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We study the single transverse spin asymmetry of prompt photon production in high energy proton–
proton scattering. We include the contributions from both the direct and fragmentation photons. While
the asymmetry for direct photon production receives only the Sivers type of contribution, the asymmetry
for fragmentation photons receives both the Sivers and Collins types of contributions. We make a model
calculation for quark-to-photon Collins function, which is then used to estimate the Collins asymmetry
for fragmentation photons. We find that the Collins asymmetry for fragmentation photons is very small,
thus the single transverse spin asymmetry of prompt photon production is mainly coming from the
Sivers asymmetry in direct and fragmentation photons. We make predictions for the prompt photon spin
asymmetry at RHIC energy, and emphasize the importance of such a measurement. The asymmetry of
prompt photon production can provide a good measurement for the important twist-three quark–gluon
correlation function, which is urgently needed in order to resolve the “sign mismatch” puzzle.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

Single spin asymmetries (SSAs) in transversely polarized pro-
ton–proton collisions have provided essential information on the
internal partonic structure of the proton, particularly the parton’s
transverse motion in the transversely polarized proton [1]. Two
different yet related QCD factorization formalisms have been pro-
posed to describe the observed asymmetries: the transverse mo-
mentum dependent (TMD) factorization [2–6] and the collinear
twist-three factorization approaches [7–13].

For processes such as semi-inclusive hadron production in
lepton–proton deep inelastic scattering (SIDIS) �p↑ → �′h X which
are characterized by both the photon virtuality Q 2 and hadron
transverse momentum Ph⊥ such that Q � Ph⊥ ∼ ΛQCD, one de-
scribes the SSAs in the TMD factorization formalism. In this ap-
proach the transverse spin effects are associated with naive time-
reversal-odd TMDs which represent helicity flip cut quark tar-
get scattering amplitudes with a non-trivial color phase [14].
Two well-known TMDs are the quark Sivers function [15] and
Collins function [16], which describe the so-called sin(φh −φs) and
sin(φh + φs) modulations in SIDIS on transversely polarized target,
respectively. Because of the different angular modulations in the
cross section, one can separate Sivers from Collins effect in SIDIS
and thus extract them independently from the experimental data
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[17–19]. On the other hand, for single inclusive hadron production
in proton–proton scattering p↑ p → h X where there is a single hard
scale given by the hadron’s transverse momentum, Ph⊥ � ΛQCD,
one can describe the SSAs in the collinear twist-three factorization
approach in terms of either the twist-three quark–gluon correla-
tion functions in the transversely polarized proton [20,21], or the
twist-three fragmentation functions in the hadronization process
[13]. In the twist-three formalism we refer to the former contri-
bution as Sivers effect, and the latter one as Collins effect, since
they represent the collinear version of these two effects (based on
the operator definitions relating the first kT -moments of the Sivers
and Collins functions in the collinear twist-three approach [5]).
While the most abundant experimental data exist [22,23] on trans-
verse spin effects in SSAs of single inclusive hadron production in
proton–proton collisions, disentangling Sivers and Collins contribu-
tions presents a significant experimental challenge, thus the true
origin (the relative contributions from these two effects) for the
inclusive hadron production still remains elusive [24].

Theoretically it has been found that these two formalisms are
closely related to each other, and it is shown that they are equiv-
alent in the overlapping transverse momentum region where both
can apply [25–27]. However, it has been recently observed that
the experimental proton–proton data on the SSAs of the inclu-
sive hadron production appears incompatible with the Sivers data
from SIDIS process [28–30], if one assumes that the SSAs of the
inclusive hadron production come entirely from the Sivers contri-
bution. This is known as the “sign mismatch”. Whether this finding
reflects the inconsistency of our theoretical formalism is a very
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important question and needs to be further explored both theoreti-
cally and experimentally. Since the inclusive hadron production has
the complication from the Collins contribution, the measurement
for the SSAs of single inclusive jet and direct photon production
in proton–proton collisions [28,31] could be very helpful in study-
ing the sign mismatch, as they are free of complication from the
fragmentation process (or the Collins effect).

