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Abstract

Background: In this paper, the hazard and exposure concepts from risk assessment are applied in an innovative
approach to understand zoonotic disease risk. Hazard is here related to the landscape ecology determining where
the hosts, vectors and pathogens are and, exposure is defined as the attractiveness and accessibility to hazardous
areas. Tick-borne encephalitis in Sweden was used as a case study.

Methods: Three boosted regression tree models are compared: a hazard model, an exposure model and a global
model which combines the two approaches.

Results: The global model offers the best predictive power and the most accurate modelling. The highest probabilities
were found in easy-to-reach places with high landscape diversity, holiday houses, waterbodies and, well-connected forests
of oak, birch or pine, with open-area in their ecotones, a complex shape, numerous clear-cuts and, a variation in tree
height.

Conclusion: While conditions for access and use of hazardous areas are quite specific to Scandinavia, this study offers
promising perspectives to improve our understanding of the distribution of zoonotic and vector-borne diseases in diverse
contexts.
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Background
Most emerging diseases are of zoonotic origin [1]. As
they involve pathogens, hosts and, potentially vectors,
zoonoses are complex disease systems and a challenge
for public health. In this paper, concepts of risk assess-
ment are applied to a vector-borne zoonotic disease in
an innovative approach to untangle sources of risk. Risk
assessment includes the identification of hazard and the
characterization of exposure [2]. The hazard is any po-
tential source of damage (e.g. radioactive radiation),
while the exposure is the chance that populations will
be in contact with the hazard (e.g. work in a nuclear
power plant). In the context of zoonotic vector-borne
diseases, we define hazard as the number of infected
hosts or vectors in the environment. This is determined
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by ecological conditions allowing the hosts, vectors and
pathogens to complete their life cycles and to overlap.
Exposure concerns the degree to which humans get in
contact with infected hosts/vectors. This largely relates
to land use, including the ability and the attraction to
access places where infected hosts/vectors are found.
Many disease ecology studies focus on what is here de-
fined as hazard. Exposure is more commonly addressed
by the field of public health which often does not in-
clude landscape-related variables. However, the distri-
bution of disease cases potentially results from the
combination of both hazard and exposure, and there-
fore cannot be approached solely from the hazard
angle. In this study, we attempt to distinguish between
hazard and exposure by comparing the predictive
power of three models that focus on different aspects
of the landscape: a hazard model containing a set of
variables found in the ecological literature, an exposure
model containing a set of variables found in the
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touristic and public health literature and, a global
model containing both sets of variables. Tick-borne en-
cephalitis (TBE) in Sweden is used as a case study. TBE
has already been well studied under the hazard angle
(e.g. [3]) but less under the angle of exposure (which is
emphasized in [4]).
TBE virus (TBEV) belongs to the family of Flaviviruses

and the western subtype of TBEV is usually transmitted
by Ixodes ricinus ticks [5]. Ticks pass through three ac-
tive life stages (larvae, nymphs and adults) and need a
blood meal to reach the following respective stage [6].
Transmission of TBEV among ticks occurs mainly dur-
ing co-feeding, especially between uninfected larva and
infected nymph feeding on rodents [7-9].
TBEV is of concern in Sweden, as the tick population

has spread and the incidence of the disease has been in-
creasing sharply over the past few years [10]. Two phe-
nomena are currently observed in Sweden. On the one
hand, the range of human cases of TBE is expanding
westward within the known tick range, and on the other
hand, the expansion of ticks northward along the coast.
While some common factors may be at play, the mecha-
nisms behind each phenomenon have not been fully
clarified. This may result from climate changes, host
populations dynamics and human behaviour changes
[11,12]. However, even in the well-established TBEV
Figure 1 Human infections of tick-borne encephalitis in Sweden.
endemic areas around Stockholm, the effect of these var-
iables on spatial distribution of the disease is unclear.

