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) that express the HNK-1 antigen and form body pigment cells were previously
identified in diverse ascidian species. Here we investigate the embryonic origin, migratory activity, and
neural crest related gene expression patterns of NCLC in the ascidian Ciona intestinalis. HNK-1 expression
first appeared at about the time of larval hatching in dorsal cells of the posterior trunk. In swimming
tadpoles, HNK-1 positive cells began to migrate, and after metamorphosis they were localized in the oral
and atrial siphons, branchial gill slits, endostyle, and gut. Cleavage arrest experiments showed that NCLC are
derived from the A7.6 cells, the precursors of trunk lateral cells (TLC), one of the three types of migratory
mesenchymal cells in ascidian embryos. In cleavage arrested embryos, HNK-1 positive TLC were present on
the lateral margins of the neural plate and later became localized adjacent to the posterior sensory vesicle,
a staging zone for their migration after larval hatching. The Ciona orthologues of seven of sixteen genes that
function in the vertebrate neural crest gene regulatory network are expressed in the A7.6/TLC lineage. The
vertebrate counterparts of these genes function downstream of neural plate border specification in the
regulatory network leading to neural crest development. The results suggest that NCLC and neural crest
cells may be homologous cell types originating in the common ancestor of tunicates and vertebrates and
support the possibility that a putative regulatory network governing NCLC development was co-opted to
produce neural crest cells during vertebrate evolution.

© 2008 Elsevier Inc. All rights reserved.
Introduction

The neural crest is responsible for the formation of many different
cell types during vertebrate development (Hall, 1999; Le Douarin and
Kalcheim, 1999). Neural crest precursors arise between the neural and
non-neural ectoderm, delaminate during neural tube formation, and
migrate through prescribed pathways to their final sites of differentia-
tion. Neural crest development occurs in several steps (Nieto, 2001;
Sauka-Spengler et al., 2007). First, inductive signals, such as FGF, BMP,
andWnt, establish the neural plate border and activate the transcription
factors Pax 3/7, Dlx3/5, Zic, and Msx1/2. The latter transcription factors
in turn activate the expressionof downstreamtranscription factors, such
as Snail, FoxD3, and SoxE, which specify neural crest identity at the
neural plate border and trigger the expression of effector genes
responsible formigratory activity and pluri potency of neural crest cells.
rsity of Maryland, College Park,

, Vanderbilt University, Nash-
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Neural crest cells are ubiquitous in vertebrates, including the basal
agnathan groups (McCauley and Bronner-Fraser, 2003; Ota et al.,
2007). It has been argued that the appearance of the neural crest was a
major step in the evolution of vertebrate complexity, particularly in
the cranium (Gans and Northcutt, 1983; Shimeld and Holland, 2000;
Northcutt, 2005). The presence of complex populations of neural crest
cells in all vertebrates raised questions concerning their evolutionary
origin and spearheaded searches for similar cell types in invertebrate
chordates. In cephalochordates and ascidians, some of the early
regulatory genes typical of vertebrate neural crest cells are expressed
along the neural plate border (Ma et al., 1996; Corbo et al., 1997; Wada
et al., 1997; Sharman et al., 1999; Holland and Holland, 2001; and
others). However, neither the expression of downstream genes in the
pathway leading to neural crest development nor delamining and
migratory cells were observed in this region (Wada et al., 2001; Baker
and Bronner-Fraser, 1997), which supported the hypothesis that
neural crest cells first appeared during vertebrate evolution.

Recent phylogenomic evidence suggests that tunicates (including
ascidians), rather than cephalochordates, may be the sister group of
vertebrates (Bourlat et al., 2006; Delsuc et al., 2006; Vienne and
Pontarotti, 2006). Accordingly, a cell type with features resembling
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Table 1
List of Ciona intestinalis genes tested for expression in the A7.6/TLC lineage by in situ
hybridization

Gene name JGI model Clone ID Vertebrate orthologue

Ci-ap2-like1 cie009n12 AP-2
Ci-ap2-like2 cilv008i03 AP-2
Ci-cadherin2a ci0100146860 cinc012h04 Cadherin II
Ci-collagen2a cilv002e01 Collagen II
Ci-Dll-B cicl022f04 dlx3
Ci-emc cicl010f24 Id
Ci-foxD-b citb008o13 foxD3
Ci-macho1 ci0100150779 cieg016n12 Zic
Ci-msxb cign067l18 msx1/2
Ci-myc ci0100150934 cieg017l16 c-myc
Ci-NoTrlc ci0100140298 citb018l16 –

Ci-pax3/7 cign078f09 pax3, pax7
Ci-rhoABC ci0100142667 cilv044l14 rho A/B/C
Ci-snail cibd020p17 Snail, slug
Ci-TLC-2 ci0100143931 cilv075a14 –

Ci-twist-like1 cicl029j13 Twist
Ci-twist-like2 cicl020p07 Twist
Ci-zicL cicl002e04 Zic
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vertebrate neural crest cells (neural crest-like cells or NCLC) was
discovered in the ascidian Ecteinascidia turbinata (Jeffery et al., 2004).
Ecteinascidia NCLC resemble vertebrate neural crest cells in (1)
showing long distance migration from the dorsal midline, (2)
expression of HNK-1 antigen, a neural crest marker (Hall, 1999; Le
Douarin and Kalcheim,1999), and a gene homologous to zic2, which is
crucial for neural crest development (Elms et al., 2003), and (3)
differentiation into body pigment cells, one of the major fates of
vertebrate neural crest cells. It was subsequently shown that these
HNK-1 positive NCLC are found in diverse ascidian species (Jeffery,
2006). Thus, it was concluded that ascidian NCLC and neural crest cells
have many similarities and share at least one common derivative:
body pigment cells (Jeffery, 2007).