Even though direct photon production is ideal in the theoreti-
cal sense for further exploring this “sign mismatch”, there are no
true direct photons. Direct photons and fragmentation photons are
two indistinguishable contributions in the usual collinear factor-
ization formalism [32], which are designated “prompt” photons. In
experiments one might apply the photon isolation cut to reduce
the fragmentation contribution, however the asymmetry measure-
ment might suffer from the low photon event rates after such a
cut. In any case, it is important to assess how the fragmentation
contribution might affect the asymmetry of the prompt photons.
This is the main purpose of our Letter. While the direct photons
receive only the Sivers type of contribution for the asymmetry, the
fragmentation photons could receive both the Sivers and Collins
contributions. We perform a model calculation for the quark-to-
photon Collins function, which is then used to estimate the Collins
asymmetry for fragmentation photons.

The rest of our Letter is organized as follows. In Section 2,
we give the overview on the various sources for the SSAs of
prompt photon production. In Section 3, we present our detailed
model calculation for the quark-to-photon unpolarized fragmenta-
tion function and Collins function, and estimate their relative size.
In Section 4, we make phenomenological study for the SSAs of
prompt photon production by including all the sources studied in
our Letter. We conclude our Letter in Section 5.

2. Single transverse spin asymmetry of prompt photon
production

2.1. Unpolarized prompt photon production

We consider the prompt photon production in hadronic colli-
sions, A(P A, s⊥) + B(P B) → γ (Pγ ) + X . Here A is a transversely
polarized proton with spin vector s⊥ , and B is an unpolarized pro-
ton. The spin-averaged differential cross section of prompt photon
production contains both direct and fragmentation contributions,

Eγ
dσ

d3 Pγ
= Eγ

dσ dir

d3 Pγ
+ Eγ

dσ frag

d3 Pγ
. (1)

At leading order, the direct contribution is given by

Eγ
dσ dir

d3 Pγ
= αemαs

s

∑
a,b

∫
dx′

x′ fb/B
(
x′)∫

dx

x
fa/A(x)

× HU
ab→γ (ŝ, t̂, û)δ(ŝ + t̂ + û), (2)

where s = (P A + P B)2, fa/A(x) and fb/B(x′) are the spin-averaged
parton distribution functions, ŝ, t̂ , and û are the usual Mandelstam
variables at the parton level. HU

ab→γ are the well-known partonic
hard-scattering functions for direct photon production [33,34]. At
the leading order, they are calculated from the partonic channels
qg → γ q and qq̄ → γ g , and the typical Feynman diagrams are
shown in Fig. 1.

For fragmentation photons, in the usual collinear factorization
formalism at leading order, we have 2 → 2 scattering process to
produce a parton which then fragments into a photon, with the
typical Feynman diagrams shown in Fig. 2. The differential cross
section is given by
Fig. 1. Typical Feynman diagrams for direct photon production at leading order: left
for qg → γ q and right for qq̄ → γ g .

Fig. 2. Typical Feynman diagrams for fragmentation photon production at leading
order.

Fig. 3. The direct ratio defined in Eq. (4) is plotted as a function of Feynman xF at
y = 3.5 and

√
s = 200 GeV. The solid line is for leading order calculation, while the

dashed line is for next-to-leading order calculation.

Eγ
dσ frag

d3 Pγ
= α2

s

s

∑
a,b,c

∫
dz

z2
Dc→γ (z)

∫
dx′

x′ fb/B
(
x′)

×
∫

dx

x
fa/A(x)HU

ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (3)

where Dc→γ (z) is the quark-to-photon fragmentation function,
and HU

ab→c are the well-known partonic cross section to produce a
parton [33,35].