Methods
Materials
The study focused on Stockholm and the five neighbour-
ing counties (Gävleborgs län, Dalarnas län, Uppsala län,
Västmanlands län and Södermanlands län) (Figure 1).
TBEV is well established in that region of Sweden, where
the disease has been recorded for the past century. Re-
cords of cases by nearest settlement of infection (SMI
Swedish Institute for Communicable Disease Control
(Smittskyddsinstitutet) were included for a ten-year
study period (January 1998 to December 2007). Presence
at any time during the study period was translated into a
presence record, totaling 125 presence records. The
other settlements extracted from the Lantmäteriet data-
base (Swedish mapping, cadastral and land registration
authority), constituted the 4297 absence records.
Potential explanatory variables either represented the

surrounding environment, as calculated in a radius of
two km around the point location, or were calculated at
the exact record location.
Hypotheses were made based on literature, and candi-

date explanatory variables were allocated to hazard or ex-
posure. However, some variables could not be allocated to
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a single group in an unequivocal way and were included
in both.

Variables describing hazard
Variables describing the hazard, places where infected
hosts or vectors are found, were identified in the litera-
ture (Table 1). They are linked to the ecology of the
hosts and vector. Some commonly used landscape met-
rics were also included.
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In Sweden, roe deer are a major blood meal host for
reproducing adult female ticks [11,13]. However,
other larger game species, e.g. red deer, fallow deer
and wild boar, are available in large numbers and are
also likely to be important hosts for ticks. Bag
records of these game species were included (Dr
Jonas Kindberg, Wildlife Monitoring Unit, Swedish
Association for Hunting and Wildlife Management,
personal communication). Data, available by centre
e 1 Variables selected in the hazard or exposure model
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of hunting districts, were interpolated by Thiessen
polygons, leading to a lower resolution compared to
the other variables. The number of animals per
hectare found at the point is used as a proxy for
blood meal availability.

ii. Forest
Deciduous forests are a highly suitable habitat for
ticks, as well as for some host mammals [14,15].
The total proportion of forest, broad-leaved forest,
conifer and mixed forest inside the two km buffer
(100 m resolution, CORINE Land Cover, EEA) were
included. The average shape and proximity index of
forest patches in the buffer were calculated. A
patch with the most compact shape (i.e. the smal-
lest patch to area ratio), in the case of raster data, a
square, has a shape index of one. Increasing values
indicate a more complex shape, and more contact
between the patch and its surroundings. The prox-
imity index of forest patches relates to the amount
of forest within a specified radius around a patch,
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and indicates whether a patch is isolated or
fragmented.
Also, as various tree species may impact tick habitat
suitability differently, the mean volume of spruce,
oak, birch and pine per hectare in the buffer were
added (30 meter resolution, SLU Skogskarta,
Swedish University of Agricultural Sciences).
Forest areas where tree height was lower than 50
centimeters were used as a proxy to represent clear-
cuts (SLU Skogskarta). Intensive clear-cutting is
non-valuable for wildlife but, in the study area,
clear-cuts were small (mean area of 1682.68 m2 and
mean cross-section of 146.54 m). The area of clear-
cuts was divided by the area of forest in the buffer.
While clear-cuts may provide food for various host
species, it does not provide as good shelter as
forests.

iii. Land cover
Forest ecotones, particularly where they connect to
open areas, can be very suitable for ticks and hosts
as these habitats offer a high diversity of resources
[16]. The main roe deer habitat is also deciduous or
mixed forest with open areas [13,15]. The
proportion of open areas (agricultural and
transitional area from CORINE) in ecotones of 150
meters around forests in the buffer was added to the
hazard model.
The Shannon diversity index, representing the
richness of the landscape in the buffer, was
included [17].
Since high humidity favours tick questing, moist
areas are more suitable for ticks [16]. The
proportion of waterbodies in the buffer (CORINE)
and the distance to the nearest water course
(Lantmäteriet) were included as proxies for moister
areas.

