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Abstract Regulation of social exchanges refers to control-
ling social exchanges between agents so that the balance
of exchange values involved in the exchanges are continu-
ously kept—as far as possible—near to equilibrium. Previ-
ous work modeled the social exchange regulation problem
as a POMDP (Partially Observable Markov Decision Pro-
cess), and defined the policyToBDIplans algorithm to ex-
tract BDI (Beliefs, Desires, Intentions) plans from POMDP
models, so that the derived BDI plans can be applied to keep
in equilibrium social exchanges performed by BDI agents.
The aim of the present paper is to extend that BDI-POMDP
agent model for self-regulation of social exchanges with a
module, based on HMM (Hidden Markov Model), for rec-
ognizing and learning partner agents’ social exchange strate-
gies, thus extending its applicability to open societies, where
new partner agents can freely appear at any time. For the
recognition problem, patterns of refusals of exchange pro-
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posals are analyzed, as such refusals are produced by the
partner agents. For the learning problem, HMMs are used to
capture probabilistic state transition and observation func-
tions that model the social exchange strategy of the part-
ner agent, in order to translate them into POMDP’s action-
based state transition and observation functions. The paper
formally addresses the problem of translating HMMs into
POMDP models and vice versa, introducing the translation
algorithms and some examples. A discussion on the results
of simulations of strategy-based social exchanges is pre-
sented, together with an analysis about related work on so-
cial exchanges in multiagent systems.

Keywords Social exchange strategy · Recognition and
learning of social exchange strategies · Self-regulation of
social exchange strategies · Partially observable Markov
decision process · Hidden Markov model

1 Introduction

In Piaget’s Theory of Social Exchanges [41], social interac-
tions are seen as service exchanges between pairs of agents,
together with the subjective evaluation of those exchanges
by the agents themselves, by means of the so-called social
exchange values: the investment value for performing a ser-
vice or the satisfaction value for receiving it. The exchanges
also generate values of debts and credits that help to keep
record of incomplete exchange processes. A society is said
to be in social equilibrium if the balances of the exchange
values are equilibrated for the successive exchanges occur-
ring along the time.

The analysis of agent social interactions based on the Pi-
aget’s theory was first proposed in the various works that
led to the paper by Rodrigues and Costa [45] in 2003. Our
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qualitative approach for the modeling of social exchanges in
multiagent systems was introduced in 2005 [16]. In this ap-
proach, the exchanges may be performed by the agents ac-
cording to different observable strategies, which are called
the agents’ social exchange strategies.

In our work [12–15, 38–40], we have been mainly con-
cerned with the problem of the self-regulation of social ex-
changes in agent societies. For that, we have built on hybrid
BDI-POMDP agent models, defined over the BDI (Beliefs,
Desires, Intentions) architecture [5, 43, 56] with plans de-
rived from POMDP (Partially Observable Markov Decision
Processes) [30] models of social exchange strategies, in the
line of the works of Simari and Parsons [53] and other au-
thors [33, 34, 37, 51, 52, 54, 55].

However, the main problem of the self-regulation of strat-
egy-based social exchanges in open agent societies was still
to be tackled, namely, “How to deal with the appearance of
new social exchange strategies, whenever an agent of the
society modifies its strategy (giving rise to different and un-
expected social reactions) or a new agent (with a different
and unknown strategy) enters the society?”

The present paper1 advances the solution to the problem
of regulating social exchanges in open agent societies, by
treating the preliminary problem of recognizing and learn-
ing new models of social exchange strategies.

The aim is to extend the BDI-POMDP model for the
self-regulation of social exchanges presented by Pereira et
al. [38] with a module based on HMM (Hidden Markov
Model) [42] to take into account the problems of recogniz-
ing and learning partner agents’ social exchange strategies
in open societies.

For the recognition problem, the proposed BDI-POMDP-
HMM agent proceeds by analyzing the patterns of refusals
for exchange proposals that are present in a partner agent’s
behavior.

For the learning problem, the BDI-POMDP-HMM agent
uses HMMs to capture the probabilistic state transition and
observation functions that model the social exchange strat-
egy of the partner agent, whenever the recognition module
was not able to recognize it. The BDI-POMDP-HMM agent
then transforms the acquired HMM’s probabilistic transi-
tion and observation functions into POMDP’s probabilistic
action-based state transition and observation functions, ob-
taining a POMDP model of the previously unknown social
exchange strategy, thus allowing the extraction of BDI plans
for the regulation process, by using the policyToBDIplans
algorithm [38, 39].

Thus, another challenge that we are addressing in this pa-
per is how to integrate a POMDP model and a HMM, that

1This paper is an extended version of the work presented at BWSS
2010—the Second Brazilian Workshop on Social Simulation—and se-
lected by the BWSS 2010 Program Committee as one of the two best
works presented at the workshop.

is, how to obtain a POMDP model from a HMM (and vice
versa), since the former has state transition and observa-
tion functions based on the actions performed by the agents
in each state, whereas in the latter case the state transition
and observation functions are not explicitly related to action
performances. In this paper, the translation processes from
HMM to POMDP and from POMDP to HMM are formally
defined, introducing the translation algorithms and some ex-
amples.