Here, we address two issues required to understand the extent to
which ascidian NCLC are related to neural crest cells: their (1)
embryonic origin and (2) expression of neural crest related genes. We
have selected the solitary ascidian Ciona intestinalis for this analysis.
First, embryonic cell lineages are well known in Ciona, and some of
these have been traced to specific adult tissues (Tukuoka et al., 2005).
Knowledge of cell lineage is critical in determining the origin of NCLC.
Second, the existence of a large EST collection (Satou et al., 2002a)
makes Ciona the species of choice for characterizing NCLC gene
expression patterns.

Materials and methods

Animals and embryos

C. intestinalis were purchased from Station Biologique, Roscoff,
France and maintained at Gif-sur-Yvette, France or collected and
maintained at the Marine Biological Laboratory, Woods Hole MA, USA.
Eggs and sperm were obtained from dissected gonoducts. Cross
inseminationwas carried out, the chorionwas removed from fertilized
eggs with protease (Mita-Miyazawa et al. 1985), and dechorionated
embryos were raised at 15–18 °C in Millipore filtered sea water
(MFSW) in Petri dishes coated with 1% agarose.

Cleavage arrest experiments

In cleavage arrest experiments, embryos or hatched larvae were
treated with 3 μg/ml cytochalasin B (Sigma, St. Louis, MO) in MFSW
beginning at various stages of development and incubated in the
inhibitor until untreated controls reached 6 h post-hatching (hph). The
cleavage arrested embryos and controls were fixed in 4% paraformal-
dehyde (PF) and processed for HNK-1 immunoreactivity as described
below.

HNK-1 immunoreactivity

Fixation and immunostaining with HNK-1 monoclonal antibody
(BD Biosciences Pharingen, San Jose, CA) was carried out as described
by Jeffery et al. (2004) and Jeffery (2006). Alternatively, specimens
were fixed in 4% PF in MFSW-0.1% Tween (pH 8.2; overnight), stained
with antibody diluted 1:2 in PBS, and antigen–antibody complexes
were detected with biotinylated goat anti-mouse IgM secondary
antibody (1:200 in PBS; Vector Laboratories, Burlingame, CA). Both
procedures gave similar results. Antigen–antibody complexes were
detected using the ABC Peroxidase Kit (Vector Laboratories). Controls
treatedwith non-immunemouse serum (1:10 dilution in PBS; AbCam,
Cambridge, MA) did not exhibit peroxidase labeled cells. The stained
specimens were viewed by light microscopy and photographed.

Genes and in situ hybridization

The cDNA clones used for in situ hybridization were obtained from
the Ciona Gene Collection release 1 (Satou et al., 2002a) and are listed
in Table 1. To obtain the Ciona TLC2 cDNA, the DNA sequences
homologous to Halocynthia roretzi (Hr-TLC2; GenBank BAB20902) was
identified in the ghost database by BLAST, and the corresponding
cDNA was then selected from the gene collection.

Whole mount in situ hybridizationwas done on specimens fixed in
4% PF and processed as described above, using digoxigenin labeled
RNA probes, and NBT-BICP staining according to the procedures of
Wada et al. (1995) and Satou and Satoh (1997) or Christiaen et al.
(2002). The stained specimens were viewed by light microscopy and
photographed.

Results

HNK-1 expression during development

The pattern of HNK-1 expression was determined in embryos,
larvae, and juveniles. No HNK-1 positive cells were detected in
embryos from the early cleavage through the tailbud stages (see Fig.
1A for a gastrula stage). In a few mid to late tailbud embryos, weak
HNK-1 staining was seen in clusters of cells on the dorsal side of the
posterior trunk (Fig. 1B). In the majority of embryos, however, strong
HNK-1 staining began at the time of larval hatching in scattered cells
located lateral and posterior to the sensory vesicle (Fig. 1C). In
swimming larvae, the labeled cells appeared to migrate anteriorally
toward the developing oral siphon (Figs. 1E, G; and see below). HNK-1
staining initially appeared in the central region of each cell,
presumably in perinuclear vesicles, and later spread to mark the cell
boundaries (Figs. 1D, F, H). Serial sectioning showed HNK-1 stained
cells concentrated on the dorsal side of the swimming larva (Figs. 1I–
N). At 6 hpf, HNK-1 stained cells were present throughout the trunk
but most prevalent in the oral siphon primordium, the atrial siphon
primordia, and near the developing cerebral ganglion (see Fig. 2A).