Variables describing exposure
Variables describing the exposure, the degree to which
people enter infected landscape, were identified through
the scientific literature studying landscape attractiveness
for touristic activities (Table 1).

i. Accessibility

A study of tourist preferences indicated that
accessibility to forest increases the touristic value of
forest [18]. Indeed, in Sweden, there is a traditional
right of public access to private land, e.g. to enter
forests and to harvest resources such as mushrooms
and berries [18,19]. Assuming that roads increase
access, and that forests with roads are more likely to
be entered by visitors, we included the length of
roads in the buffer (Lantmäteriet) and the length of
roads in forests in the buffer to describe accessibility.
Assuming that places with holiday cabins would
relate to outdoor activities, the area occupied by
holiday houses in the buffer was included (Statistics
Sweden (Statistiska Centralbyrån)). In Sweden, 50 of
holiday houses are within a radius of 32 kilometres
from permanent homes [20]. The distance to
Stockholm, from which many holiday cabin users
originate, was included in the model (Lantmäteriet
database), assuming that areas closer to Stockholm
would be more frequently used for outdoor
recreation. Population density (2.5 arc-minutes
resolution, Gridded Population of the World from
Center for International Earth Science Information
Network (CIESIN)) was also included.

ii. Scenic beauty
Landscape features documented to increase the
perceived scenic beauty include water features [21]
and broad-leaved forests [18]. The distance to the
nearest water course (Lantmäteriet database), pro-
portion of waterbodies in the buffer (CORINE), and
the proportion of forest and of broad-leaved forest
(CORINE) were used. In Finland, a preference for
forest stands with a higher mean tree height and a
skewed distribution of height has been highlighted
[22]. The mean tree height in the buffer was calculated
and standard deviation of tree height was used as a
proxy for the skewness (SLU Skogskarta). In Sweden,
the touristic value of a forest increases with the
number of clear-cuts and decreases with the size of
the clear-cuts within a given area [18]. The proportion
of clear-cuts in the forest (SLU Skogskarta) in the
buffer was thus added to the exposure dataset.

Methods
Principal component analyses
The potential explanatory variables outlined above are
numerous, mostly proxies, and sometimes redundant.
Therefore, principal component analyses (PCA) were
used to identify sub-groups of similar variables (“Rcmdr”
package and plugin “FactoMineR” in R 2.12.0). The fac-
torial coordinates were used as new variables. Two vari-
ables were selected: one summarizing the variables on
wildlife species (wild boar, red deer, fallow deer and roe
deer) and another, accessibility variables (population
density, length of roads, distance to Stockholm and
length of roads in forest).

Boosted regression trees
The multivariate models were built using boosted re-
gression trees (BRT) (“gbm” package in R) [23]. BRT
have been identified as an efficient method for investi-
gating variables explaining the spatial distribution of
zoonotic diseases [24]. A major advantage compared to
regression is that BRT allows the modelling non-linear
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responses. BRT results comprises of two essential ele-
ments: relative importance and response curve. The rela-
tive importance of each variable represents the number
of times a variable was used in successive trees, weighted
by the mean of the squared improvement provided by
this variable to each tree [23]. Response curves are
graphs representing the evolution of the fitted probabil-
ity function according to the variation of the variable.
They were interpreted here as a relative probability of
being in the presence of the disease at various levels of
the predictor variable.
In a BRT, an internal node represents a variable that is

cutting the data into several branches that lead to other
nodes [23]. The decision of presence or absence is made
at terminal nodes. The new trees are fitted on the resid-
uals of the previous trees and the new model contains
both previous and new trees. At each step, 50 of the data
are randomly selected to enlarge the previous trees. The
learning rate (contribution of each tree to the final
model), the tree complexity (number of nodes in a tree)
and the number of trees are chosen in order to optimize
the predictive power.
Three models were built containing respectively the

hazard variables, the exposure variables, and both hazard
and exposure in a global model. Some variables were in-
cluded in both hazard and exposure models as they may
relate to either aspect (Table 1). To account for potential
spatial structure in the distribution of TBE cases, the
proportion of infected places within a radius of 20 km
was added to each model.

Measures of the predictive power
Internal validation of the predictive power
As BRT builds the trees on random subsamples, each
model (hazard, exposure and global) was run 25 times.
The mean areas under the curve (AUC) (“PresenceAb-
sence” package in R) were compared using a Student t-
test. An AUC of 0.5 indicates a random distribution of
predictions, and of 1 a perfect prediction [25,26]. False
presences and absences, using the sensitivity equals the
specificity as probability threshold, were mapped.

