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1. INTRODUCTION

In this work we are concerned with the quadratic form

P+ q(x)V7 dx,

JHa.v.D) = [ 9V

(D

where x is, in general, and n-dimensional variable and D C #" is bounded

with a piecewise smooth boundary.

We will give various conditions on the functions g(x), V(x), and on the
domain D that will imply positivity of the quadratic form. Of course, if
q(x) is positive for all x, then it is clear that J(g, V, D) will also be positive.
However, the results given below will investigate the extent to which g(x)
may be negative and still maintain positivity of J(¢, V, D). We will provide
large classes of easily identified functions q(x), for which J(q, V. D) =
0. In the case where x is a one dimensional variable, such a study has
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been performed by Barnes [6]. Similar problems have also been studied
by Nehari [15].

Let D be any three dimensional domain so that x = (x, y, z). We will
first give an example of the type of result we have in mind. Suppose
that D has volume equal to that of a sphere of radius 4 (approximately
268.0825. . .), that |g(x)| = 1, and that

jD g(x) de = 152.849. .. (2)

After a short computation, it follows from Theorem 3 below that, for all
such functions g(x) and for all V in the Sobolev space W}* D), the qua-
dratic form J(q, V, D) is positive:

J(q, V. D) = ju[ﬁi/lz + g(x)V2 dr = 0. 3)

The inequality is sharp and equality holds when D is a sphere and g(x)
is a certain step function taking on only values of *1. Thus, g(x) may be
negative for a sizable portion of its domain. However, according to (2),
its positive values must dominate overall. For example, if g(x) = +1
over more than 79% of the domain and g(x) = -1 elsewhere, then it is
easy to verify (2) so (3) holds.

A similar result holds in two dimensions. Theorem 1 shows that, if D
is a two dimensional domain (so that x = (x, y)) having area 4w
(=12.566...) and if

lg)=2  and fDq dx = 8.42467 - - -,
then for all functions V in the Sobolev space W} %(D) it follows that
Jg, V,D) = jD [VVE + q(x)V2] dx = 0. 4)

Another short calculation shows that if g(x) = +1 over more than 84%
of the domain and g(x) = —1 elsewhere, then (3) holds.

These results can be thought of as higher dimensional relatives of the
classical one dimensional Wirtinger inequality [12]:

if f:”y(x) dx=0 then f:” [y = y}dx >0 )

unless y = A cos x + B sin x.



POSITIVITY CONDITIONS 585

We will also apply our results to establish the existence of a solution
of Dirichlet’s problem for elliptic partial differential equations of the form
VIV + g(x)V = 0 where the function g(x) may change its sign. Such
problems are called indeterminate.

2. PosiTivitTy CONDITIONS FOR TWO-DIMENSIONAL
QuADRATIC FORMS

Suppose, first of all, that we consider the two dimensional case where
x = (x, y). The partial differential equation for a two dimensional eigen-
value problem

Vat Vi + A= qlx, IV =0 with V(x,y) = Oon 9D (6)

is closely associated with the quadratic form (1). It is well known that the
first eigenvalue A,(g) of (6) is characterized as the minimum of

M(g) = min J(g,V.D) = min f[v§+v§+q(x,y)vzldxdy
vewl D) vewhip)
V=1

where the minimum is taken over all normalized functions V{(x, y) in the
Sobolev space W} A(D) of functions that vanish on 3aD. In view of this
fact, it follows that the quadratic form J(gq, V, D) is positive definite if
and only if A(g) > 0.

We will first consider a special case of (6) where the domain is a circle
D* having the same area as D, a radius R, and the coefficient function a
constant, say Qg 4(x, y) = —h* It is easy to see that, if * is large enough,
then A (Qg ;) < 0. It follows from a monotonicity argument that A,(Qp ,)
is a decreasing function of h. Since \(Qg o) > 0, it follows that there is
a unique value of h, call it A, satisfying A(Qg,) = 0. A direct solution
of (6) shows that h, = j,/R where j, is the smallest root of the Bessel
function Jy(r). This yields the first and most elementary positivity condi-
tion; if g(x, y) is any function defined on D* that satisfies g(x, y) = —(Jy/
R)?, then J(q, V, D*) = 0 for all functions V € W{-%(D). But we will show
that this result may be considerably improved.