In post-metamorphic juveniles, HNK-1 expressing cells were
observed in the following locations: the developing siphon primordia
and siphons (Figs. 1O, P, S, T), the first two branchial gills slits (Fig. 1S
and data not shown), a region dorsal and lateral to the developing
cerebral ganglion (Fig. 1V), and in some but not all animals in the gut
(data not shown) and endostyle (Figs. 1S, U). Rarely, HNK-1 staining
was also seen in cells closely associated with the ocellus, which are
lens cells (Figs. 1Q, R). Most individuals, however, showed no HNK-1
staining within the sensory vesicle, suggesting that lens staining is
transitory. The tunic cells, which stain with HNK-1 antibody in some
ascidian species (Jeffery, 2006), were not HNK-1 positive in juvenile
Ciona (Figs. 1S, T, U). By 10 dph HNK-1 staining could not be detected
in juveniles (data not shown). The results show that HNK-1 positive



Fig. 1. Expression of HNK-1 antigen during embryonic and adult development. (A) HNK-1 antigen is not detected in a mid-gastrula stage embryo. Dorsal view. (B) HNK-1 antigen is
expressed weakly (arrow) in a few cells located lateral and posterior to the sensory vesicle (SV) in a mid to late tailbud embryo. (C–H) HNK-1 antigen is strongly expressed (arrows) in
cells anterior, lateral, and posterior to the sensory vesicle (SV) between hatching (C, D), the beginning of larval swimming (E, F), and elongation of the trunk (G, H). Panels D, F, and H
represent higher magnifications of HNK-1 positive cells in panels C, E, and G respectively. Panels C–H are dorsal views with anterior on the left. (I–M) A serially sectioned swimming
larva showing HNK-1 stained cells concentrated on the dorsal side of the trunk. Sections are shown in sequence from dorsal most (I) to ventral most (N) with anterior on the left. (O–
V) HNK-1 expression continues during metamorphosis (2 dpf) (O–R) and in juveniles (5 dpf) (S–V). Panels P, R, T, and V represent higher magnifications of HNK-1 stained cells in
panels O, Q, S, andW, respectively. Panel P is focused on HNK-1 stained cells near the atrial (ASP) and oral (OSP) siphon primordia. Panel Q is focused on HNK-1 stained cells near the
ocellus (OC). Panel T is focused on HNK-stained cells in the oral siphon (OS). Panel V is focused on HNK-1 stained cells in the atrial siphon (AS) and posterior to the sensory vesicle
(arrow). E: Endostyle. BS: Branchial gill slit. Scale bar: 50 μm:magnification is the same in panels A, B, C, E, G, O, Q, S, and U with approximately 4× increase in panel D, F, H, P, R, T, and
V. Scale bar 30 μm in panel I; magnification is the same in panels I–N.
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cells appear in the larval trunk about the time of hatching, then
apparently disperse and become localized in different tissues and
organs of the post-metamorphic juvenile, and finally lose HNK-1
reactivity, presumably as they differentiate.

The broad distribution of HNK-1 positive cells in the swimming
larva can be interpreted in one of two ways. First, HNK-1 expression
could be initiated at different times at various locations in the larva.
Second, HNK-1 expression could be initiated in a defined region and
the antigen expressing cells could later migrate into other regions of
the larva. To test these alternatives, larvae were treated with the cell
division/migration inhibitor cytochalasin B. Cytochalasin B treatment
began shortly after hatching, and after 6 h of treatment the
distribution of HNK-1 positive cells was compared to untreated
control larvae (Fig. 2). As described above, the controls showed HNK-1
positive cells concentrated in the oral and atrial siphon primordia and
near the sensory vesicle (Fig. 2A). In contrast, the cytochalasin-treated
larvae showed HNK-positive cells posterior and lateral to the sensory
vesicle (Fig. 2B), the same place HNK-1 labeling was detected in mid to
late tailbud embryos and immediately after hatching (Figs. 1B–D; data
not shown). In addition, HNK-1 positive cells were less numerous and
larger in cytochalasin-treated larvae than in the untreated controls
(Fig. 2), suggesting that they normally undergo division in swimming



Fig. 2. Migration of HNK-1 positive cells determined by cytochalasin B inhibition. (A)
Control untreated larva at 6 hph with focus on small HNK-1 positive cells in the oral
(OSP) and atrial (ASP) siphon primordia anterior and posterior, respectively, to the
sensory vesicle (SV). HNK-1 stained cells adjacent to the sensory vesicle are also
present but out of focus. A larva from the same clutch as A that was treated with
cytochalasin B from hatching to 6 hph showing large HNK-1 positive cells restricted to
a position in the trunk posterior to the sensory vesicle. Scale bar: 30 μm: magnification
is the same in panels A and B.
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larvae. The results suggest that HNK-1 positive cells initially appear at
the posterior margins of the sensory vesicle, thenmigrate through the
larval trunk, and are eventually distributed inmany different locations
in the juvenile.

