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1. Introduction

Despite the tremendous progress made recently regarding the 
intrinsic properties of the neutrinos, much remains to be learned. 
For instance, it is not known whether the neutrinos are Dirac or 
Majorana particles. The pattern of masses and mixing parameters 
is also a mystery. Within the framework of the standard model 
(SM), it is well-established that these parameters are functions of 
the energy scale, and are governed by the renormalization group 
equations (RGE). Indeed, the evolution of the gauge couplings (e.g., 
asymptotic freedom and gauge coupling unification) has been very 
successfully applied to particle physics, forming an essential part 
of the foundation of the standard model. One would expect sim-
ilar considerations to apply to the Higgs couplings (i.e., the mass 
matrices). In addition, these effects are indispensable toward a the-
oretical understanding of the mass matrices. Unfortunately, to this 
date existing results are usually numerical in nature and not very 
general. The main difficulty lies in the complexity of the RGE for 
these parameters. While the RGE in terms of the mass matrices 
are reasonably simple, these matrices contain a large number of 
unphysical degrees of freedom, and the RGE for physical variables 
are very complicated indeed. For instance, the mixing matrix is 
rephasing invariant, which is characteristic of the mixing of quan-
tum states, for which the phase of an individual state vector is 
unobservable. To extract the physical parameters, one may pro-
ceed by fixing some phases. This is similar to “fixing a gauge” 
in gauge theories. Thus, in the standard parametrization, one sets 
four phases in the mixing matrix (those of V 11, V 12, V 23, V 33) to 
vanish, arriving at three angles and a phase. When applied to the 
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analysis of the RGE, one is enforcing this “gauge” at every energy 
scale. The lack of a theoretical rationale for this choice, we believe, 
contributes to the complexity of the RGE, when expressed in terms 
of the standard parameters.

In this work we investigate the one-loop RGE evolution of Dirac 
neutrinos, using a rephasing invariant parametrization introduced 
earlier. What characterizes this parametrization is its symmetry 
structure under flavor permutations. Indeed, we establish a set of 
RGE which exhibits a simple structure with built-in permutation 
symmetry. This set of equations is not as formidable as the one 
written in terms of the standard parametrization. Its solutions are 
studied both analytically and numerically. We found a RGE invari-
ant, in addition to obtaining some approximate solutions. Numeri-
cal examples are also presented.

This work is organized as follows. In Section 2, we briefly in-
troduce the rephasing invariant parametrization that will be used 
in this work. Their properties are also discussed. In Section 3, we 
obtain the RGE in a compact and simple form. From these we de-
rive both exact and approximate RGE invariants in Section 4. In 
Section 5, we further obtain approximate solutions of the RGE and 
provide some numerical examples. We then summarize the work 
in Section 6.

2. Rephasing invariant parametrization and its properties

The rephasing invariant combinations of elements V ij for the 
neutrino mixing matrix V (with detV = +1) can be constructed 
by the product [1–5]

�i jk = V 1i V 2 j V 3k = Rijk − i J , (1)

where the common imaginary part is identified with the Jarlskog 
invariant [6], and the real parts are defined as
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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(R123, R231, R312; R132, R213, R321)

= (x1, x2, x3; y1, y2, y3). (2)

The (xi, y j) variables are constrained by two conditions:

detV = (x1 + x2 + x3) − (y1 + y2 + y3) = 1, (3)

(x1x2 + x2x3 + x3x1) − (y1 y2 + y2 y3 + y3 y1) = 0, (4)

and they are related to the Jarlskog invariant,

J 2 = x1x2x3 − y1 y2 y3. (5)

In addition, the (xi, y j) variables are bounded by ±1: −1 ≥
(xi, y j) ≥ +1, with xi ≥ y j for any pair of (i, j).

It is convenient to write |V ij|2 in a matrix form with elements 
xi − y j :

W = [|Vαi |2] =
⎛
⎝ x1 − y1 x2 − y2 x3 − y3

x3 − y2 x1 − y3 x2 − y1
x2 − y3 x3 − y1 x1 − y2

⎞
⎠ (6)

The matrix of the cofactors of W , denoted as w with w T W =
(detW )I , is given by

w = [|Vαi |2] =
⎛
⎝ x1 + y1 x2 + y2 x3 + y3

x3 + y2 x1 + y3 x2 + y1
x2 + y3 x3 + y1 x1 + y2

⎞
⎠ (7)

The elements of w are also bounded, −1 ≥ wαi ≥ +1, and

∑
i

wαi =
∑
α

wαi = detW , (8)

detW =
∑

x2
i −

∑
y2

j =
∑

xi +
∑

y j . (9)

Note that the constraint equations, Eq. (3) and Eq. (4), have been 
used here. The relations between this (xi , y j) parametrization and 
the standard ones, θ12, θ23, θ13, and the Dirac CP phase δ are 
shown in Appendix A.