External validation of the predictive power
External AUC for each model were calculated from
cross-validation on 10 subsets. Models were run on nine
subsamples and AUC was calculated on a tenth sub-
sample. This step is repeated 10 times, using a different
validation sub-sample each time. The final AUC is the
mean of the AUC calculated on the 10 evaluation sub-
samples. This was run 25 times and compared with a
Student t-test.
Moreover, TBE records from 2011 were used to assess

the predictive power of our models. Continuous pre-
dicted probability maps were created for each model by
kriging, on which TBE presence records in 2011 were
overlaid.
The presence in 2011 were completed with absences

(settlements with no presence records between 1998–
2007 and in 2011). Then, predicted probabilities were
calculated for this new dataset. The means of predicted
probabilities located at presence points were compared
to absences points by a Welch test.

Results
Principal component analyses
Two PCAs were computed. The two first components of
the PCA on the data on wildlife species explained 71.76
of the variance. The first component (variable PC1:
Wildlife) was positively correlated with wild boars (cor-
relation of 0.85), red deer (0.84) and fallow deer (0.64).
The second component was only positively correlated
with roe deer (0.99), which was subsequently kept as an
individual variable. The first two components of the
PCA on accessibility variables explained 66.36 of the
variance. The first component (variable PC1: Accessibil-
ity) was positively correlated with the human population
density (correlation of 0.76), the length of roads (0.65)
and negatively correlated with the distance to Stockholm
(−0.75). The second dimension was positively correlated
with the length of roads in the forest (0.92) and was also
kept as an individual variable.

Boosted regression trees
The variables with the highest relative importance (vari-
ables forming the first 50 of summed relative import-
ance) in the hazard model were the number of TBE
cases within 20 km (relative importance of 23.23), vol-
ume of spruce (10.71), distance to a water course (7.30),
total proportion of forest (5.40) and proportion of con-
iferous forest (5.33) (Table 2).
In the exposure model, the variables with the highest

relative importance were the number of TBE cases
within 20 km (relative importance of 25.42), length of
roads in forest (17.67) and distance to a water course
(7.79) (Table 2).
The trends of the variable response curve according to

the probability of finding TBEV were similar in the tree
models. Response curve graphs of the global model are
represented in Figure 2. Variables which showed a global
positive trend are: infections in 20 km (relative import-
ance of 17.94); roads in forest (11.56), holiday houses
(4.94), PC1: Accessibility (4.16), oak (3.76), birch (3.50),
Shannon index (3.19), forest shape index (3.17), mixed
forest (3.00), clear-cuts (2.88), standard deviation of tree
height (2.71), forest proximity index (2.07), broad-leaved
forest (1.52) and, waterbodies (0.97). Variables that
showed a global negative trend are: spruce (8.10), con-
iferous (3.84), mean trees height (2.78) and roe deer



Table 2 Relative importance of variables introduced in the hazard and in the exposure boosted regression trees

Hazard model Exposure model

Variable Relative importance (%) Variable Relative importance (%)

Infections in 20 km 23.23 Infection in 20 km 25.42

Volume of spruce 10.71 Length of roads in forest 17.67

Distance to water course 7.30 Distance to water course 7.79

Volume of oak 6.33 Proportion of forest 7.75

Proportion of forest 5.40 Mean height of trees 7.09

Proportion of coniferous 5.33 PC1: Accessibility 6.78

Proportion of clear-cuts 5.28 Proportion of holiday houses 6.18

Volume of birch 5.24 Distance to the sea 5.49

Forest shape index 5.04 Standard deviation of height of trees 5.19

Shannon diversity index 4.83 Proportion of clear-cuts 5.19

Volume of pine 4.47 Proportion of broad-leaved forest 3.74

Proportion of mixed forest 4.26 Proportion of waterbodies 1.72

Forest proximity index 3.60

Open areas in ecotones 3.05

Proportion of broad-leaved forest 2.20

PC1: Wildlife 1.31

Proportion of waterbodies 1.31

Roe deer 1.05
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(1.35). Variables which showed an important decrease
followed by an increase are: distance to water course
(4.55), distance to the sea (4.15), forest (3.70), open area
in ecotone (2.31) and, PC1: Wildlife (0.74). Pine (3.12)
showed a first peak around 15 m3/ha followed by an in-
crease around 70 m3/ha.
Measures of the predictive power
The mean AUC were 0.92 for the hazard and exposure
models and 0.93 for the global model. AUC were lower
for the cross-validated data with 0.74 for the hazard and
exposure models and 0.75 for the global model. The
mean AUC of global models are significantly higher (p-
value <0.001) than the mean AUC of hazard models and
exposure models.
There were few false absences: 18 for the hazard