To see the relative contributions of direct and fragmentation
photons, we define the following direct ratio

R =
Eγ

dσ dir

d3 Pγ

Eγ
dσ dir

d3 Pγ
+ Eγ

dσ frag

d3 Pγ

. (4)

In Fig. 3, we plot the direct ratio R as a function of Feynman xF at
forward rapidity y = 3.5 at RHIC energy

√
s = 200 GeV. We give

the result for both the leading order and next-to-leading order
calculations [32]. We find that the fragmentation photons actually
contributes to around 50% to the total prompt photon production.
Thus it is important to assess the effect of fragmentation photons
on the asymmetry of the prompt photon production.

2.2. Spin-dependent cross section for prompt photon production

In order to compute the asymmetry of prompt photon pro-
duction, we need the spin-dependent cross section 	σ(s⊥) =
[σ(s⊥) − σ(−s⊥)]/2, which will also contain both direct and frag-
mentation contributions,
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Eγ
d	σ

d3 Pγ
= Eγ

d	σ dir

d3 Pγ
+ Eγ

d	σ frag

d3 Pγ
. (5)

The direct contribution contains only the Sivers type of effect, as
given by [20,28]

Eγ
d	σ dir

d3 Pγ
= εαβ sα⊥ Pβ

γ ⊥
αemαs

s

∑
a,b

∫
dx′

x′ fb/B
(
x′)

×
∫

dx

x

[
Ta,F (x, x) − x

d

dx
Ta,F (x, x)

]

× 1

û
Hdir

ab→γ (ŝ, t̂, û)δ(ŝ + t̂ + û), (6)

where the hard-part functions Hdir
ab→γ contain the relevant initial-

state interactions between the active parton and the remnant of
the proton and have the expressions given in [20,30]. Tq,F (x, x) is
the twist-three quark–gluon correlation function, and it is related
to the quark Sivers function f ⊥q

1T (x,k2⊥) as follows [5]

Tq,F (x, x) = −
∫

d2k⊥
|k⊥|2

M
f ⊥q

1T

(
x,k2⊥

)∣∣
SIDIS, (7)

where the subscript “SIDIS” here is to emphasize the Sivers func-
tion probed in SIDIS process. On the other hand, the spin asymme-
try of fragmentation photons can receive both Sivers and Collins
contributions,

Eγ
d	σ frag

d3 Pγ
= Eγ

d	σ
frag
Sivers

d3 Pγ
+ Eγ

d	σ
frag
Collins

d3 Pγ
. (8)

The Sivers contribution can be written as

Eγ
d	σ

frag
Sivers

d3 Pγ
= εαβ sα⊥ Pβ

γ ⊥
α2

s

s

∑
a,b,c

∫
dz

z2
Dc→γ (z)

∫
dx′

x′ fb/B
(
x′)

×
∫

dx

x

[
Ta,F (x, x) − x

d

dx
Ta,F (x, x)

]

× 1

zû
HSivers

ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (9)

where HSivers
ab→c represents a hard-part functions for the partonic

process ab → cd, and it incorporates both the initial and final
state interactions and has the expressions given in [20,28]. The
Collins contribution for an inclusive hadron production has been
calculated in [13], which is related to a convolution of quark
transversity and quark-to-hadron twist-three fragmentation func-
tion. The only difference for fragmentation photons lies in the
quark-to-photon twist-three fragmentation function, and the dif-
ferential cross section is given by

Eγ
d	σ

frag
Collins

d3 Pγ
= εαβ sα⊥ Pβ

γ ⊥
α2

s

s

∑
a,b,c

∫
dx

x
ha(x)

∫
dx′

x′ fb
(
x′)

×
∫

dz

z

[
−z

∂

∂z

(
Ĥc(z)

z2

)]

×
[

1

z

x − x′

x(−û) + x′(−t̂)

]

× HCollins
ab→c (ŝ, t̂, û)δ(ŝ + t̂ + û), (10)

where ha(x) is the quark transversity, and Ĥc(z) is the twist-three
quark-to-photon fragmentation function and is related to the first
pT -moment of the Collins function H⊥q