One may further obtain useful expressions of the rephasing 
invariant combination formed by products of four mixing ele-
ments [6],

π
αβ

i j = Vαi Vβ j V ∗
α j V ∗

βi, (10)

which can be reduced to

π
αβ

i j = |Vαi|2|Vβ j|2 −
∑
γ k

εαβγ εi jk Vαi Vβ j Vγ k

= |Vα j|2|Vβi |2 +
∑
γ k

εαβγ εi jk V ∗
α j V ∗

βi V ∗
γ k, (11)

where the second term in either expression is one of the �’s (�∗ ’s) 
defined in Eq. (1).

In addition, the combination of five elements can be written in 
the following form:


αi = Vα j Vαk V ∗
αi Vβi Vγ i

= (ym yn − xbxc) + i J (1 − |Vαi|2). (12)

Here if |Vαi|2 = xa − yl , then b �= c �= a, m �= n �= l. This means that 
if one takes the αth row and the ith column, complex conjugates 
the vertex (V ∗

αi), then the product is rephasing invariant and has a 
well-defined imaginary part. Certain intriguing properties of 
 are 
shown also in Appendix A.
3. RGEs for the neutrino parameters

The RGE for the Hermitian matrix M ≡ Y †
ν Yν , where Yν is the 

neutrino Yukawa coupling matrix, is given by (see, e.g., [7–13])

16π2 dM

dt
= αM + P †M + M P (13)

at the one-loop level. Here, α is real and model-independent, P =
C Y †

l Yl + C ′Y †
ν Yν , with model-dependent coefficients C and C ′ , and 

Yl is the charged lepton Yukawa matrix. Following [7–13], we will 
ignore the term C ′Y †

ν Yν so that

P = C Y †
l Yl. (14)

Equation (13) is very simple in form. However, since M contains 
a number of unphysical parameters, it is necessary to extract its 
physical parts. To this end we may choose the basis where Yl is 
diagonal, for all energy scales. One is left then to diagonalize M by 
the mixing matrix V :

M = V [diag(h2
1,h2

2,h2
3)]V †, (15)

where h2
i are the eigenvalues of M . Further, one needs to sepa-

rate the physical, rephasing invariant, parts of V . To do this we 
will follows the procedure of [7–12] but regroup the equations for 
rephasing invariant variables at the end.

The evolution of the mixing matrix V satisfies the relation,

dV /dt = V T , (16)

here the matrix T is anti-Hermitian. One may define D = 16π2 d
dt

with t = ln(μ/MW ), and compares the diagonal elements of 
D(V [diag(h2

1, h
2
2, h

2
3)]V †) with that of DM to obtain

Dh2
i = h2

i [α + 2C(|V 1i|2 f 2
1 + |V 2i|2 f 2

2 + |V 3i|2) f 2
3 ], (17)

where f 2
i are the eigenvalues of the matrix Y †

l Yl , and the C ′ terms 
have been ignored. From the off-diagonal elements, we obtain the 
expression of Tij :

Tij = −Hij P ′
i j/(16π2), (18)

with P ′ = V † P V and

Hij = h2
i + h2

j

h2
i − h2

j

. (19)

To derive the RGE for neutrino mixing parameters, we may start 
with

D�i jk = D(V 1i V 2 j V 3k)

= (DV 1i)V 2 j V 3k + V 1i(DV 2 j)V 3k + V 1i V 2 j(DV 3k). (20)

By using Eq. (16), Eq. (18), and Eq. (19), one reaches the following 
form,

D�i jk = −[(
∑
l �=i

V 1l Hli P ′
li)V 2 j V 3k + V 1i(

∑
l �= j

V 2l Hlj P ′
l j)V 3k

+ V 1i V 2 j(
∑
l �=k

V 3l Hlk P ′
lk)]. (21)

The real part of D�i jk gives rise to Dxi and Dyi in the following 
matrix forms:

Dxi = −C[� f 2][Ai][H]T , (22)

Dyi = −C[� f 2][A′ ][H]T , (23)
i
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Table 1
The explicit expressions of the matrix [Sij]. Here γ k is defined in Eq. (30).