model, 30 for the exposure model and 18 for the global
model (Figure 3). There were more false presences: 681
for the hazard model, 482 for the exposure model and
593 for the global model (Figure 3).
The false presence of the hazard models were in areas

within the TBEV focus while false presences of exposure
model were distributed in areas where disease cases have
not yet been recorded (Figure 3). The global model had
the best visual match between areas with high interpo-
lated probabilities and high frequency of presence in
2011. The hazard and exposure models both appear to
contribute to the distribution of high probability areas
observed in the global model map (Figure 3).
The mean probability predicted by the global model

on presence in 2011 (44.05*10−3) was significantly differ-
ent (p-value < 0.001) from the mean probability of ab-
sence (27.51*10−3). Similar results were observed for
probabilities extracted from the hazard and exposure
models.

Discussion
Comparison of hazard and exposure
All three models, focusing on hazard, exposure and all
factors, respectively, reached a good fit and a reasonable
ability to predict hot spots for an independent year, i.e.
2011. However, the global model was clearly the most
exhaustive in indicating areas of higher probabilities.
Both the aspects of hazard and exposure therefore de-
serve consideration when examining risk and its spatial
distribution. The two variables with the highest relative
importance in the global model, other than the variable
describing spatial structure, were the roads in forest
positively related to the exposure, and the volume of
spruce negatively related to the hazard, underlining the
importance of accounting for both aspects of risk. This
makes perfect sense when approaching the question of
the spatial distribution of a zoonotic disease using hu-
man case records: human land use is spatially heteroge-
neous. Beyond the need to account for all factors



Figure 2 Graphs of each variable according to the fitted function of the global model (percentage represents the relative importance
of the variable).
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Hazard model Exposure model Global model

Figure 3 Resulting maps of the hazard, exposure and global models (based on 1998–2007 TBE records) and TBE records in 2011.
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explaining the spatial distribution, factors related to ex-
posure may offer important keys for the understanding
of zoonotic disease emergence and human risk. In this
study, the spatial distribution of TBE cases in Sweden
looked beyond hazard-related factors and classic epide-
miologic factors such as occupation to include variables
depicting specifically where people at risk are most likely
to enter infested areas.
False presences identified for the various models did not

follow the same spatial pattern (Figure 3). These false
presences could be: models errors; locations suitable for
transmission but where the pathogen or susceptible
humans are absent; areas where the pathogen is circulat-
ing but not transmitted to humans and; areas where the
disease is found but not recorded (non-identified, non-
reported or asymptomatic cases). Considering false pres-
ence as points were TBEV may appear in the near future,
the exposure model seems suitable for predicting the dis-
ease in new areas. Inversely, looking at the probability
maps, the hazard model seems to show a better prediction
in areas of spatially concentrated TBE infectious areas and
so a better prediction of intensification of the disease.
There are still a few points outside the high probability
areas, indicating that some variables may be missing in
the models.
Challenges related to this hazard/exposure approach

relate essentially to the interpretation of variables as in-
fluencing hazard or exposure. Some variables may be re-
lated to hazard or exposure in an unambiguous way, but
several may be proxy for both vector (or host) habitat
and landscape attractiveness for human. For example,
while tree species would presumably relate to hazard, a
study conducted in Finland indicates that touristic pref-
erences increase with the volume of pines and birches
[22]. Scale may influence the interpretation of variables
as related to hazard or exposure. For example, the dis-
tance to the sea, here used in the exposure model, may
also influence, at broader scale, the length of the
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vegetation season and the suitability for vectors and
hosts through its buffering effect on temperature [14].
Careful consideration of the interpretation and scale of
variables included in risk, hazard or exposure models is
therefore necessary.
Both hazard and exposure variables are needed for a

better understanding of the spatial distribution of
vector-borne diseases, but exposure variables may be
specific to regions, just as some epidemiological risk fac-
tors can be culturally driven. Sweden, for instance has a
particular public right of access to land (“Allemansrät-
ten”). Still, accessibility is not evenly developed every-
where, and other factors may influence accessibility or
attractiveness, such as land ownership [27].