Generalizing the function Qg ,(x, y), suppose that 4, H are given
constants and consider the eigenvalue problem (6) for the step function
g,(x, y) defined on D* by

—-h? ifx? 4+ yi=s?

qx.y) = {Hz ifs?<x?+ y’=R2 ™
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Here, we require that 0 = s = R and mR? = A, the area of D*. Note that
the choice s = R yields the previous function Qg ,(x, ¥).

Suppose that 4 > j,/R so that it is possible to have A,(q,) < 0. By
monotonicity A(g,) is a decreasing function of s. However, A(g;) > 0
and A (gg) < 0. Thus, there is a unique value of s € {0, R], call it 5, such
that A\y(¢,) = 0. A direct solution of (8) (using the Bessel functions /,(z),
J,(z), K,(z)) and taking account of the jump discontinuity in g,(x, y) show
that s, = so(h, H, R) is the largest root of the equation

H J(hs)1(HS)K(HR) + I(HR)K (HS)]
+ hJ(HS)I(HS)K(HR) — I(HR)I(HR)K(HS)] = 0

8)

satisfying 0 = s, =< R. This yields a second positivity condition; if g(x, y)
is any function defined on D* that satisfies g(x, y) = q,(x, ), then J(q,
V, D*) = 0 for all functions V € W} D). However, we will show that
this little result may still be vastly improved by using rearrangement
inequalities in the style of [18, 13, 4].

To introduce the ideas, suppose that h, H, and m are given constants
satisfying —h*> = m = H?, Let D be a bounded domain in the x, y-plane
and let C(h, H, m, D) be the set of all functions g(x, y) defined on
D satisfying

- =q(x,y)<H? and L}q(x,y)dxdy = m.
Define the function F(h, H, R, 5) by
FhH,R,5) = [ axy)drdy = nlHR? = (H? + 1)s?),

Given a function f(x, y) defined on D, the rearrangements of it into sym-
metrically increasing and decreasing order will be denoted by frix, y)
and f (x, y), respectively. They are defined on the circular domain D*
which has the same area as D and will satisfy the following conditions.

1. Both functions fi(x, y) have circular symmetry,
F=(x, y) = F5(r), for 0 =r=<R where r = Vx? + y%

2. f*(r)is a nondecreasing and £~ (r) a nonincreasing function of r.
3. Both functions are equimeasurable to f(x, y). That is, denoting

by A(z) the area of the subset of D for which f(x, y) = z and similarly
denoting by A*(z) and A~ (z) the area of the set in D* for which f ™ (x,
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y)y=2z andf’(x, ¥} = z, respectively, then
A(z) = A'(2) = A (z) forallz
4. The two rearrangements are connected by the formula
Sy =F"(VR*=r), o0=r=R.

5. Almgren and Lieb [2] show that symmetrization is a continuous
operation when applied to smooth functions. This means that the decreas-
ing rearrangement of an eigenfunction of (6), say V", will also vanish on
the boundary of D* and it will belong to W} D). Furthermore, the follow-
ing inequalities are well known [18, 4}:

|, [P dxdy = [ (VFF dxdy, o

fofzgdxdyz fD* (f~ Y& dxdy.

We are now in a position to state a theorem.

THEOREM 1. Suppose that D is any two dimensional domain having
area wR*, that V(x,y) € WD), that g(x,y) € C(h, H, m, D), and that
s, is determined by (8).

Then if 0 < h < jy/R, it follows that

Jgq,V,D) = jD[vf + V24 g(x,y)Vidrdy > 0. (10)

If, however, h = j/R and in addition

[, atx. v dxdy = Fh, H,R, 59), (an

then (10) still holds for all such functions q(x, y) and V. Furthermore,
the inequality is sharp, and equality is attained when D is the circle D*
and q,(x, y) is defined by (7).

Proof. We will apply symmetrization to the first eigenfunction
Vi(x, y). Since V, € W}¥D), is follows [2] that V[ € WX D) and

J(q,V,D)=\(q,D) =J(q,V,,D)=J(G*, V{,D*) = \(§", D*).