S11 =
⎛
⎝ 0 0 0

0 22 −23

0 −32 33

⎞
⎠, S12 =

⎛
⎝ 0 0 0

−21 0 23

31 0 −33

⎞
⎠, S13 =

⎛
⎝ 0 0 0

21 −22 0
−31 32 0

⎞
⎠

S21 =
⎛
⎝ 0 −12 13

0 0 0
0 32 −33

⎞
⎠, S22 =

⎛
⎝ 11 0 −13

0 0 0
−31 0 33

⎞
⎠, S23 =

⎛
⎝ −11 12 0

0 0 0
31 −32 0

⎞
⎠

S31 =
⎛
⎝ 0 12 −13

0 −22 23

0 0 0

⎞
⎠, S32 =

⎛
⎝ −11 0 13

21 0 −23

0 0 0

⎞
⎠, S33 =

⎛
⎝ 11 −12 0

−21 22 0
0 0 0

⎞
⎠

Table 2
The explicit expressions of the matrices [Zi], [Z ′

i ], and two equivalent forms of [Z0].

Z1 =
⎛
⎝ 11 0 0

0 22 0
0 0 33

⎞
⎠, Z2 =

⎛
⎝ 0 12 0

0 0 23

31 0 0

⎞
⎠, Z3 =

⎛
⎝ 0 0 13

21 0 0
0 32 0

⎞
⎠

Z ′
1 =

⎛
⎝ 11 0 0

0 0 23

0 32 0

⎞
⎠, Z ′

2 =
⎛
⎝ 0 12 0

21 0 0
0 0 33

⎞
⎠, Z ′

3 =
⎛
⎝ 0 0 13

0 22 0
31 0 0

⎞
⎠

[Z0] =
⎛
⎝ (1 − |V 11|2)11 (1 − |V 12|2)12 (1 − |V 13|2)13

(1 − |V 21|2)21 (1 − |V 22|2)22 (1 − |V 23|2)23

(1 − |V 31|2)31 (1 − |V 32|2)32 (1 − |V 33|2)33

⎞
⎠

=
⎛
⎝ x2x3 + y2 y3 x1x3 + y1 y3 x1x2 + y1 y2

x1x2 + y1 y3 x2x3 + y1 y2 x1x3 + y2 y3

x1x3 + y1 y2 x1x2 + y2 y3 x2x3 + y1 y3

⎞
⎠

where we define

[� f 2] = [� f 2
23,� f 2

31,� f 2
12], (24)

[H] = [H23, H31, H12]. (25)

Here � f 2
i j = f 2

i − f 2
j . We have taken over the results of Ref. [19], 

which are also valid for the Dirac neutrino problem. Thus, the 
matrices [Ai] and [A′

i] are given in Table II of Ref. [19], and are re-
produced here as Table 3 in Appendix B. Note that, to compensate 
for the usual convention of the neutrino mixing matrix, whereby 
it corresponds to the conjugate of that for the quarks, we have 
adapted the results of Ref. [19] by making the correspondences 
charged leptons ↔ u-type quarks and neutrinos ↔ d-type quarks. 
In addition, the imaginary part of D�i jk leads to

D ln J 2 = −2C[� f 2][w][H]T (26)

It should be noted that, since 
∑

� f 2
i j = 0, the evolution equa-

tions are invariant when a constant is added to any column of [Ai ]
or [A′

i]. For instance,

Ai → Ai +
⎛
⎝ δ1 δ2 δ3

δ1 δ2 δ3
δ1 δ2 δ3

⎞
⎠ (27)

leaves Eq. (22) invariant.
It turns out that we may recast Eqs. (22) and (23) into a more 

symmetrical and suggestive form. To do that we start with Eq. (10)
and separate its real and imaginary parts, for α �= β �= γ , i �= j �= k,

π
αβ

i j ≡ πγ k = γ k + i J . (28)

Since Re(παβ

i j ) takes the following forms,

Re(παβ

i j ) = |Vαi |2|Vβ j|2 − xa = |Vβi |2|Vα j|2 + yb, (29)

we have

γ k = 1
(|Vαi|2|Vβ j|2 + |Vα j|2|Vβi |2 − |Vγ k|2). (30)
2

In terms of the (x, y) variables, we find

γ k = xa y j + xbxc − y j(yk + yl), (31)

where (xa, y j) comes from |Vγ k|2 = xa − y j , and a �= b �= c, 
j �= k �= l. Another useful identity is

Wγ kγ k = J 2 + xa y j (no sum). (32)

Using Eqs. (27) and (31), we may simplify the matrices [Ai] −[A′
i]. 