(z, p2 ),
1 T
Ĥq(z) = −1

z

∫
d2 pT p2

T H⊥q
1

(
z, p2

T

)
, (11)

with H⊥q
1 (z, p2

T ) defined in the next section. The relevant hard-part
function HCollins

ab→c has been computed in [13].
Eventually the single transverse spin asymmetry AN is com-

puted from the following definition

AN =
Eγ

d	σ
d3 Pγ

Eγ
dσ

d3 Pγ

, (12)

where the spin-dependent and spin-averaged cross sections are
given in Eqs. (1) and (5), respectively. To calculate AN numerically,
we need the information for the twist-three quark–gluon correla-
tion function Tq,F (x, x) and twist-three quark-to-photon fragmen-
tation function Ĥq(z). The information of Tq,F (x, x) has been di-
rectly extracted from the proton–proton data [20,21], or indirectly
from the SIDIS data by using Eq. (7) [36,37]. However, the infor-
mation of Ĥq(z) is completely unknown. To estimate the size of
Ĥq(z) will be the main focus of the next section.

3. Quark to photon Collins function

In this section, we perform model calculations for photon frag-
mentation functions, including both the unpolarized fragmenta-
tion function and the Collins function. We first study the trans-
verse momentum dependent quark-to-photon fragmentation func-
tions, and then integrate over the transverse momentum to obtain
the relevant unpolarized collinear fragmentation function Dq→γ (z)

and the collinear twist-three fragmentation function Ĥq(z).

3.1. Transverse momentum dependent fragmentation functions

Photon fragmentation function can be calculated from the cor-
relation function 	(z,kT ) [4,5,38],

	(z,kT ) = 1

2z

∑
X

∫
dξ+ d2ξT

(2π)3
eik·ξ 〈0|ψq(ξ)|γ X〉

× 〈γ X |ψ̄q(0)|0〉|ξ−=0, (13)

where the usual gauge link is suppressed, and we have assumed
that the photon is moving in −z direction with momentum pμ =
p−nμ and light-cone vector nμ = [0+,1−,0⊥]. The fragmenting
quark has momentum k, with k− = p−/z and kT the transverse
component with respect to the photon momentum p. We define
pT as the photon transverse momentum with respect to the quark,
which is related to kT as: �pT = −z�kT . Here for our purpose we
only keep the terms relevant to the quark to unpolarized photon
fragmentation. Then the correlation function 	(z,kT ) is given by
[4,5,39],

	(z,kT ) = 1

2

[
Dq→γ

(
z, p2

T

)
/n + H⊥q

1

(
z, p2

T

)
σμνkTμnν

]
. (14)

Dq→γ (z, p2
T ) is the usual unpolarized quark-to-photon fragmenta-

tion function, and H⊥q
1 (z, p2

T ) is the quark-to-photon Collins func-
tion in agreement with the “Trento conventions” [39]. For the most
general case where photon’s polarization is also specified, there are
more terms in the expansion [38]. We can easily project out these
functions

Dq→γ

(
z, p2

T

) = 1

2
Tr

[
	(z,kT )/̄n

]
, (15)

ε
μν
T kTν H⊥q

1

(
z, p2

T

) = 1

2
Tr

[
	(z,kT )iσμνn̄νγ

5], (16)

where n̄μ = [1+,0−,0⊥] is a light-cone vector conjugate to nμ .
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Fig. 4. The Feynman diagram which contribute to the unpolarized quark-to-photon
fragmentation function Dq→γ (z, p2

T ).