Next, select s € {0, R] so that

= A+
. 4ix, y) dxdy = fmq (x, y)dx dy.
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This condition and the fact that —4* < ¢*(r) = H? implies that
_gmuydnsﬂQﬂnuh Vr € [0, R]. (12)

To prove this inequality, we define a function G(x) by

X

Gu)=L[%U)—éW0hd1

and note that G(0) = G(R) = 0. Furthermore, the bounds on g(x, y)
show that G'(r) = 0for 0 = r < s while G'(r) = 0 for s = r = R. This
implies that G(x) = 0 for all x, proving (12).

Integrating by parts, we see that

[[1a @) = a v o ar

- [ Ly or [ 170 - a0 drar

Since V[ is decreasing, the right side of this equation is nonnegative.
This, the minimum principle, and (9) give

M) =Jg, V) =J@*, Vi) =J(q, Vi) = \(g)).

The first part of the theorem, where i < j)/R, from this inequality and
from the comments made on page 3 above. If, however, h = j/R, then
it is possible for A(q,) to be negative for some choices of 5. Now g(x,
y) is a strictly decreasing function of s, and Eq. (11) implies that s= s,.
Therefore, there is a unique value of s, for which A((g,) = 0 so that
Mg) = Mgy = A(g,) = 0. i

A second proof of this theorem can be given, using ideas given by Banks
[5]. Although his theorem was stated only for the vibrating membrane
problem, he observed that it can be easily generalized to a large class of
other problems. The following theorem is one such generalization.

THEOREM 2 (Banks). Let p{x, y) and q(x, y) be nonnegative real
continuous functions defined in a domain D with a piecewise smooth
boundary C such that

LM&WM@=Lﬂwa@-

Consider the eigenvalue problems
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Vi + (A — p(x,y)u =0 u=0oncC. (13)
Vv +(u—qglx,y)v=20 v=00nC. (14)

Let v\(x, y) denote the eigenfunction corresponding to the lowest eigen-
value u,(q) of (14) and define

A(D) = {(x,y) [vix, y) = z}.

IffAm (p — q)dedy =0 forall z =0, then
A=

where A(p) is the lowest eigenvalue of (13).

It is clear that, for any given domain D and function g(x, y) € C(h, H,
m, D), there exists a function, say g*(x, y), that takes on only values of
— h? or H? and satisfies the inequality fM_) (g* — q)dxdy=0forall z =
0. Thus, Theorem 2 shows that A,(q) = A,(g*). However, the increasing
rearrangement of any such function g* is simply a function g,(x, y) of the
form of Eq. (7) giving the second proof. |

Next, we will use some Bessel functions to give explicit solution formu-
lae for the problem. Using radial symmetry, the two dimensional problem
reduces to a one dimensional problem for V = V(r) (where r? = x? +
y?) of the form

V4 }v, SN —g)V=0 withV'(0)=V(R) =0. (I5)

We now solve the differential equation (15) in each of the intervals [0, s,]
and [s,, R], and use the condition that the eigenfunction has a continuous
derivative at r = s,. This process yields the equation (8).

Consider now the claims made in (4) above. Settingh = H = |, R =
2, and making a short computer calculation using (8) shows that s, =
0.81189 ---,sothat F(1,1,2,0.81189 - --) = 8.42467 - - - This computation
justifies Eq. (4).

This result has also been verified independently by using the software
package Sleign. It is a well respected set of routines for computing eigen-
values of second order Sturm-Liouville equations [3]. It even handles
singular problems such as the one considered here. A subroutine based
on Sleign was written that computes A,(q,) as a function of s and then
solves the equation A(gq,) = 0 for s, using bisection. The numerical results
were identical to those obtained by solving (8) directly.
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2.1. The Three-Dimensional Case

Consider the three dimensional eigenvalue problem

Ve + Vo, + Voo + [0 = glx,y, 2]V =0
where x = (x,y,z) € D C R,

Let D* be a sphere having the same volume as D and define a function
q,(x, y, z), analogous to (7), on D* by

-, if0=x>+y2 + 2= s?,

16
Hl» ifs2<x2+y2+ZZSR2, ( )

qlx,y,2) = {
Here, s is selected so that
fn qdx,y,2)dxdydz = JD* q(x,y,z)dxdydz.