Embryonic origin of HNK-1 positive cells

Because HNK-1 expression did not appear until about the time of
larval hatching, the embryonic origin of HNK-1 positive cells could
not be determined by direct inspection. Instead, the cleavage arrest
method (Whittaker, 1973), which permits blastomeres expressing a
molecular marker to be positively identified in early embryos, was
used to determine the lineage of HNK-positive cells. Cytochalasin B
treatment was initiated after every cleavage up to the 64-cell stage,
during gastrulation and neurulation, and at several times during larval
tail development. Incubation with the drug was continued until
untreated controls hatched and became swimming larvae, and the
arrested embryos and controls were fixed and assayed for HNK-1
expression.

HNK-1 expression was first detected at the late gastrula stage in
two cells located near the lateral lips of the blastopore (Fig. 3A). The
location of the stained cells earmarked them as A7.6 blastomeres
(Figs. 3A, B). The HNK-1 stained cells became internalized late during
gastrulation and were positioned immediately under the lateral
margin of the neural plate, which is marked by melanized precursors
of the otolith and ocellus (Figs. 3C, D). Prior to neurulation, the neural
plate extends posteriorly on the dorsal surface of the embryo to close
the blastopore. Sections through cleavage arrested embryos at this
stage showed HNK-1 stained cells (now represented by two cells in
some section planes) located immediately below and lateral to the
edge of the neural plate, as defined by the melanized otolith/ocellus
precursors (Figs. 3E, F).

The A7.6 cells are progenitors of the trunk lateral cells (TLC), which
flank the dorsal midline of the posterior trunk, adjacent to the
developing sensory vesicle (Fig. 1I; Mita-Miyazawa et al., 1987). In H.
roretzi, the A7.6 cells divide four times from the 110-cell stage to the
mid-tailbud stage, producing a total of 32 TLC, and no further cell
division occurs until after hatching (Nishida and Satoh, 1985). This
pattern of cell division distinguishes the TLC from the other two types
of mesenchyme cells located ventral to them in the larval trunk, which
proliferate throughout the tailbud stages. Cleavage arrest at various
times between the neurula and swimming larval stages showed that
the number of HNK-1 stained cells resemble the cell division pattern
of the TLC (although they do not reach the final number seen in Ha-
locynthia) and not the more ventral clusters of mesenchyme cells
(Table 2; Figs 1G, H, J). To further compare TLC and HNK-1 stained
cells, we determined the expression pattern in tailbud embryos of the
Ciona TLC-2 gene, a specific TLC marker in Halocynthia (Takahashi and
Satoh, 2001). In situ hybridization showed TLC-2 expressing cells
located in positions similar to HNK-stained cells in the dorsal posterior
region of the developing trunk (compare Figs. 3G, H, J and K, L). In
summary, the results show that HNK-1 stained cells and therefore
NCLC are members of the A7.6/TLC lineage.

Expression of neural crest regulatory network genes in the A7.6/TLC
lineage

The results suggest that A7.6/TLC lineage cells have features
resembling neural crest cells: HNK-1 expression, localization at the
edge of the neural plate/CNS, and migratory activity. The genes
involved in vertebrate neural crest development have been ordered in
a putative four-tiered hierarchy: the neural crest regulatory gene
network (NC-RGN) (Meulemans and Bronner-Fraser, 2004, 2005). To
determine whether NC-RGN genes are expressed in the A7.6/TLC
lineage, and if so, which tiers they represent, we surveyed the
expression of orthologous genes by in situ hybridization. The
expression patterns of some these genes were already known from
previous studies and in situ hybridizations in the Ciona ghost database
(http://ghost.zool.kyoto.u.ac.jp/indexrl.html), although expression in
the A7.6/TLC lineage was sometimes not completely resolved. The
results are shown in Fig. 4 and summarized in Fig. 5.

The first and second tiers of the NC-RGN involve patterning signals
(FGF, Notch, BMP, and Wnt) and transcription factors that refine and
specify the neural plate border, respectively. The importance of the
FGF, Notch, and Wnt/β-catenin signaling systems in A7.6/TLC induc-
tion has been previously demonstrated (Kawaminani and Nishida,
1997; Shimauchi et al., 2001; Imai et al., 2002a, 2003, 2006). Ascidian
homologues of NC-RGN tier 2 genes (msx1/2, pax7, dlx3, and zic) are
expressed along the margin of the neural plate (Ma et al., 1996; Wada
et al., 1997; Caracciolo et al., 2000; Imai 2002b; Satou et al., 2002b;
Gostling and Shimeld, 2003; Russo et al., 2004). We investigated the
Ciona orthologues of msx (Ci-msxb), pax3 and 7 (Ci-pax3/7), dlx3 (Ci-
dll3), and zic (Ci-zicL and Ci-macho) in the A7.6/TLC lineage. The results
showed that none of these NC-RGN genes were expressed in the A7.6/
TLC lineage (Fig. 5), although expression occurred in other regions of
the embryo, including the neural plate border and developing CNS.