Variables influencing the distribution of TBE in Sweden
This study highlights the main spatial variables influen-
cing the distribution of TBE in a highly endemic region
of Sweden. Forests with the highest probabilities of pres-
ence were well-connected oak, birch and pine forests,
with a complex shape, numerous clear-cuts and a tree
height variation of at least five meters. Landscapes with
the highest probabilities were easy to reach, with high
landscape diversity (Shannon index), holiday houses,
waterbodies and broad-leaf or mixed forest with open
area in their ecotones. Fitted function curves mostly fol-
low our preliminary assumptions based on the literature
or field experience. Therefore, spruce forests are less
favourable than pine forests, probably because they have
less undergrowth. Also, the high probability in very close
proximity to the sea is related to the presence of houses
near the shore. The results for the distance to water
course raise new questions as it is a less prominent fea-
ture of the landscape than waterbodies.
Few interactions were identified. The most important

interaction was between areas of holiday houses, a proxy
for attractiveness, and places where there were more
than 10 km of roads in forest, a proxy for accessibility.
Furthermore, correlation between variables makes some
probability distributions difficult to interpret. For in-
stance, tree height, which is positively correlated to the
proportion of coniferous trees, is negatively correlated to
broad-leaved-forest. Decreasing probabilities with the
tree height may thus relate to the decreasing probabil-
ities with conifers. Also, low pine volume may imply the
presence of larger volumes of deciduous trees and ex-
plain the peak around 17 m3/ha.
Probabilities of TBE cases increased with the first PCA

component of wildlife (positively correlated with wild
boars, red deer and fallow deer) and decreased with the
abundance of roe deer. Deer and wild boars (and, maybe,
more specifically, young wild boars) most likely consti-
tute important blood meal sources for adult female ticks
before egg laying. A negative response of TBE with roe
deer was previously highlighted in Sweden [13] and, at a
local scale, in Italy and Slovakia, with the increase of co-
feeding ticks on rodent when deer density is decreasing
[28]. Both studies hypothesized a dilution effect due to a
high density of deer (incompetent hosts) diverting the
questing ticks from rodents (competent hosts). However,
a mathematical model estimating the threshold for tick-
borne disease persistence reveals that, in the case of
non-viraemic transmission, the dilution effect is less
relevant [29]. Here, the PCA reflects that roe deer are
not found in the same places as the three other species.
The decreasing probability may therefore result not from
roe deer specifically, but from unsuitability for any as-
pect of the transmission cycle. Further investigation on
the role of wildlife in feeding ticks and hosting the TBE
virus would be useful. These results highlight the need
for a better understanding of the TBEV transmission
system and the mechanisms underlying statistical rela-
tionship. Only in this way could such results be mean-
ingful for risk prediction and public health.

Conclusions
Our study of the distribution of human cases of TBE in
Sweden indicates that separating and accounting specif-
ically for hazard and exposure in distribution models
holds great potential for the understanding and the map-
ping of zoonotic disease spatial pattern and emergence.
Exposure variables were extracted from standard GIS
data bases following a similar strategy as is classically
done for studies focusing on the hazard.
TBE is emerging in different places in Europe and un-

derstanding this pattern is essential to help public
health. Randolph compares human cases to “the tip of
the iceberg” that emerges from the undetected enzootic
cycles below the surface [3]. As ecological processes
driving the distribution of TBEV are not yet completely
described, it is of great value to be able to track the
sources of human TBE back to infection sites, trying to
unravel the role of local wildlife on the persistence and
circulation of TBEV. Accounting for exposure may also
contribute to this by allowing more specific interpret-
ation of any variable in the model.
In conclusion, linking ecology and public health is

highly recommended. While the conditions for access
and use of hazardous areas highlighted in this study may
be specific to Scandinavia, this unified method offers
promising perspectives to further understand the distri-
bution of various zoonotic and vector-borne diseases in
diverse contexts by the explicit inclusion of exposure-
related variables.
Abbreviations
TBE: Tick-borne encephalitis; TBEV: Tick-borne encephalitis virus; PCA: Principal
component analysis; BRT: Boosted regression trees; AUC: Area under the curve.