Let R be the radius of D*. The three dimensional equations analogous
to (8) are given by

G(h, H.5.R) = [ a(x,y.0)dxdydz = 9—3’1[012 + HYs' — BRI,

It is easy to see that, if 2 < #/R, then A,(q) > 0. However, if h = #/R,
then there will exist a unique value of s; that makes \,(¢q,) = 0. Since the
root must correspond to the first eigenvalue, it must be the largest root
in the interval [0, R] of the equation

sin(hsg){sinh[H(R — s¢)] + soH cosh[H(R — sy)]}

= sinh[H(R — sy){sin(hsg) — seh cos{hsy)}. (17)

THEOREM 3. Suppose that the volume of D is 7R3, that V(x, y, 7) €
WLAD), that q(x, y, 2) € C(h, H, m, D), that s, is determined by (17),
and that 0 < h = #w/R. Then

Jq,V,D) = fDlVE +Vi+ Vi+qlx,y,2)V]dxdydz>0. (18)
However, if h = w/R and in addition

fDq(x, y,2)dxdy dz = G(h, H, R, s;),
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then (18) still holds for all such functions q(x, y, z) and V. Furthermore,
the inequality is sharp, and equality is attained when D is the sphere D*
and q,(x,y, z) is defined by (16).

Consider now the claims made in (3) above. Setting h = H = 2, and
R = 4 and solving (17) shows that s, = 2.396 - - -, so that G(2, 2, 4,
2.396) = 152.849 - - - This computation justifies the remarks made in Eq.
(3) above.

As in the two dimensional case, this result has also been verified inde-
pendently by using the software package Sleign. The numerical results
were identical to those obtained by solving (17) directly.

2.2. Remarks on the Second Eigenvalue.

We will confine our remarks to the two dimensional case; however, the
methods could easily be used to deal with any number of dimensions.
The basic idea has its roots in the work of Pélya [17]. We will denote the
second eigenvalue of (6) by A(D, gq). The corresponding eigenfunction,
Vy(x, y), will have exactly two nodal domains, say D = D, U D,. We
now consider the first eigenvalue of the problem (6) when the domain is
restricted to D, with Dirichlet boundary conditions and with coefficient
function g(x, y). It follows that the first eigenvalue of D, is equal to the
second eigenvalue computed over all of D and that the first eigenfunction
of D, is nothing more than the function V, restricted to D,, and similar
remarks hold for D,. We will use this observation to obtain positivity
conditions for the second eigenvalue. Such a construction will not work
for eigenvalues of order greater than two since, in these cases, the exact
number of nodal domains is unknown.

First, we note that the previous results for the first eigenvalue imply that

M(D, q) = M(Dy, q) = M(D,, q) =2 max{r (D7, q,), \(D¥, q))}.

Here, Dfand Df are two circular domains obtained using the re-
arrangement theorems given in the previous section and g; are the radially
symmetric piecewise constant functions analogous to (7). The second
eigenvalue of the disconnected domain D¥ U D¥ is max{A,(Df¥, q,), A,
(D7, 42)}-

The smallest possible value for this second eigenvalue will occur when
D} and D¥ are congruent and the two symmetric functions g; defined on
each of the two domains D, and D, are translates of each other. We use
the notation D}, to denote a circular domain having an area $ that of D
and ¢q,,, to mean the corresponding radially symmetric function defined
on D}, analogous to Eq. (7) having
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1
. @uatx.vydxdy =3[ atx,y)dxdy.

12

Thus we have shown the following.

THEOREM 4. Let A(D, g) denote the second eigenvalue of (6) on
D. Then

M(D, g) = M(Dfz, q10)-

Therefore, a positivity condition for A, can be obtained from a corre-
sponding condition for A;.
The second eigenvalue satisfies the variational condition

M(g) = minJ(V,q,D) = min [ [V + V2 + q(x,y)V?] dxdy.

Here, the minimum is over all V € W}*D) that satisfy (V, V) = 1 and
(V, V) = 0 where V| is the first eigenfunction. Thus, it follows that if
M(D¥,, gi2) = 0and if V = 0 on 4D then

fD[vi + V24 q(x,y)Vidxdy>0 forall Vsatisfying (V, V}) = 0.

This shows a more direct connection to the one dimensional Wirtinger
inequality than the results given in Theorems 1 and 3 above.