And, with Eqs. (22) and (23), we find

DW ij = −2C[� f 2][Sij][H]T . (33)

By expressing (x, y) in terms of W ij , we further obtain

Dxi = −C[� f 2](2[Zi] − [Z0])[H]T , (34)

Dyi = −C[� f 2](2[Z ′
i] − [Z0])[H]T . (35)

Here, [Sij] are given in Table 1, while [Zi], [Z ′
i], and [Z0] are pre-

sented in Table 2. Note that there are two equivalent forms of [Z0], 
by using Eqs. (27) and (32).

To exhibit the structure of these equations, let’s write down ex-
plicitly the evolution equation of x1, e.g.,

Dx1 = −C[� f 2][2
⎛
⎝ 11 0 0

0 22 0
0 0 33

⎞
⎠ − [Z0]][H]T . (36)

Also, for |V 11|2,

D|V 11|2 = −2C[� f 2]
⎛
⎝ 0 0 0

0 22 −23
0 −32 33

⎞
⎠ [H]T . (37)

The simple forms of these evolution equations mirror the per-
mutation patterns contained in the definitions of (xi, y j), such 
as x1 = Re(�123) = Re(V 11 V 22 V 33). It is also noticeable that αi , 
which are the real parts of the Jarlskog variables, πβγ

jk (Eq. (28)), 
and are directly measurable in neutrino oscillation experiments, 
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play such a prominent role in these evolution equations. An in-
structive comparison can be made to the two flavor problem. Here, 
the familiar 2 × 2 (real) mixing matrix can be parametrized as 
x = C2

θ , y = −S2
θ and  = (V 11 V 12 V 21 V 22) = −C2

θ S2
θ . Let us adapt 

the results (for Majorana neutrinos) of Ref. [14]. With real mass 
matrices (and m → m2), Eq. (29) in Ref. [14] becomes

dC2
θ

dt
= dx

dt
= −χ S2

2θ

m2
2 + m2

1

m2
2 − m2

1

= (� f 2
21)H21. (38)

Thus, there is a clear lineage between Eqs. (34)–(35) and the two 
flavor RGE. It is interesting, and somewhat surprising, that, allow-
ing for the effects of permutation, the two flavor RGE act simply 
like building blocks for the three flavor RGE.

With the above alternative expressions, we may verify that

D(x1 + x2 + x3) = (y1 + y2 + y3), (39)

D(x1x2 + x2x3 + x3x1) −D(y1 y2 + y2 y3 + y3 y1) = 0, (40)

and

D J 2 = D(x1x2x3 − y1 y2 y3). (41)

For completeness, we also present the evolution equations for 
the elements of the cofactor matrix [w]:
Dwij = −2C[� f 2][Gij][H]T , (42)

where we have used wγ k = |Vαi|2|Vβ j|2 − |Vα j |2|Vβ i|2 to obtain 
the matrix [Gij]. They are listed explicitly in Table 4 of Appendix B.

4. The RGE invariants

RGE describe the evolution of a multitude of variables as func-
tions of a single parameter, t . As such one might find combina-
tions of physical variables which become independent of t . These 
RGE invariant prescribe correlations among physical variables and 
can serve as powerful constraints on possible theories at high 
energy. They have also drawn certain attention in recent liter-
ature [14–18]). To search for neutrino RGE invariants using our 
parametrization, and to further pave the way for the analytic, ap-
proximate solutions for W ij , we first define the neutrino mass ratio 
ri j = mi/m j , where mi = hi v/

√
2, v 
 246 GeV. Note that

sinh2 ln ri j = 1

4

(m2
i − m2

j )
2

m2
i m2

j

, (43)

D(sinh2 ln ri j) = 1

4

m4
i − m4

j

m2
i m2

j

(D lnm2
i −D ln m2

j ), (44)

and

D[ln(sinh2 ln ri j)] = m2
i + m2

j

m2
i − m2

j

(D ln m2
i −D ln m2

j ). (45)

This leads to

�i jD[ln(sinh2 ln ri j)] = 2C[� f 2][w][H]T . (46)

Combining this result with the expression of D ln J 2, we find that

D[ln[ J 2(sinh2 ln r12)(sinh2 ln r23)(sinh2 ln r31)]] = 0, (47)

i.e., J 2(�i j sinh2 ln ri j) is a RGE invariant.
Furthermore, one notes that any quantity that is identical to J 2

also gives rise to an invariant when multiplied by �i j sinh2 ln ri j in 
Eq. (47). With the expression of γ k in Eq. (30), it is straightfor-
ward to write down nine different forms of J 2 = π2

