)
ordered by the following order:

geg iff VA=(A,,...,A,)eP(E)" g(A)cg'(A).

The maximal element of %,(E;) is the function G, defined by VA e P(E;)",
G.(A)=E,
Let now F(E;)= %, (E[)X---X %, (Er) be the set of k-uples of functions
ordered componeniwise by inclusion; its maximal element is G =(G,,, ..., Gy.).
With every g =(g1, ..., &) € #(E) and with every integer m we associate the
mapping o§" from M(F..,®, X,,) into %,(E;) defined inductively, with oy
abbreviated by o, as follows: for every A =(Ay, ..., A,)e P(E;)"
- if = x,; € X, then o (t)(A) = Cl(A));
if £ =s4(t1, 1), then o (1)(A) = o (1,)(A) Lo (1)(A);
if t=f(t;,..., 1), then g(t)(A') =Clifiler, ..., e)|eico(t)(A);
if t=a € Fy, then o (t)(A)={a,};
if t=ei(ts,..., 1), then o (t)(A) = gl(a(zl)(ﬁ), vy 0 (1 )A)).
Let us remark that for every ¢, o(t){A) is always a closed subset of E. It should be
noted also that if § < &', then oy (1)(A) < & (1)(A).
Then with the program (%, I'), where

¢i(x1’ oo ’xn.')=7.i

z={
i=1,....k
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we associate the mapping 3; from F(E;) into itself defined by

fx(é) = (Ug")(ﬁ), cens G'g'")(ﬂc))-

Clearly, if § = g'we have 3;(g) < 3;(g"). Hence since G is the maximal element of
%(E;), the sequence 3 HG) is decreasing and we define »(31) e F(Ep) by
v(Z)(A) =M. 2HG)(A), which is a closed set.

In a similar way we define the functional 3 associated with the scheme X (see
[1,2,4).

Let @5 be the set

PM=(F, X)) X P(M™(F, X)) X - - - X P(M(F, X))

ordered by inclusion; its maximal element is D = (M*(F, X,,), ..., M®(F, X,,)).
With every P=(P;, ..., P.)e @s we associate the mapping a-‘};") from M(F.u
®, X,,) into P(M™(F, X,,)) defined inductively with o5 abbreviated by o, as
follows:
- if t =x;€ X,n, then o (t) ={x;};
- if t = 02(ty, 12), then o (t) Lo (ta);
- if te Fy, then o(t) ={t};
-ift=f(t,..., ) then o(z) ={f}_® (o(t1),...,a(t);
-ift=¢i(tr,..., t,), then o(t) =P, O (o (t), ..., o(t).
Thus, by definition, o'(7) is closed and if P< Q, then o5 (S o' g” (0).
Then with the scheme 3 is associated the mapping 3 from Oy into itself defined by

S(By=(oy(r1), ..., o5 (1)),

Clearly PcO implies 3P c3 (&), hence f”(ﬁ) is a decreasing sequence of
closed sets and we note »(2) the infinite intersection [ ), 2" (D).
The following result was proved in {4]:

Proposition 6.1. v(2) is the greatest fixed peint of 3.

Now and further on we assume that the following property holds: for every n, for
every T in M™(F, X,), I is uniformly rel-continuous on {T} © (E,, . . ., E;) that we
will express by saying: I is uniformly rel-continuous

We can then apply Proposition 2 ¢ a1d we get

Proposition 6.2. If I is uniformly vel-continuous, then jor every Pin @s, 3(P); =
21(Py).
Proof. It is sufficient to prove that for every te M(F.u®, X,,) and for every
A e P(E;)" we have
(@5 O)1(A) = a5 (D(A).
).

This proof is done by induction on ¢, setting o =o'3" and oy =075 :
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- if t=x; € X,n, then o1 (t)(A) = CI(A;) and () = {x;}, hence

o(0)1(A) =N CIIB ({x:} © A)) =M CII(B: (A:)) = CI(I(A,) = CI(A;);

- if t =a € F,, then o;(t)(A) ={a;} and o' (¢) ={a}, hence (o(1))r ={as};
- if t=204(t', "), then oy (1)(A) = o1 () (A) U ot (t'i)(A) and a-(t)‘= o(t)u a'(i").

By induction hypothesis a1} A) =a(t");(A) and o-t(t_’:)(A) = a(t::) i(A); from
Lemma 3.2, o(1') and o (¢") being closed, o (?) HA) =0 (t)A Ua(t");(A); hence the
result;

-ift=f(t,..., ), then

o1(NA)=Clfiler, ..., e)|ei € or(t;)(A)}
=ClI({fler,.... &) e € or(8)(A)})
=(fr1,..., xD1(or(n)(A), . .., a1 (B)A)N);
from induction hypothesis this is equal to
(f(x1, -, 2o (t)i(A), . . ., r(5)1(A)) =
=(f(x1, ..., X1 (t)p . . ., (1)1 )(A))
and from Proposition 3.6 to
{fGs, ..., %} Ol (81), - . ., T (Ei(A) =
=o(fty, ..., e )1(A) = (D1(A);

- i 1=ty -, 1), then or(1)(A) = (P)(or(t)A), ..., o1(t,)(A)); but (P =
(P;)r and by induction hypothesis o;(%)(A) = o(t;);(A), hence

o1(NA)=(P)i({o(t)s . . ., o (ts)INA))
and, from Proposition 3.6,
o1(NA) = (P, O (a(t), ..., olta))i(A)
which is equal to o'(¢);(A).