The third tier of the NC-RGN consists of transcriptional regulators,
such as Snail/Slug, Id, FoxD3, Twist, AP2, and c-Myc, which are
activated downstream of tier 2 genes to specify neural crest fate in
vertebrate embryos. The Ciona orthologues of some of these genes had
been examined previously, but others had not been studied. We
investigated the expression patterns of the Ciona orthologues of these
genes from the 64-cell to the swimming larval stage (Fig. 5). Previous
studies (Fujiwara et al, 1998) showing Ci-snail gene expression in tail
muscle cells but not in the A7.6/TLC lineage were confirmed. Similarly,
the id orthologue Ci-emc was expressed in neural plate and CNS cells
but not in the A7.6/TLC lineage (Figs. 4E, F). We confirmed that the
foxD3 orthologue Ci-foxDb is expressed in A6.3 cells (the immediate
precursors of the A7.6 cells) at the 64-cell stage (Imai et al., 2002c) but
not in the A7.6/TLC lineage later in development (Figs. 4G, H). Ciona
has two twist orthologues, the paralogous Ci-twist-like 1 and Ci-twist-
like 2 genes. Both twist genes are expressed in the A7.6/TLC lineage, as
well as in the mesenchyme lineages derived from the B7.5 and B8.5
blastomeres (Imai et al., 2003; Tokuoka et al., 2004; Imai et al., 2006);
this was also confirmed in this study (Figs. 4C, D, 5).

http://ghost.zool.kyoto.u.ac.jp/indexrl.html


Fig. 3. Embryonic origin of HNK-1 positive cells determined by cleavage arrest. (A, C–H, J) Embryos subjected to cleavage arrest at the late gastrula (A), neural plate (C–F), and early (G),
mid (H), and late (J) tailbud stages showing HNK-1 expression in a pair of A.7.6 (A, C–F) cells and later in TLC (G, H, J) (arrows). Note the position of melanin pigmented cells, the otolith
and ocellus precursors, marking the lateral margins of the neural plate (np) in panels C–F. (E, F). Cross (E) and sagittal (F) sections through the anterior–posterior axis in the plane of
one or both melanin pigment cells and the neural plate. HNK-1 stained cells lie in the cell layer immediately below the margins of the neural plate (arrows). (B) Diagram of a gastrula
embryo viewed dorsally showing the A7.6 cells in red and the B8.5 and B7.7 mesenchyme cells posterior to them. (I) Diagram of mid-tail bud stage embryo viewed laterally showing
the position of trunk lateral cells (TLC) in red. (K, L) In situ hybridization showing TLC-2 expression in TLC of mid-tailbud embryos viewed laterally (K) and dorsally (L). Scale bar in
panel A is 40 μm; magnification is the same in all frames.
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The expression patterns of No trunk lateral cells (Notlc) (Figs. 4A,
B), a TLC marker (Imai et al., 2003), and twist-like-2 (Figs. 4C, D)
were compared to additional tier 3 and 4 genes in the A7.6/TLC
lineage. Accordingly, we found that the A7.6/TLC lineage expressed
one of the two AP2 genes, Ci-ap2-like1 (Fig. 4I), but not Ci-ap2-like2
(Fig. 5), and Ci-myc (Figs. 1K, L), the c-myc orthologue (Satou et al.,
2003). Ci-myc was expressed in the neural plate at the neurula stage
and the A7.6/TLC lineage from the late gastrula through the tailbud
stages (Figs. 4G, H; 5). Furthermore, Ci-ap2-like2 was expressed in
A7.6 cells at the neurula stage, but expression was not detectible in
TLC during the tailbud stages (Figs. 4I–J; 5). Comparison with Ci-
twist-like-2, which is expressed in all three mesenchymal lineages,
and Notlc, which is expressed in the A7.6/TLC lineage at the stage
shown in Fig. 4, suggests that all mesenchyme lineages express Ci-
ap2-like1 and Ci-myc. The results indicate that orthologues of five
NC-RGN tier 3 genes, foxDb, twist-like1/2, ap2-like1, and myc, are
expressed in A7.6/TLC or its immediate precursors during Ciona
development.

The fourth tier of the NC-RGN consists of the so-called neural crest
effector genes, including collagen 2, cadherin 2, and rhoA or B, which
control the delamination and migration of neural crest cells. We
determined the expression patterns of the Ci-collagen 2a, Ci-cadherin
2a, and Ci-rhoABC (Sasakura et al., 2003) genes during development
Table 2
Number of HNK-1 stained cells in cleavage arrested embryos and larvae

Beginning of cleavage n HNK-1 stained arrest
cells/embryo+/−SD

Neural plate 16 2.8+/−1.0
Early TB 18 12.2+/−1.7
Mid TB 15 28.5+/−5.2
Late TB 19 28.7+/−3.7
Hatched larva 13 29.4+/−5.1
(Figs. 4M–P; 5). The Ci-collagen 2a gene was expressed in the
developing tail but not in the A7.6/TLC lineage (Fig. 5). Although low
levels of Ci-cadherin2a and Ci-rhoA/B/C were seen throughout the
embryo, their expression levels were enhanced in the A7.6/TLC lineage
and other mesenchyme cells (Figs. 5M–P).

In summary, in situ hybridization showed that the A7.6/TLC lineage
expresses seven of the sixteen surveyed NC-RGN genes: none of the
neural crest border genes, five of eight neural crest specifier genes,
and two of three neural crest effector genes.