γ k −2
γ k , which 

correspond to nine different combinations of (γ , k),

J 2 = π2
γ k − 2

γ k

= |Vαi|2|Vβ j|2|Vα j|2|Vβi |2 − 2
γ k. (48)

This leads to nine RGE invariants which consist of |V ij |2 and the 
mass ratios ln r2

i j :

(|Vαi|2|Vβ j|2|Vα j|2|Vβi |2 − 2
γ k)(sinh ln r2

21)(sinh ln r2
32)

× (sinh ln r2
13) = constant (49)

We may also study approximate solutions of Eqs. (26), (33). 
Consider the familiar case of hierarchy, f 2

3 � ( f 2
2 , f 2

1 ), [� f 2] ∼=
f 2
3 [−1, +1, 0]. Then

1

2C
D ln J 2 ∼= [(w11 − w21), (w12 − w22), (w13 − w32)][H]T

= [(|V 33|2 − |V 32|2), (|V 31|2 − |V 33|2),
(|V 32|2 − |V 31|2)][H]T . (50)

Under the same approximation, we find, e.g.,

1

2C
D ln |V 31|2 ∼= f 2

3

|V 31|2 [1,−1.0]
⎛
⎝ 0 12 −13

0 −22 23
0 0 0

⎞
⎠ [H]T

= f 2
3 [0,−|V 33|2, |V 32|2][H]T , (51)

where we used the relations 12 +22 = −|V 31|2|V 33|2 and 13 +
23 = −|V 31|2|V 32|2. Together with similar results for D ln |V 22|2
and D ln |V 33|2, we find the following approximate RGE invariant:

J 2/(|V 31|2|V 32|2 V 33|2) ∼= invariant, f 2
3 � ( f 2

2 , f 2
1 ). (52)

The approximate solutions, Eqs. (50), (51), are actually quite accu-
rate as long as the hierarchy used is not upended by renormaliza-
tion.

Furthermore, if the neutrino masses satisfy the hierarchical con-
dition: Hij � H jk, Hki , then

d ln J 2

dt
+ d ln(sinh2 ln ri j)

dt

 0 (53)

and the approximate invariant follows:

J 2(sinh2 ln ri j) = constant. (54)

Since H12 � H23, H31 in general, we may write

J 2(sinh2 ln r12) = constant. (55)

5. Approximate solutions

Even though complete analytical solutions to the coupled RGE 
are unavailable, certain approximations to the RGE may lead us to 
solutions that are surprisingly simple. We first consider a hierar-
chical scenario for the charged leptons, f 2

3 � f 2
2 , f 2

1 , which yields

[� f 2
23,� f 2

31,� f 2
12] ≈ f 2

3 [−1,1,0]. (56)

In addition, we have

[H23, H31, H12] ≈ [−1,1,−1] (57)

if the neutrino masses are hierarchical: h2
3 � h2

2 � h2
1. Substituting 

Eqs. (56) and (57) in Eq. (33) results in the following simple forms:
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C ′DW11 = −(22 + 23) = W11W31, (58)

C ′DW12 = −21 + 23, (59)

C ′DW13 = 21 + 22 = −W13W33, (60)

C ′DW21 = −(12 + 13) = W21W31, (61)

C ′DW22 = −11 + 13, (62)

C ′DW23 = 11 + 12 = −W23W33, (63)

C ′DW31 = 12 + 22 + 13 + 23 = −W31(1 − W31), (64)

C ′DW32 = (11 + 21) − (13 + 23) = W32(W31 − W33),(65)

C ′DW33 = −(11 + 21) − (12 + 22) = W33(1 − W33), (66)

where C ′ = 1/(2C f 2
3 ). One observes that the six quantities,

D ln W11, D ln W13, D ln W21, D ln W23, D ln W31, and D ln W33
depend only on W31 and W33. It is also seen that the following 
two relations hold:

D ln W13 = D ln W23, (67)

D ln W11 = D ln W21. (68)

One notes that Eq. (64) has an approximate, analytic solution 
for a range of t-values inside which f 2

3 ≈ constant is a good ap-
proximation:

W31 ∼= 1

(a−1
31 − 1)e(t−t0)/C ′′ + 1

, (69)

where C ′′ = 16π2C ′ , and aij is the initial value of W ij at t = t0. 
Similarly, we can solve for W33 from Eq. (66):

W33 ∼= 1

(a−1
33 − 1)e−(t−t0)/C ′′ + 1

. (70)

With the explicit expressions for W31 in Eq. (69), we may rewrite 
Eq. (58) as:

C ′ ln W11 =
∫

dt

(a−1
31 − 1)e−(t−t0)/C ′′ + 1

, (71)

which can be solved for W11:

W11 ∼= a11

(1 − a31) + a31e−(t−t0)/C ′′ . (72)

Similarly, W13 can be solved by using the explicit solution of W33
in Eq. (70),

W13 ∼= a13

(1 − a33) + a33e(t−t0)/C ′′ . (73)

The rest of W ij can be obtained directly by using 
∑

i W ij = 1 and ∑
j W ij = 1.
A confidence builder for these approximate solutions is the nu-

merical solutions of RGE with initial conditions incorporating the 
approximations in Eqs. (56) and (57). Note that to assess the gen-
eral nature of the RGE, it seems more appropriate to start from a 
point with fast evolution, so that most changes may be accom-
plished in its neighborhood, with minor corrections afterwards. 
The low energy physics values are close to a fixed point of the 
RGE, and it is crucial to study how they are approached from the 
high energy values. However, without detailed knowledge of the 
initial values at high energy in the scope of theoretical framework, 
it is difficult to assign a suitable region of initial parameter space 
that yields all the measured values as the RGE evolve down to the 
low energy.

At high energy, either hierarchical or near degenerate masses 
and mixing parameters are both motivated by various models [20]. 
For the purpose of illustration, we simply assume C = −3/2 in 
analogy to the quark RGE and adopt the following initial input pa-
rameters at high energy:

• f 2
3 = 10−4, f 2

3 = 10−2, and f 2
3 = 1 are adopted for calculating 

the approximate solutions, which will be compared with the 
full solution using the same values of f 2

3 as the initial input at 
t0 = 30.

• The neutrino masses at t0 = 30 are taken to be hierarchical: 
h2

3 � h2
2 � h2

1, which leads to Eq. (57).
• It is found that (xi, y j) for neutrinos only evolve slightly from 

their respective initial values. We therefore adopt [x1, x2; y1,

y2] = [(1/3) − ε, (1/6) − ε; (−1/3) + ε, (−1/6) + ε] with ε =
0.01 as the input at t0 = 30 so as to yield reasonable mixing 
parameters at low energy.

With the above inputs, we present examples of approximate 
and full numerical solutions for |V 11|2 and |V 13|2 in Fig. 1, and 
summarize the results in the following.

• The approximate solutions agree well with the full solu-
tions for small f 2

3 . However, deviation begins to enlarge for 
larger f 2

3 , e.g., when f 2
3 ∼ 1.

• Although the quark mixing elements can evolve quite signif-
icantly from high energy [19], the neutrino mixing parame-
ters (xi and yi ) only evolve slightly and thus the elements 
W ij = |V ij|2 do not evolve much from the initial values. This 
general behavior is in agreement with the expectation of re-
cent study (see, e.g., Ref. [21]).

• Note that with the chosen input values, some of the parame-
ters do not evolve to the observed values at low energies. It 
appears that the RGE evolution may be sensitive to the initial 
parameters and that fine-tuning the may be required.

Finally, it is worthwhile to mention that the RGE for W ij =
|V ij|2 may also be simplified into different forms if f 2

i remain hier-
archical: [� f 2] ≈ f 2

3 [−1, 1, 0], while a pair of h2
i ’s are now nearly 

degenerate: h2
3 ≥ h2

2 ≈ h2
1. It leads to

[H] ≈ (
h2

1 + h2
2

h2
1 − h2

2

)[0,0,1] = H12[0,0,1]. (74)

In this case, we obtain the following simple forms for DW ij :

C̄DW11 = −23, (75)

C̄DW12 = 23, (76)

C̄DW13 = 0, (77)

C̄DW21 = −13, (78)

C̄DW22 = 13, (79)

C̄DW23 = 0, (80)

C̄DW31 = 13 + 23, (81)

C̄DW32 = −(13 + 23), (82)

C̄DW33 = 0, (83)

where C̄ = C ′/H12.
The RGE (Eq. (34)–(35)) are valid for a class of theories that are 

similar to the SM. The examples that we presented also show that 
these equations have simple approximate solutions under various 
sets of input parameters. In the search of theories beyond the stan-
dard model, they should be helpful to identify those that can yield 
viable sets of physical parameters at low energies.
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Fig. 1. Evolution of |V 11|2 (left column) and |V 13|2 (right column) from high to low energies. The approximate solutions (solid) are evaluated using constant f 2
3 : f 2