3. DirRICHLET'S PROBLEM WITH INDETERMINATE
COEFFICIENT FUNCTIONS

As an application of Theorem 3 we will establish the existence of a
solution of Dirichlet’s problem for a linear elliptic partial differential equa-
tion of the second order in three dimensions:

U,+ U, +U,—qlxy 2)U=0. (19)

Here we allow the coefficient g to have any sign. Such problems are called
indeterminate.

Theorem 3 gives conditions that make the first eigenvalue A,(g) of
(19) positive, and it turns out that this is all that is needed to prove the
existence theorem.
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THEOREM 5. Suppose that the \(q) is positive. Then the Dirichlet
problem

Ur.t + [j_vy + Uz: - q(x, Yy, Z)U = 0
with U(x, y,2) = f(x,y,2)ondo D

has a unique solution U(x, vy, 2) in D.

The proof of this theorem can be obtained simply by direct imitation
of that given by Garabedian {11] where it was assumed that g > 0. How-
ever, the only use made of this assumption was to show that, if the inner
product and norm are defined by

(u,v) = fD[uxv_‘ + u, + up, + quuldx dy dz, leell = V'(u, 1), (20)

then one does obtain a valid inner product and norm. However, even if
we allow g to be indeterminate but with A, > 0, then it is easy to see that
(20) defines a valid norm and inner product and that the classical proof
can still be used. The only condition that requires much checking is that
if lull = 0, then u = 0. This result follows from the minimum property
and the positivity of A,.

4. POSITIVITY OF THE n-TH EIGENVALUE
Consider for a moment the one dimensional equations
W+ (A= qgx)h)u =0 21
and
y' = qlx)y = 0. (22)

Theorems guaranteeing the positivity of the first eigenvalue of (21) for
various boundary conditions have been given [6]. Such studies were first
initiated by Nehari [15]. However, he considered the equationy” + up(x)y
= 0 and obtained some results connecting oscillation theory for the equa-
tion ' + p(x)z = 0 for positive p(x) with the assumption that the first
eigenvalue satisfied «; = 1. In this work, we consider the equation (21)
instead since, in this case, there is no requirement that the coefficient
g(x) be positive.

It appears that such positivity conditions for the higher eigenvalues of
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(21) have not been considered. The methods used here are quite different
from those used for the first eigenvalue. We will give the details only for
Dirichlet boundary conditions.

To begin the study, let us define the quadratic form associated with (21)

J(g,u) = Lb [(u')* + g(x)u*] dx, and suppose fbuz dx = 1.

a

If we impose the orthogonality condition (u, u#,) = 0, then the minimum
of Jis A,. The successive minimum problems, J(g, ) = minimum subject
to the auxiliary conditions

(Ll, “[) = Os (ua ”2) = Ow T, (“’ un*l) = 0’

define the eigenfunctions and eigenvalues of (21) with the natural boundary
condition u'(x) = 0 at x = a and b. If we give the boundary conditions
u(a) = u(b) = 0 to the equation (21), then the minimums of J are com-
puted over only those functions satisfying these conditions and it yields
the corresponding eigenvalue and eigenfunction of (21). Thus, a positivity
condition for the nth eigenvalue will yield positivity of the assocnated
quadratic form when subjected to an orthogonality condition.

The following result deals with such positivity conditions for the nth ei-
genvalue.

THEOREM 6. Suppose that y, is a solution of (22) and that u, is the
nth eigenfunction of (21) with boundary conditions u,(a) = u,(b) = 0.
Then the following relation holds:

M [ ool de = [P 120030 - vl de. (23)

Thus, the nth eigenvalue A, is positive if and only if there exists a nontrivial
solution yo(x) of (22) satisfying the integral inequality

[} e = wixnieordx < o. 24)
Proof. Substitute Au, _ qu, — u, into the left side of (23) to obtain
M [ Do, dx = [ v dx = 7wy} dx

b b 25)
=J YoYou> dx —J u s dx.
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When f, g satisfy appropriate boundary conditions, the one dimensional
“Green’s formula” [ fg” — gf” dx = 0 holds. Use the equations (21),
(22) and apply Green’s theorem to each of the two integrals in (25). This
computation gives the following results:

b b 2. 2 "
)\nL [yDun]2 dX = fa [yOu;lyO - yﬁunun] dx
b 20 b 2 "

= f Yok yoity)" dx — fu u,{you,)" dx
b 2,02 2,72 b 2 "

= 2J' Yol,© — upyet dx + f youduy — g(x)u,} dx
b 212 12 b 2 2

=2 f Yol — Wyt dx — \, j yu, dx.
a a

Finally, solving this equation for the eigenvalue A, yields (23). |

Now the nth eigenvalue is either positive or else it is not, leading to
the following corollary.