Discussion

The present study addressed two critical issues concerning NCLC
development in C. intestinalis. First, what is the embryonic origin of
NCLC? We demonstrate that NCLC are members of the A7.6/TLC
lineage, the most dorsal of the three migratory mesenchymal lineages
in ascidian embryos. Second, which if any of the NC-RGN genes are
expressed in NCLC? We show that NCLC express some of the
downstream neural crest specifier and effector genes of the NC-RGN,
but none of the neural plate border specifying genes. Our results have
implications regarding the chordate ancestry of neural crest cells and
possible NC-RGN re-wiring during vertebrate evolution.

TLC are NCLC in Ciona

The restriction of HNK-1 expression to larvae and juveniles
obscured the embryonic origin of NCLC in previously studied ascidian
species, including C. intestinalis (Jeffery, 2006). In lieu of being able to
directly trace the lineage(s) of HNK-1 positive cells, the cleavage arrest
method was used to identify their progenitors in early Ciona embryos.
Ciona is well suited for this analysis because lineage-founding cells are
clearly visible on the surface of the embryo up to the gastrula stage.
Accordingly, we traced HNK-1 expression to the paired A7.6
blastomeres, which are located on the lateral margins of the



Fig. 4. Expression pattern of Ciona NC-RGN gene orthologues in the A7.6/TLC lineage determined by in situ hybridization. First and third column from the left: neurula stages with
anterior at the top. Second and fourth column from the left: early or mid-tailbud stages with anterior on the left. (A, B) Notlc gene expression. (C, D) Ci-twist-like 2 gene expression.
(E, F) Ci-emc gene expression. (G, H) Ci-foxD3 gene expression. (I, J) Ci-ap2-like1 gene expression. (K, L) Ci-myc gene expression. (M, N) Ci- cadherin 2 (cad 2) gene expression. (O, P)
Ci-rhoABC gene expression. Scale bar in panel B is 30 μm; magnification is the same in each frame.
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blastopore from the 110-cell to the mid-gastrula stage. The A7.6 cells
are progenitors of TLC, one of the three types of migratory
mesenchymal cells in Ciona embryos (Tokuoka et al., 2004, 2005).
Fig. 5. Summary of the expression patterns of the Ciona orthologues of vertebrate neural cre
represent genes expressed in the 7.6/TLC lineage with red indicating a stage that the gene is
expressed at a given stage but not in the A7.6/TLV lineage. White rectangles indicate stages
which is shown in Fig. 4.
The other two mesenchymal cell types, which arise from the B8.5 and
B7.7 blastomeres and are positioned ventral to the TLC, do not express
the HNK-1 antigen.
st related genes from the 64-cell through the 6 hr larva stage. Red and blue rectangles
expressed and blue a stage in which it is not expressed. Gray rectangles represent genes
that were not investigated. Results are compiled from in situ hybridization data, some



Fig. 6. Diagram illustrating the hierarchical relationship of the Ciona orthologues of
vertebrate NC-RGN genes in the A7.6/TLC lineage. Boxes indicate hypothetical tiers of
the hierarchy with the black arrow showing hypothetical interactions in both ascidians
and vertebrates and the red dotted line arrow showing the interaction that is thought to
be missing in ascidians and co-opted in the vertebrate lineage. Genes in black represent
those expressed in the A7.6/TLC lineage or in cells that induce this lineage. Genes in red
represent those not expressed in the A7.6/TLC lineage.
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Several other findings support the identification of TLC as NCLC.
First, in Halocynthia four cell divisions in the A7.6 lineage between
gastrulation and the mid-tailbud stage produce two bilateral clusters
of 16 cells, a total of 32 TLC (Nishida and Satoh,1985). Cell proliferation
then ceases until after hatching. In contrast, the two other types of
mesenchyme cells continue to proliferate through the period of tail
morphogenesis. We showed that Ciona HNK-1 positive cells resemble
TLC in undergoing about four divisions to produce a total of 29 cells
prior to the mid-tailbud stage, and they do not divide again until the
swimming larval stage. Second, HNK-1 positive cells (in cleavage
arrested embryos) are localized in the same positions as TLC in the
posterior region of the trunk, bilateral to the developing cerebral
vesicle precursor. This location was confirmed by following the
expression of TLC-2, a specific TLC marker (Takahashi and Satoh,
2001). Third, the timing of migration and dispersed distribution of
HNK-1 positive cells is very similar to TLC. Finally, some of the tissues
and organs in which HNK-1 positive cells become localized in
juveniles, namely the oral siphon and branchial gill slits, are the
same as TLC derivatives (Hirano and Nishida, 1997; Tokuoka et al.,
2005).