In our model, the tree-level diagram describing the fragmen-
tation of a quark into a real photon is depicted in Fig. 4. By
contrast with the pion fragmentation calculations [40–42], the in-
teraction between quark and the photon is described by a simple
point interaction with coupling ieqeγ μ and eq the quark frac-
tional charge. In the actual calculations, we will choose light-cone
gauge n̄ · Aem = 0 for the photon field [43] to avoid photon eikonal
phase [44]. On the other hand, we still use the covariant gauge for
the gluon field, thus eikonal phase for gluon field still exists in our
calculations. In such a set-up, we have only one Feynman diagram
(at leading order) for unpolarized quark-to-photon fragmentation
function Dq→γ (z, p2

T ), as shown in Fig. 4. Thus, the photon polar-
ization sum is given by

∑
λ

εμ(p, λ)ε∗ν(p, λ) = −gμν + pμn̄ν + pνn̄μ

n̄ · p
. (17)

The calculation is straightforward, and we obtain

Dq→γ

(
z, p2

T

) = e2
q
αem

2π2

1

z2(1 − z)

[
1 + (1 − z)2

k2 − m2
q

− 2zm2
q

(k2 − m2
q)2

]
,

(18)

where αem is the electro-magnetic coupling constant, mq is the
quark mass. k2 is the virtuality of the fragmenting quark, and it is
related to photon transverse momentum pT as follows:

k2 = p2
T

z(1 − z)
+ m2

q

1 − z
. (19)

The Collins function receives contributions only from the inter-
ference between two amplitudes with different imaginary parts.
Since the tree-level amplitude is real, the necessary imaginary
parts will be generated by the inclusion of one-loop corrections.
Here we study the case of gluon loops [40–42,45]. The relevant
Feynman diagrams are given by Fig. 5. The double line in Fig. 5(c)
and (d) represents the eikonalized propagator, which give rise to
the factor 1/(−n̄ · � ± iε) [40,41]. The calculations are much more
involved than the unpolarized fragmentation function, but never-
theless similar to those for the quark-to-pion Collins functions cal-
culated in [40,41]. In particular we note that the contribution from
Fig. 5(d) are due to poles on the gluon and incoming quark [40,41,
45] signaling that the photon Collins function is universal [45,46].
Here we give only the final results,

H⊥q
1

(
z, p2

T

) = e2
q
αem

2π2

mq

k2 − m2
q
αsC F

[
H⊥(fig.a)

1 + H⊥(fig.b)
1

+ H⊥(fig.c)
1 + H⊥(fig.d)

1

]
, (20)

where the four terms in the bracket correspond to the four dia-
grams in Fig. 5 and they are given by

H⊥(fig.a)
1 = 1

2

(
3 − m2

q
2

)
, (21)
2zk k
H⊥(fig.b)
1 = − 1

(1 − z)(k2 − m2
q)

[
m2

q

k2 − m2
q

ln

(
k2

m2
q

)

+ 1

2z

(
4 − 5z + 3(z − 2)

m2
q

k2
+ 2

m4
q

(k2)2

)]
, (22)

H⊥(fig.c)
1 = 0, (23)

H⊥(fig.d)
1 = − 1

(1 − z)k2

[
1 + (1 − z)k2

(1 − z)k2 − m2
q

ln

(
(1 − z)k2

m2
q

)]
.

(24)

We note, due to the fundamental quark–photon and quark–gluon
interactions that describe the photon Collins function, we find that
the overall strength of the various contributions in Eq. (20) are
set by both the electro-magnetic and strong coupling. Moreover,
we also find that the function vanishes if the quark mass is zero;
this is consistent with the chiral-odd property of the Collins func-
tion [16].1 One might expect such behavior in any partonic model
description of the photon Collins function.

3.2. Collinear fragmentation functions

The collinear (integrated) unpolarized fragmentation function
Dq→γ (z) is defined as

Dq→γ (z) = π

p2
T max∫
0

dp2
T Dq→γ

(
z, p2

T

)
. (25)

Following [40,43,47], we take the upper limit p2
T max to be set by

a cut-off on the fragmenting quark virtuality μ2, where k2 < μ2.
From Eq. (19), this corresponds to

p2
T max = z(1 − z)μ2 − zm2

q . (26)