CoROLLARY 7. [f there exists one nontrivial solution, say y,, of Eq.
(22) that satisfies (24), then A, (q) = 0 so that every solution y of (22)
satisfies (24).

It is clear that other kinds of boundary conditions could be used in
these theorems with the same result. The only thing necessary is that
there exists a nontrivial solution of (22) satisfying (24) as well as the
boundary conditions

yixu(x)ul(x)]E =0 and y(x)y'(x)u2(x)]t = 0.

In particular, various combinations of Dirichlet and Neumann conditions
might be used. Now, any condition which implies positivity of an eigen-
value will generate Wirtinger-type inequalities using the Max—Min criteria
discussed above.

We will now consider conditions that will insure positivity of the nth
eigenvalue for (21). In a classic work, Krein [ 14] obtained upper and lower
bounds for the equation y" + Ap(x)y = 0, assuming that constants a4, b
are given and that g(x) is bounded a = ¢(x) = b, with Dirichlet boundary
conditions given to y. His work was, in a way, a one dimensional version
of the ideas given by Pélya and Szegé {18]. These various methods have
been extended in many different ways. See, for example, [16, 4] and the
references given there. One such extension was given in [8] where the
general problem of minimizing the nth eigenvalue of some very general
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differential operators was considered. It is not difficult to adapt those
methods to show that if —h? < g(x) < H? then A,(q) = A,(g,) where the
function q,(x) is defined by the following conditions:

1. The function g,(x) is periodic in [0, 1] with period 1/n so that
g (x) = g, (x + 1/n) forx, x + 1/n€[0, 1].
2. It is symmetric in each interval {(i — 1)/n, i/n] so that
g 2i — D12n + 1) = q,((2i — D12n - 1)

whenever 2i — D/12n + 1, 2i — D12n — t € [(i — 1)/n, i/n].
3. For each x, either g,(x) = —h®or else q,(x) = H*.
2 1
4. Joq(x) dx = L g.{x) dx.

Since q,(x) is periodic, it is easy to see that the nth eigenvalue A, (g,)
of (21) is equal to the first eigenvalue of the equation w” + (7 — g, (x)}w =
0 when restricted to the subinterval {(i — {)/n, i/n] and given the boundary
conditions w((i — 1)/n) = w(i/n) = 0. This makes it easy to obtain a
positivity condition for A,(g) using the corresponding theorems for 7,.

S. THE n-TH EIGENVALUE FOR PARTIAL DIFFERENTIAL EQUATIONS
Analogues of Theorems 6 and 7 hold for partial differential equations,
and the proofs of the corresponding theorems are similar. Let D be a two
dimensional domain and consider the equations
VU + (A — glx,yDU =0 with U = 0 on oD (26)
and
VIV ~ qlx, y)V = 0. (27)
THEOREM 8. Suppose that V is a solution of (27) and that U, is the

nth eigenfunction of (26) with the boundary condition U = 0 on aD. Then
the following relation holds:

A, JD [V(x, y)U,(x, y) dx

= | UVVRG ) Ui y) = (V0 e y)Vix y) d.
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Thus, the nth eigenvalue X, is positive if and only if there exists a nontrivial
solution V of (27) for which the following integral inequality holds:

[P WV ) Ui, y) = (V0P I V2 (o y) de 0. (28)

Furthermore, if there exists one nontrivial solution, say V,, of Eq. (27)
Sorwhich (28) holds, then A, (q) = 0. Thus, (28) must hold for every solution
Vof 27).

Theorem 4 above gives a positivity condition for the case n = 2. It
seems to be much more difficult to obtain positivity conditions for A, with
n = 3 since, for partial differential equations, the number of nodal domains
may be much smaller than the index n [9].
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