According to previous studies, the so-called blood cells are major
TLC derivatives. Ascidian blood cells are a very heterogeneous
population of five or more different cell types (Satoh, 1994). In the
swimming tadpole larvae, during metamorphosis, and in adults,
these cells move through extracellular spaces along with other
migratory cells (Davidson et al., 2003). Indeed, some “circulating”
blood cells, namely the body pigment cells, can be stationary and
embedded in various juvenile and adult tissues and organs. More
detailed cell tracing and histological studies will be necessary to
determine whether Ciona NCLC are restricted to a single fate or are
pluri potent, like vertebrate neural crest cells. Along a similar line, it
is still questionable whether all Ciona NCLC have been discovered: if
some NCLC do not express the HNK-1 antigen, express HNK-1 at very
low levels, or are unable to express the HNK-1 antigen during
cleavage arrest, they would have remained unidentified in the
present analysis. Likewise, all HNK-1 positive cells may not be
NCLC; although we believe that vast majority of HNK-1 positive
migratory cells are NCLC. An exception, however, may be lens cells in
the larval sensory vesicle.

The Ciona tadpole is relatively small and streamlined, consisting of
only about 3000 cells (Satoh, 1994). The larvae of many other ascidian
species, particularly Ecteinascidia and other colonial forms, are much
larger and more complex. From existing phylogenetic evidence, it
cannot be decided whether ascidian species with small simple larvae
are basal to those with large complex larvae, or vice versa (Zeng et al.,
2006). If ascidians with simple larvae are derived from a more
complex ancestor, however, then the Ciona situation, in which TLC
appear to be the exclusive cognates of NCLC, may not be a general
ascidian (or tunicate) feature. In this regard, it is important to note that
more HNK-1 positive cells (and body pigment cells) are usually
observed in ascidians with large larvae, such as Botryllus schlosseri,
than we have observed in Ciona (Jeffery, 2006). We envision several
possibilities to account for the greater number of HNK-positive cells in
ascidians with complex larvae. First, the final number of TLC may be
larger due to additional rounds of cell proliferation, as appears to be
the case for tail muscle cells (Jeffery and Swalla, 1992). Second, other
lineages in addition to A7.6/TLC may contribute to the complement of
HNK-1 positive cells. During larval simplification, ascidian species
with small streamlined larvae, like Ciona, could have reduced the
number of NCLC-forming lineages. It will be important to determine
the embryonic origin(s) of NCLC in ascidians with large complex
larvae, such as Botryllus and Ecteinascidia.

NCLC originate near the bilateral margins of the neural plate

Previous studies showed that migratory NCLC are generated near
the developing neural tube in Ecteinascidia larvae (Jeffery et al., 2004).
The present results expand our knowledge of ascidian NCLC with
respect to their staging location prior to migration and permit further
comparisons to be made with vertebrate neural crest cells.

TLC are derived solely from the A7.6 blastomeres of the 110-cell
embryo (Nishida and Satoh, 1985; Tokuoka et al., 2004; 2005). The
FGF, Notch, andWnt/β-catenin signaling systems are important in TLC
induction (Shimauchi et al., 2001; Imai et al., 2002a, 2003; Imai et al.,
2006), just as they are in early specification of neural crest cells
(Meulemans and Bronner-Fraser, 2004). Early during gastrulation, the
A7.6 cells are positioned on presumptive dorsal surface of the embryo
at the bilateral margins of the blastopore. The A7.6 cells leave the
embryonic surface and move into the blastopore during the late
gastrula stage. Their precise mode of internalization remains to be
investigated but seems to be independent of surrounding cells and
similar to the epithelial delamination of vertebrate neural crest cells.
After internalization, the A7.6 cells and/or their progeny become
located immediately below and slightly lateral to the edges of the
neural plate, which extends posteriorly to close the blastopore. After
neurulation, TLC are localized in bilateral clusters adjacent to the
posterior sensory vesicle, which appears to be the staging zone for
their subsequent migration.

In most vertebrate embryos, neural crest cells are derived from the
neural folds during neural tube formation. Subsequently, the staging
area for their departure from the dorsal midline is located bilateral to
the neural tube, which is similar to the situation that we have
described for NCLC in Ciona. Although CionaNCLC resemble vertebrate
neural crest cells in their locationwith respect to the neural plate, they
differ in not being an integral part of the folding neural tube.
Additionally, Ciona NCLC precursors flank a very small portion of the
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neuroaxis. Thus, the evolution of neural crest cells in the vertebrate
lineage could have involved an extension of the ability to form pre-
migratory cells along amuch larger portion of the neural platemargin,
as well as the incorporation of primordial NCLC into the folding neural
tube. Finally, TLC also differ from most vertebrate neural crest cells in
that they do not begin to migrate promptly after the neural tube is
formed. Instead, they pause and undergo several rounds of cell
division in the staging zone next to the neural tube until about 12 h
later, when the tadpole hatches and begins to swim. It is important to
note, however, that Xenopus neural crest cells also remain adjacent to
the neural tube formany hours before initiatingmigration (Sadaghiani
and Thiebaud, 1987).

Ascidian NCLC gene expression patterns support NC-RGN co-option in
vertebrates

The expression patterns of sixteen orthologues of vertebrate
neural crest related genes were surveyed during Ciona development.
We found seven of these genes (e. g. Ci-twist-like 1, Ci-twist-like 2, Ci-
foxDb, Ci-ap-2-like-1, Ci-myc, Ci-rhoABC, and Ci-cadherin-2) expressed
in the A7.6/TLC lineage or its immediate precursors between the 64-
cell and the swimming tadpole stage. Of the latter, Ci-myc, Ci-Ap2-
like 1, Ci-rhoABC, and Ci-cadherin-1 expression were not previously
described in the A7.6/TLC lineage. In addition, the likely Ciona
homologues of two other vertebrate neural crest genes, neurogenin
and ets (Sauka-Spengler et al., 2007), are also expressed in the A7.6/
TLC lineage (Imai et al., 2006). All of these are tier 3 or 4 NC-RGN; no
tier 2 genes were expressed in the A7.6/TLC lineage. Thus, the gene
expression profile of NCLC resembles but is not identical to that of
vertebrate neural crest cells.