Then the analytic result for Dq→γ (z,μ2) is

Dq→γ

(
z,μ2) = e2

q
αem

2π

[
1 + (1 − z)2

z
ln

(1 − z)(μ2 − m2)

zm2

+ 2

(
m2

μ2 − m2
− 1 − z

z

)]
. (27)

We choose a quark mass of mq = 300 MeV, for Dq→γ which
gives a reasonable estimate for quark-to-photon fragmentation
function extracted from phenomenology [49] as indicated in the
left panel of Fig. 6. Choosing such a mass value enables us to
estimate the possible size of the Collins effect to prompt photon
production. We comment more on this in Section 4.
Similarly from Eq. (11), we define the twist-three fragmentation
function Ĥq(z,μ2) as

Ĥq
(
z,μ2) = −π

z

p2
T max∫
0

dp2
T p2

T H⊥q
1

(
z, p2

T

)
. (28)

Now let us estimate the relative size of twist-three fragmenta-
tion function Ĥq(z,μ2) compared to the unpolarized fragmenta-
tion function Dq→γ (z,μ2).

1 Similar quark mass dependence was observed for pion fragmentation in
both partonic and effective quark–hadron model calculation of the Collins effect
[40,41,48].
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Fig. 5. The Feynman diagrams which contribute to the quark-to-photon Collins fragmentation function H⊥q
1 (z, p2

T ). The mirror diagrams with the gluon in the right-hand side
of the cut are not shown here, but are included in the calculations.

Fig. 6. Left panel: u-quark to photon fragmentation function calculated from our model (blue dashed curve) in Eq. (27) with mq = 300 MeV compared with that extracted
from phenomenology in [49] (red solid curve) at μ = 1.5 GeV. Right panel: The ratio of Ĥq(z,μ2)/Dq→γ (z,μ2) at scale μ = 1.5 GeV is plotted as a function of z. The
magenta dotted curve is the contribution from Fig. 5(a), the green dot-dashed for Fig. 5(b), the blue dashed for Fig. 5(d), and the red solid curve is the sum.
In Fig. 6 (right panel), we present numerical estimates for the
analyzing power Ĥq(z,μ2)/Dq→γ (z,μ2), separately for each of the
diagrams of Fig. 5 at scale μ = 1.5 GeV as a function of z. The ma-
genta dotted curve is the contribution from Fig. 5(a), the green
dot-dashed for Fig. 5(b), the blue dashed for Fig. 5(d), and the
red solid curve is the sum. We find that there is a strong can-
cellation between the contribution of diagrams (a) and (b), similar
to the quark-to-pion Collins function [40]. Thus the sum is domi-
nantly given by the contribution from diagram (d), the gauge box
diagram. We also notice that the quantity Ĥq(z,μ2)/Dq→γ (z,μ2)

for photon case is much smaller than the same quantity for pion
case as estimated in Ref. [40]. This leads to a much smaller Collins
asymmetry for fragmentation photon production, as shown in the
next section.

4. Phenomenology

In this section, we will estimate the SSAs of the prompt photon
production in the forward rapidity region at RHIC energy. In order
to assess the contributions from the fragmentation photons, beside
the overall spin asymmetry AN defined in Eq. (12), we will define
the following additional asymmetries: the spin asymmetry for di-
rect photon production Adir
N , the spin asymmetry for fragmentation

photons Afrag
N . That is,

Adir
N =

Eγ
d	σ dir

d3 Pγ

Eγ
dσ dir

d3 Pγ

, Afrag
N =

Eγ
d	σ

frag
Sivers

d3 Pγ

Eγ
dσ frag

d3 Pγ

. (29)

For the fragmentation photons, there are both Sivers and Collins
contributions for the spin asymmetry, we thus further define the
Sivers asymmetry for fragmentation photons Afrag

N,Sivers, and the

Collins asymmetry for fragmentation photons Afrag
N,Collins,

Afrag
N,Sivers =

Eγ
d	σ

frag
Sivers

d3 Pγ

Eγ
dσ frag

d3 Pγ

, Afrag
N,Collins =

Eγ
d	σ

frag
Collins

d3 Pγ

Eγ
dσ frag

d3 Pγ

. (30)