3 = 10−4, 
f 2
3 = 10−2, and f 2

3 = 1. The full solutions (dashed) are also plotted with the initial values, f 2
3 = 10−4, f 2

3 = 10−2, and f 2
3 = 1 at t0 = 30.
6. Conclusion

One of the most important questions in the study of neutrinos 
is an assessment of the RGE evolution of neutrino masses and mix-
ing. In contrast to the corresponding problem for gauge couplings, 
owing to the complexity of the RGE, the evolution of the neu-
trino parameters is rather poorly understood. It is thus not easy 
to analyze models at high energies which may start with a vari-
ety of mass and/or mixing patterns. We studied the one-loop RGE 
of Dirac neutrinos, using a rephasing invariant parametrization in-
troduced earlier. Because of the symmetry structure (under flavor 
permutation) of this parametrizations, it is found that the result-
ing equations (Eqs. (26), (33), (34), (35)) can be arranged into a 
highly symmetric matrix form, which can facilitate both theoretical 
and numerical studies of the solutions. In particular, they should 
provide a useful guide in the search of extensions of the SM. We 
obtained a RGE invariant, as well as some approximate solutions. 
In addition, some numerical results are presented.

Work is in progress to generalize our results to the case of 
Majorana neutrinos, as well as the evolution of the quark mass 
matrices. We hope to present these studies in a future publication.
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Appendix A

We first briefly outline the connection between the (x, y)

parametrization and the standard one in the following. It can be 
verified that the mixing angles of the standard parametrization: 
s2

12 ≡ sin2 θ12, s2
23 ≡ sin2 θ23, and s2

13 ≡ sin2 θ13 are related to the 
(xi, y j) parameters,

s2
12 = 1/(1 + x1 − y1

x2 − y2
), (A.1)

s2
23 = 1/(1 + x1 − y2

x2 − y1
), (A.2)

s2
13 = x3 − y3. (A.3)

On the other hand, one may also show that, with ci j ≡ cos θi j and 
K ≡ s12c12s13c2

13s23c23,

J = K sinϕ

x1 = c2
12c2

13c2
23 − K cos δ

x2 = s2
12c2

13s2
23 − K cos δ

x3 = s2
12s2

13c2
23 + c2

12s2
13s2

23 + 1 + s2
13

1 − s2
13

K cos δ

y1 = −c2
12c2

13s2
23 − K cos δ

y2 = −s2
12c2

13c2
23 − K cos δ
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Table 3
The explicit expressions of the matrices [Ai] and [A′

i ].
[Ai ] [A′

i ]

[A1] =
⎛
⎜⎝

2x1 y1 x1x2 + y2 y3 x1x3 + y2 y3

x1x3 + y1 y2 2x1 y3 x1x2 + y1 y2

x1x2 + y1 y3 x1x3 + y1 y3 2x1 y2

⎞
⎟⎠, [A′

1] =
⎛
⎜⎝

2x1 y1 x2x3 + y1 y2 x2x3 + y1 y3

x1x3 + y1 y2 x1x3 + y1 y3 2x2 y1

x1x2 + y1 y3 2x3 y1 x1x2 + y1 y2

⎞
⎟⎠

[A2] =
⎛
⎜⎝

x1x2 + y1 y3 2x2 y2 x2x3 + y1 y3

x2x3 + y2 y3 x1x2 + y2 y3 2x2 y1

2x2 y3 x2x3 + y1 y2 x1x2 + y1 y2

⎞
⎟⎠, [A′

2] =
⎛
⎜⎝

x1x3 + y1 y2 2x2 y2 x1x3 + y2 y3

2x3 y2 x1x2 + y2 y3 x1x2 + y1 y2

x2x3 + y2 y3 x2x3 + y1 y2 2x1 y2

⎞
⎟⎠

[A3] =
⎛
⎜⎝

x1x3 + y1 y2 x2x3 + y1 y2 2x3 y3

2x3 y2 x1x3 + y1 y3 x2x3 + y1 y3

x2x3 + y2 y3 2x3 y1 x1x3 + y2 y3

⎞
⎟⎠, [A′

3] =
⎛
⎜⎝

x1x2 + y1 y3 x1x2 + y2 y3 2x3 y3

x2x3 + y2 y3 2x1 y3 x2x3 + y1 y3

2x2 y3 x1x3 + y1 y3 x1x3 + y2 y3

⎞
⎟⎠

Table 4
The explicit expressions of the matrix [Gij]. Here γ k is defined in 
Eq. (30).