It is important to note that the tier 3 and 4 NC-RGN genes are
expressed in A7.6/TLC together around the neural stage (Fig. 5),
facilitating potential interactions among their products. Accordingly,
functional studies have demonstrated that some of these NC-RGN
genes interact in a regulatory cascade inwhich FGF 9/16/20 and FoxDb
(the latter via Notlc) induce twist-like-1 expression, which in turn
activates downstream twist-like-2 during A7.6/TLC development (Imai
et al., 2003).

The NC-RGN appears to be conserved in vertebrates (Meulemans
and Bronner-Fraser, 2005; Sauka-Spengler et al., 2007) but its ancestry
is uncertain in invertebrate chordates. In cephalochordates, tier 1 and
tier 2 genes are activated along the neural plate border or adjacent
non-neural ectoderm, but tier 3 and 4 genes do not appear to be co-
expressed in this region, andmigratory NCLC (as well as body pigment
cells) are apparently absent (Yasui et al., 1998; Meulemans and
Bronner-Fraser, 2002; 2003; Yu et al., 2002; Holland and Holland,
2001). These findings imply that the four-tiered NC-RCN was a
vertebrate innovation with tier 3 and 4 genes co-opted into the
pathway early during vertebrate evolution. After the latter studies
were published, phylogenomic studies inferred that tunicates rather
than cephalochordates aremore closely related to vertebrates (Bourlat
et al., 2006; Delsuc et al., 2006; Vienne and Pontarotti, 2006). If this
reflects the true chordate phylogeny, then re-wiring of the NC-RGN
could have happened either in the tunicate-vertebrate lineage, after it
split from cephalochordates, or in the vertebrate lineage, after it
diverged from tunicates.

Ascidians express the full range of border specifier genes along
the lateral edge of the neural plate (Gostling and Schmeld, 2003;
Ma et al., 1996; Mazet, et al., 2003; Satou et al., 2002; Wada et al,
1997). However, two critical pieces of information were previously
missing that would enable a determination of the point during
chordate evolution in which co-option may have occurred: (1) the
identification of a tunicate neural crest homologue (e. g. NCLC; see
below), and (2) the determination of NC-RGN gene expression
patterns in tunicate NCLC. The present study has filled these gaps
by showing that the A7.6/TLC lineage are NCLC that express some
of the NC-RGN tier 3 and 4 genes but no tier 2 genes (Fig. 6). Thus,
it can be concluded that downstream genes controlling neural crest
cell identity were co-opted into the NC-RGN early during vertebrate
evolution rather than prior to the divergence of tunicates and
vertebrates. The co-option of these genes could have resulted in a
neuroaxis flanked by a large population of neural crest cells with
migratory potential and an increased repertoire of cell fates.

Chordate ancestry of the neural crest

We propose that NCLC and neural crest cells are homologous cell
types that were derived from a primordial neural crest (Stone and
Hall, 2004) in the common ancestor of tunicates and vertebrates.
Furthermore, based on results of the present investigation, we
suggest that the primordial neural crest had the following
phenotype. They expressed some of the NC-RGN tier 3 and 4
genes but none of the tier 2 genes, and thus had migratory capacity
but did not populate a large portion of the neural plate border. They
were not an integral part of the neural tube but instead originated
beside it, in a staging area for their subsequent migration. They may
have had one or only a few cell fates, with a primary function to
form body pigment cells. In the vertebrate lineage, primordial
neural crest cells could have spread throughout the neural plate
border and become incorporated into the folding neural tube after
the gene network(s) responsible for their specification were co-
opted. Moreover, they could have adopted a more diverse set of
derivatives by including more neural crest specifier and/or effector
genes into the network. In contrast, the primordial neural crest may
have remained largely unchanged during tunicate evolution.

The scenario provided above is not the only possible interpretation
of our results. Instead, NCLC with an incomplete NC-RGN and the
other features described above may be a derived rather than an
ancestral trait in Ciona. The presence of a larger number of HNK-1
positive cells and pigment cells in other ascidian species (Jeffery,
2006) and expression of a zic homologue (a neural plate border
specifier in vertebrates) in Ecteinascidia NCLC (Jeffery et al., 2004)
could be indicative of this ancestral complexity. However, Ecteinasci-
dia situation is complicated by late zic expression in migratory cells,
which is not observed in vertebrate neural crest cells (Nakata et al.,
1998; Sauka-Spengler et al., 2007). Future investigations on the
expression of neural crest related genes in ascidians with complex
larvae should be able to resolve the problem of whether the Ciona NC-
RGN is ancestral or derived.
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