Zeimes et al. Parasites & Vectors 2014, 7:370 Page 10 of 10
http://www.parasitesandvectors.com/content/7/1/370
Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
CZ and SV designed the study, carried out the spatial and statistical analysis,
interpreted the results and drafted the manuscript. GO helped in the
selection of variables, interpreted the results and critically revised the
manuscript. MH collected the data, interpreted the results and critically
revised the manuscript. All authors read and approved the final manuscript.

Acknowledgments
This study was funded by EU grants FP7-261504 EDENext and is catalogued by
the EDENext Steering Committee as EDENext180 (http://www.edenext.eu). The
contents of this publication are the sole responsibility of the authors and don’t
necessarily reflect the views of the European Commission. The authors thank
Jonas Kindberg for the data on bag statistics and for sharing his
knowledge on the ecology of the study area.

Author details
1Earth and Life Institute, Georges Lemaître Centre for Earth and Climate
Research (TECLIM), Université Catholique de Louvain (UCL), GEOG, Place
Louis Pasteur 3 bte L4.03.07, 1348 Louvain-la-Neuve, Belgium. 2Department
of Wildlife, Fish, and Environmental Studies, Swedish University of
Agricultural Sciences (SLU), Umea, Sweden. 3Swedish Institute for
Communicable Disease Control (SMI), Stockholm, Sweden.

Received: 14 April 2014 Accepted: 31 July 2014
Published: 15 August 2014

References
1. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P:

Global trends in emerging infectious diseases. Nature 2008, 451:990–993.
2. FAO: Principles and guidelines for the conduct of microbiological risk

assessment. Codex Alimentarius: Food and hygiene basic texts. Rome: Food
and Agriculture Organization of the United Nations; 1999:53–62.

3. Randolph SE: Tick-borne encephalitis virus, ticks and humans: Short-term
and long-term dynamics. Curr Opin Infect Dis 2008, 21:462–467.

4. Stefanoff P, Rosinska M, Samuels S, White DJ, Morse DL, Randolph SE: A
National Case–control Study Identifies Human Socio-Economic Status
and Activities as Risk Factors for Tick-Borne Encephalitis in Poland. PLoS
One 2012, 7:e45511.

5. Dumpis U, Crook D, Oksi J: Tick-borne encephalitis. Clin Infect Dis 1999,
28:882–890.

6. Parola P, Raoult D: Ticks and tickborne bacterial diseases in humans: An
emerging infectious threat. Clin Infect Dis 2001, 32:897–928.

7. Randolph SE: Transmission of tick-borne pathogens between co-feeding
ticks: Milan Labuda’s enduring paradigm. Ticks Tick Borne Dis 2011, 2:179–182.

8. Randolph SE, Gern L, Nuttall PA: Co-feeding ticks: Epidemiological
significance for tick-borne pathogen transmission. Parasitol Today 1996,
12:472–479.

9. Randolph SE, Miklisová D, Lysy J, Rogers DJ, Labuda M: Incidence from
coincidence: Patterns of tick infestations on rodents facilitate transmission
of tick-borne encephalitis virus. Parasitology 1999, 118:177–186.

10. Lundkvist A, Wallensten A, Vene S, Hjertqvist M: Tick-borne encephalitis
increasing in Sweden, 2011. Euro Surveill 2011, 16:39.

11. Jaenson TGT, Jaenson DGE, Eisen L, Petersson E, Lindgren E: Changes in the
geographical distribution and abundance of the tick Ixodes ricinus
during the past 30 years in Sweden. Parasit Vectors 2012, 5:8.

12. Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Peña A,
George JC, Golovljova I, Jaenson TGT, Jensen JK, Jensen PM, Kazimirova M,
Oteo JA, Papa A, Pfister K, Plantard O, Randolph SE, Rizzoli A, Santos-Silva
MM, Sprong H, Vial L, Hendrickx H, Zeller H, Van Bortel W: Driving forces
for changes in geographical distribution of Ixodes ricinus ticks in Europe.
Parasit Vectors 2013, 6:1.