G11 =
⎛
⎜⎝

−11(1 + |V 11|2) 12(1 − |V 12|2) 13(1 − |V 13|2)

21(1 − |V 21|2) −22|V 22|2 −23|V 23|2
31(1 − |V 31|2) −32|V 32|2 −33|V 33|2

⎞
⎟⎠

G12 =
⎛
⎜⎝

11(1 − |V 11|2) −12(1 + |V 12|2) 13(1 − |V 13|2)

−21|V 21|2 22(1 − |V 22|2) −23|V 23|2
−31|V 31|2 32(1 − |V 32|2) −33|V 33|2

⎞
⎟⎠

G13 =
⎛
⎜⎝

11(1 − |V 11|2) 12(1 − |V 12|2) −13(1 + |V 13|2)

−21|V 21|2 −22|V 22|2 23(1 − |V 23|2)

−31|V 31|2 −32|V 32|2 33(1 − |V 33|2)

⎞
⎟⎠

G21 =
⎛
⎜⎝

11(1 − |V 11|2) −12|V 12|2 −13|V 13|2
−21(1 + |V 21|2) 22(1 − |V 22|2) 23(1 − |V 23|2)

31(1 − |V 31|2) −32|V 32|2 −33|V 33|2

⎞
⎟⎠

G22 =
⎛
⎜⎝

−11|V 11|2 12(1 − |V 12|2) −13|V 13|2
21(1 − |V 21|2) −22(1 + |V 22|2) 23(1 − |V 23|2)

−31|V 31|2 32(1 − |V 32|2) −33|V 33|2

⎞
⎟⎠

G23 =
⎛
⎜⎝

−11|V 11|2 −12|V 12|2 13(1 − |V 13|2)

21(1 − |V 21|2) 22(1 − |V 22|2) −23(1 + |V 23|2)

−31|V 31|2 −32|V 32|2 33(1 − |V 33|2)

⎞
⎟⎠

G31 =
⎛
⎜⎝

11(1 − |V 11|2) −12|V 12|2 −13|V 13|2
21(1 − |V 21|2) −22|V 22|2 −23|V 23|2

−31(1 + |V 31|2) 32(1 − |V 32|2) 33(1 − |V 33|2)

⎞
⎟⎠

G32 =
⎛
⎜⎝

−11|V 11|2 12(1 − |V 12|2) −13|V 13|2)

−21|V 21|2 22(1 − |V 22|2) −23|V 23|2
−31(1 − |V 31|2) −32(1 + |V 32|2) 33(1 − |V 33|2)

⎞
⎟⎠

G33 =
⎛
⎜⎝

−11|V 11|2 −12|V 12|2 13|V 13|2
−21|V 21|2 −22|V 22|2 23(1 − |V 23|2)

31(1 + |V 31|2) −32(1 − |V 32|2) −33(1 + |V 33|2)

⎞
⎟⎠
y3 = −s2
12s2

13s2
23 − c2

12s2
13c2

23 + 1 + s2
13

1 − s2
13

K cos δ, (A.4)

where δ is the Dirac CP phase in the standard parametrization. 
Note that 
13 = K eiδ(1 − |V 13|2). Thus, the phase δ can be identi-
fied as the phase of the rephasing invariant quantity 
13.

In addition, we list some interesting properties of 
 in the fol-
lowing. A straightforward calculation shows that
∑
α


αi =
∑

i


αi = 2i J . (A.5)

One may consider the matrix [
] and its cofactor matrix [ξ ],

[
] =
⎛
⎝ 
e1 
e2 
e3


μ1 
μ2 
μ3

τ1 
τ2 
τ3

⎞
⎠ , (A.6)

[ξ ] =
⎛
⎝ ξe1 ξe2 ξe3

ξμ1 ξμ2 ξμ3
ξ ξ ξ

⎞
⎠ . (A.7)
τ1 τ2 τ3
From Eq. (A.5), we see that the matrices [
] and [ξ ] have similar 
properties as the pair W and w . In particular,

det[
] = 2i J
∑
α

ξαi = 2i J
∑

i

ξαi . (A.8)

One may also find the relations between 
αi and πγ k ≡ π
αβ

i j , e.g.,

πe1 = 
τ2 − (x1 − i J )Wτ2

= 
μ3 − (x1 − i J )Wμ3

= −
∗
τ3 + (y1 + i J )Wτ3

= −
∗
μ2 + (y1 + i J )Wμ2. (A.9)

Appendix B

The explicit matric forms of [Ai] and [A′
i] in Eqs. (22) and (23)

are shown in Table 3, and that for Gij in Eqs. (42) is shown in 
Table 4.
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