Note that the spin asymmetry for fragmentation photons is
the sum of Sivers and Collins asymmetry as Afrag

N = Afrag
N,Sivers +

Afrag
N,Collins. However, the overall spin asymmetry for prompt photon

AN = Adir + Afrag.
N N
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Fig. 7. Single transverse spin asymmetry for prompt photon production, p↑ + p → γ + X , is plotted as a function of Feynman xF at rapidity y = 3.5 and center-of-mass energy√
s = 200 GeV. Left panel: the asymmetry for the fragmentation photons. The black solid curve is the Collins asymmetry Afrag

N,Collins . Dashed curves are the Sivers asymmetry

Afrag
N,Sivers , with the red curve for “KQVY” parametrization, the blue curve for “new” parametrization, and the green curve for “old” parametrization for Tq,F (x, x). For each

set, the solid curve is the asymmetry for fragmentation photons Afrag
N , which is the sum of Afrag

N,Collins and Afrag
N,Sivers . Right panel: the asymmetry for the prompt photons. For

each set, the dashed curve is the direct asymmetry Adir
N , the dotted curve is the fragmentation asymmetry Afrag

N , and the solid curve is the overall spin asymmetry AN . (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)
The quark-to-photon fragmentation function has been ex-
tracted from the phenomenological study, see e.g., Ref. [49]. This
parametrization has been used to describe the unpolarized prompt
photon production at RHIC energy [50]. Thus, to compute the frag-
mentation photon cross section in spin-averaged proton–proton
collisions, we will use this phenomenological parametrization in-
stead of the model result in Eq. (27). On the other hand, since
there is no experimental information at all for the quark-to-photon
twist-three fragmentation function Ĥq(z), we rely on our model
calculation in order to estimate the Collins contribution to the
asymmetry of fragmentation photons. In this case, we will assume
that our model calculations give a reasonable estimate on the rel-
ative size for Ĥq(z,μ2) and Dq→γ (z,μ2). Thus we will use the
following approximation,

Ĥq(z,μ2)

Dq→γ (z,μ2)

∣∣∣∣
phenomenology

= Ĥq(z,μ2)

Dq→γ (z,μ2)

∣∣∣∣
model

, (31)

where Ĥq(z,μ2) and Dq→γ (z,μ2) on the right-hand side are
given by the expressions in Eqs. (27) and (28) in our model calcu-
lations, Dq→γ (z,μ2) on the left-hand side is the phenomenologi-
cal parametrization from Ref. [49], and Ĥq(z,μ2) in the numera-
tor on the left-hand side will be the quark-to-photon twist-three
fragmentation function to be used in our calculation for the asym-
metry Afrag

N,Collins of fragmentation photons. For quark transversity
distribution ha(x), we take the parametrization from Ref. [51].

On the other hand, to calculate Adir
N and Afrag

N,Sivers, we need
the twist-three quark–gluon correlation functions Tq,F (x, x). This
function has been extracted directly from the inclusive hadron
production in proton–proton collisions [20], which will be la-
beled as “KQVY” parametrization in our plots. Tq,F (x, x) can also
be computed indirectly from Eq. (7) with the quark Sivers func-
tion extracted from SIDIS process [36,37]. Such indirectly ob-
tained parametrization for Tq,F (x, x) from [36] will be called “old”
parametrization, while that from [37] will be labeled as “new”
parametrization in our plots. It has been found in [28] that the di-
rectly and indirectly obtained Tq,F (x, x) have conflicting signs, for
both u and d quark flavors. The future prompt photon produc-
tion hopefully could help us pin down the sign and magnitude of
Tq,F (x, x).
In Fig. 7 (left), we plot the spin asymmetry for fragmentation
photons as a function of Feynman xF at forward rapidity y = 3.5
and RHIC energy