6.2. Greibach schemes

We say that a scheme

z-: (bi(xl,--"xn,'):Ti
i=1,...,k

is a Greibach scheme if each term 7; is contracting, knowing that the set of
contracting terms of M(F. U @, X,,,) is defined inductively by
- if t=f(t,..., 1) with fe F, then ¢ is contracting;
- if #; and ¢, are contracting, then »4(t;, t;) is contracting.
The main result of [1, 2] (see alsc [4)]) is
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Theorem 6.3. If 3 is a Greibach scheme, then L(3) is the greatest fixed point of 3

We shall prove that under the hypothesis of uniform rel-continuity of I, (L*(2));is
the greatest fixed point of 3}, which is also equal in this case to »(2;).
As an immediate consequence of Proposition 6.2 we get

Proposition 6.4. (L™(2)); is a fixed point of £y if I is uniformly rel-continuous.

From the monotonicity of 3;, and from this proposition it follows that (L*(2));<
v(21). Thus we have just to prove the reverse inclusion; this proof needs one
preliminary lemma.

Lemma6.5. Let§=(gi,...,g)€ F(Er), P=(Py, ..., P.Ye Ds such that every P; is
a finite set of finite trees and let € >0 such that Vi<k, VA e P(E;)", gi (A)c
CII(B2(P)) - A)). Then for any integer m, for any ue M(F.u &, X,,,) and for any
AcP(EDN™, o8 (u)(A) s CII (B2 (a8 (1)) - A)), where &' =3¢ if uis contracting, ¢
otherwise.

Proof. This lemma is proved by induction on u.
There is no difficulty in the case where ue FobuX,,, u=o04(ui,u;) and u =

fluy, ...\ up).

Let us note o"=0y", oc=0¥" and let us assume that u=¢(ui,..., un,).
Then o'(u)(A)=gi(o'(u1)(A),..., q-.'(u,.,.)(A)) and by hypothesis o'(u)(A)c
CIUI(B2(P)) - (o' (u:(A), ..., o'(un,)(A)))), which is included, from induction hypo-
thesis, in

B =CI(I(BX(P)) - (CII(B2(c(u)) - A)), ..., CUI(BY(c(un,)) - A))))).

But for every finite tree v € M(F, X;) the function v; : E; - E; defined by v;(¢) =
I(v - é) is continuous, hence

B<CII(BY(P) - (I(BYa(uy) - A), ..., I(BL(o(un)) - A))))
=CII(BY(P) - (BY(a(ur)) - A, ..., Bl(o(un)) - A)).
But
B2(P) - (Bl(o(uy), ..., Bl(o(un)) <
SBY(P; - (o(u1), . . ., a(un))) =Be (a(u))
hence B < CI(I(B2(a(u)) - A)).

Proposition 6.6. If X is a Greibach scheme, then »(3) @O

Proot. Let us write 37(G)=(g!", ..., gi). Let t= {ti,..., k) a fixed element of
M(F, X, )% +xM(F, X,) and let us write 3"(1)=(P{",..., P{’) which is
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included in $"(D). For any Ae P(E)" we have BI(t;)- A =E,, hence g?(A') =
G, (A)=E; cBY(1)- AcClI(B{(t;) - A))=CII(BY(P®)- A)). Since I is a
Greibach scheme we can prove by induction, using Lemma 6.5 that, for every n =0,
for every i<k and for every Ae®P(E;)% it is true that g\"(A)c
CI(I(B3-+(P{”) - A)). Let now a (), g (A). For any n, a € CI(I(B%--(P{™) - A))
andsince P\™ is a finite set, there exists #, € P\") such that a € CI(I(B3-~(z,) - A)). But
the set {, | n =0}, included in the compact set M “(F, X,,.) has an accumulation point
T'; thus for every n =0 there exists n’' = n such that d(t,,, T) <2™", hence B3-~(t,) <
B3-n(ty) = B3-+(T). Since B3-+(T) - A = B3-+({T}® A) we have

as Q CII(BY--({T}O A) = (T © A)=T;(A).

Letnow 3"(D)=(Q{, ..., Q{").Since P\ = O\, 1, € Q'™, and since (Q\™), is
a decreasing sequence, the accumulation point 7 belongs to (), Q' which is the ith
component of »(3)=L"(2). It follows that a € T;(A) < (LP(2));(A); therefore
Ma 8" (A) < (LT (2)1(A); hence »(Z;) < L™E))1.

We can now establish the equivalence between operational and denotational
semantics of non deterministic programs.

Theorem 6.7. If X is a Greibach scheme and if I is uniformly rel-continuous, then
(i) the greatest fixed point of 3, is v(Z;) which is equal to (L™(2));,
(ii) Foreveryi<k and é e E7 Val;(¢(é)) = v(2)):(é).

Proof. Point (i) is a direct consequence of Propositions 6.4 and 6.6.
Point (ii) is a direct consequence of Theorem 5.9, since if I is uniformly rel-
continuous it ic continuous at any point, and since Valz(¢;) = L7 (3).
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