13. Jaenson TGT, Hjertqvist M, Bergström T, Lundkvist Å: Why is tick-borne
encephalitis increasing? A review of the key factors causing the increasing
incidence of human TBE in Sweden. Parasit Vectors 2012, 5:184.

14. Jaenson TGT, Eisen L, Comstedt P, Mejlon HA, Lindgren E, BergstrÖm S,
Olsen B: Risk indicators for the tick Ixodes ricinus and Borrelia
burgdorferi sensu lato in Sweden. Med Vet Entomol 2009, 23:226–237.
15. Tack W, Madder M, Baeten L, De Frenne P, Verheyen K: The abundance of
Ixodes ricinus ticks depends on tree species composition and shrub
cover. Parasitology 2012, 139:1273–1281.

16. Lindström A, Jaenson TGT: Distribution of the common tick, Ixodes ricinus
(Acari: Ixodidae), in different vegetation types in southern Sweden. J Med
Entomol 2003, 40:375–378.

17. Shannon C, Weaver W: The mathematical theory of communication. Urbana:
University of Illinois Press; 1949.

18. Bostedt G, Mattsson L: The value of forests for tourism in Sweden. Ann
Tour Res 1995, 22:671–680.

19. Lindhjem H: 20 years of stated preference valuation of non-timber benefits
from Fennoscandian forests: A meta-analysis. J For Econ 2007, 12:251–277.

20. Müller DK: The attractiveness of second home areas in Sweden: A
quantitative analysis. Curr Issues Tourism 2006, 9:335–350.

21. Nielsen AB, Heyman E, Richnau G: Liked, disliked and unseen forest
attributes: Relation to modes of viewing and cognitive constructs. J Environ
Manage 2012, 113:456–466.

22. Silvennoinen H, Alho J, Kolehmainen O, Pukkala T: Prediction models of
landscape preferences at the forest stand level. Landsc Urban Plan 2001,
56:11–20.

23. Elith J, Leathwick J, Hastie T: A working guide to boosted regression trees.
J Anim Ecol 2008, 77:802–813.

24. Zeimes CB, Olsson GE, Ahlm C, Vanwambeke SO: Modelling zoonotic
diseases in humans: comparison of methods for hantavirus in Sweden.
Int J Health Geogr 2012, 11:39.

25. Pearce J, Ferrier S: Evaluating the predictive performance of habitat models
developed using logistic regression. Ecol Model 2000, 133:225–245.

26. Fawcett T: An introduction to ROC analysis. Pattern Recognit Lett 2006,
27:861–874.

27. Vanwambeke SO, Šumilo D, Bormane A, Lambin EF, Randolph SE:
Landscape predictors of tick-borne encephalitis in Latvia: Land cover,
land use, and land ownership. Vector-Borne Zoonot Dis 2010, 10:497–506.

28. Cagnacci F, Bolzoni L, Rosà R, Carpi G, Hauffe HC, Valent M, Tagliapietra V,
Kazimirova M, Koci J, Stanko M, Lukan M, Henttonen H, Rizzoli A: Effects of
deer density on tick infestation of rodents and the hazard of tick-borne
encephalitis. I: Empirical assessment. Int J Parasitol 2012, 42:365–372.

29. Rosà R, Pugliese A, Norman R, Hudson PJ: Thresholds for disease
persistence in models for tick-borne infections including non-viraemic
transmission, extended feeding and tick aggregation. J Theor Biol 2003,
224:359–376.

doi:10.1186/1756-3305-7-370
Cite this article as: Zeimes et al.: Shaping zoonosis risk: landscape
ecology vs. landscape attractiveness for people, the case of tick-borne
encephalitis in Sweden. Parasites & Vectors 2014 7:370.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.edenext.eu

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Materials
	Variables describing hazard
	Variables describing exposure

	Methods
	Principal component analyses

	Boosted regression trees
	Measures of the predictive power
	Internal validation of the predictive power
	External validation of the predictive power


	Results
	Principal component analyses
	Boosted regression trees
	Measures of the predictive power

	Discussion
	Comparison of hazard and exposure
	Variables influencing the distribution of TBE in Sweden

	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