√
s = 200 GeV. The black solid curve is the Collins

asymmetry Afrag
N,Collins. We find that the Collins asymmetry is very

small in the whole xF region, less than 1%. Dashed curves are
the Sivers asymmetry Afrag

N,Sivers, with the red curve for “KQVY”
parametrization, the blue curve for “new” parametrization, and the
green curve for “old” parametrization for Tq,F (x, x). For each set,

the solid curve is the asymmetry for fragmentation photons Afrag
N ,

which is the sum of Afrag
N,Collins and Afrag

N,Sivers. In Fig. 7 (right), we
plot the spin asymmetry for the prompt photons. For each set,
the dashed curve is the direct asymmetry Adir

N , the dotted curve

is the fragmentation asymmetry Afrag
N , and the solid curve is the

overall spin asymmetry AN . We find that the spin asymmetry for
fragmentation photons Afrag

N has the same sign as the direct asym-
metry Adir

N , thus the overall spin asymmetry AN has the same sign

as Adir
N and Afrag

N .
Some comments are in order on the reliability our model esti-

mate of the photon Collins contribution in prompt photon produc-
tion. We re-emphasize, in this partonic model picture the quark-to-
photon Collins function is set by the electro-magnetic and strong
couplings, as well as the chiral-symmetry breaking quark mass [40,
41,48]. Further, fixing the quark mass by making a best estimate to
phenomenological extraction of the unpolarized photon fragmenta-
tion function, we then find that the photon Collins contribution is
relatively small. While this estimate of the Collins effect is derived
from a specific model calculation we expect this behavior from any
partonic description of the photon Collins function. Thus, within
this partonic framework the Collins asymmetry for fragmentation
photons is very small, and the asymmetry of prompt photon pro-
duction can possibly be a very good probe for the twist-three
quark–gluon correlation functions Tq,F (x, x). We urge the experi-
ments to measure the asymmetry of prompt photon production
at RHIC. It will provide important information on the twist-three
quark–gluon correlation functions, a quantity much needed to ver-
ify our current theoretical formalism for describing single trans-
verse spin asymmetry in proton–proton scatterings. The measure-
ment can go a long way to resolving the so called “sign mismatch”
[28–30].
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5. Summary

We have studied the single transverse spin asymmetry of
prompt photon production in high energy proton–proton scattering
including the contributions from both the direct and fragmenta-
tion photons. While the asymmetry for direct photon production
receives only the Sivers type of contribution, the asymmetry for
fragmentation photons receives both the Sivers and Collins types
of contributions. In order to estimate the Collins asymmetry for
fragmentation photons, we perform a model calculation for the
chiral-odd quark-to-photon Collins function. Our estimate of the
Collins asymmetry is derived from a partonic model calculation
extended from that for quark-to-pion fragmentation [40–42,45]. In
order to obtain a non-trivial Collins effect in this framework we
estimate the chiral-odd property of the Collins effect by choosing
a non-zero quark mass of mq = 300 MeV. This framework has been
shown to give reasonable estimate of unpolarized quark-to-photon
fragmentation function. Further based on the fundamental quark–
photon and quark–gluon interactions we expect it characterizes the
dynamics of the photon Collins function and in turn yields a rea-
sonable estimate of the photon Collins contribution to the prompt
photon production. We find that the Collins asymmetry for frag-
mentation photons is very small in the whole kinematic region,
thus the single transverse spin asymmetry of prompt photon pro-
duction is mainly coming from the Sivers asymmetry in direct and
fragmentation photons. We hope the experiments in the future
could constrain the different contributions to the prompt photon
production, e.g., through an isolation cut. We further make predic-
tions for the prompt photon spin asymmetry at RHIC energy, and
find that the asymmetry is sizable. The asymmetry of prompt pho-
ton production should then provide a good measurement for the
important twist-three quark–gluon correlation function, which is
urgently needed in order to resolve the “sign mismatch” puzzle.
We urge the experiments to measure the asymmetry of prompt
photon production at RHIC in the near future.
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