The paper is organized as follows. Section 2 discusses
the modeling of social exchanges in which we have based
our works. Section 3 summarizes our work on the regu-
lation of social exchanges in multiagent systems, offering
a chronological contextualization and basic concepts nec-
essaries for the development of the paper. In Sect. 4, we
present the modeling of the exchanges between social ex-
change strategy-based agents. The BDI-POMDP model for
the self-regulation of social exchange is discussed in Sect. 5.
In Sect. 6, we introduce the method for recognizing social
exchange strategies. The method for learning new social ex-
change strategy POMDP models is introduced in Sect. 7,
including the discussion on the translation processes from
HMM to POMDP and vice versa. Results on simulations
of social exchange strategy-based interactions are shown
in Sect. 8. Section 9 discusses related work on social ex-
changes in multiagent systems. Section 10 is the Conclu-
sion.

2 Modeling social exchanges

According to Piaget’s approach to social interaction [41], a
social exchange between two agents, α and β , involves two
types of stages.

In stages of type Iαβ , the agent α realizes an action on be-
half of (a “service” for) the agent β , called here a do-ser-
vice action. The exchange values involved in this stage are
the following:

(i) rIαβ , which is the value of the investment done by α for
the realization of a service for β (this value is always
negative);

(ii) sIβα , which is the value of β’s satisfaction due to the
receiving of the service done by α (this value may be
positive, negative, or null);

(iii) tIβα , which is the value of β’s debt, the debt it acquired
to α for its satisfaction with the service done by α (this
value may be positive, negative or null); and

(iv) vIαβ , which is the value of the credit that α acquires
from β for having realized the service for β (this value
may be positive, negative or null).

In stages of type IIαβ , the agent α asks the payment for
the service previously done for the agent β , in the form of
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an ask-service action, and the values related with this
exchange have similar meaning.

Observe that the order in which the stages may occur is
not necessarily Iαβ–IIαβ .

The values rIαβ , sIβα , rIIβα and sIIαβ are called material
values (investments r , and satisfactions s), generated by the
evaluation of immediate exchanges; the values tIβα , vIαβ , tIIβα

and vIIαβ are the virtual values (credits v and debts t), con-
cerning exchanges that are expected to happen in the fu-
ture [41].

The four exchange values involved in an interaction are
assigned in ways that are completely uncorrelated to each
other, for reasons that may be completely independent of
the objective features that characterize the performance of
the service (see Example 1, in this section).

A social exchange process is composed by a sequence of
stages of type Iαβ and/or IIαβ , performed in discrete time
instants.

The material results, according to the points of view of
any agents α and β , are given by the sum total [12, 13, 16]
of the material values that occurred in the sequence of ex-
change stages that the agents performed, with the virtual re-
sults being defined in an analogous way.2

A social exchange process is said to be in material equi-
librium [16] if in all its duration it holds that the pair of ma-
terial results of α and β encloses a given equilibrium point.
The virtual equilibrium [16] is defined analogously.3

Given an on-going interaction, the agents may choose to
focus their attention either on the material results or in the
virtual results, in order to analyze that interaction.

Material results are important because they report the
concrete results obtained from the on-going interaction at
each of its steps, and constitute, thus, the main aspect to
qualify such interaction.

Virtual results, on the other hand, may be combined
with complementary information (like trust and reputation
of partner agents) to qualify the possible evolution of the in-
teraction, allowing the agents to make decisions about their
ways of participation or non-participation in the future steps
of the interaction.

Although it is clear that short-term and long-term aspects
of a social interaction are strongly interrelated, we make
here a tentative separation between them, in order to sim-
plify our initial study of exchange value-based strategies of
social interactions.

So, in our present approach, the material results that
agents can obtain in social exchange processes are consid-

2In previous work, we used intervals to represent exchange val-
ues, providing a specific interval algebra for their manipulation. See
[12, 13, 16] for more details on this formulation.
3Notice that Piaget’s notion of equilibrium has no game-theoretic
meaning, since it involves no notion of game strategy, and concerns
just an algebraic sum.

ered to be the main information that agents should gather
in order to distinguish different social exchange strategies to
be adopted by the agents concerning the short-term aspects
of the interaction. For example, an agent may adopt an ex-
change strategy that aims to achieve a great amount of ma-
terial results or, conversely, an exchange strategy that aims
to provide a great amount of material results for the other
agent (see Sect. 4.1).

On the other hand, the virtual results are considered to
be important mainly for decisions concerning the long-term
aspects of the interaction. For example, an agent’s choice
on which agent to offer (require) a service may take into
account the debts (credits) the former agent has accumulated
in its previous exchanges with each of the other agents of
the society. However, the influence of virtual values in the
decision on partners for future interactions is not a subject
of this paper.

The following example illustrates both that the exchange
values need not be correlated to each other and that social
exchanges need not result in social equilibrium.

Example 1 Let agents A and B be interacting in a social
context in which there exists a strong social asymmetry
between them (e.g., B has a much higher social position
then A). Let the situation be such that an interaction step
arises, with A performing a service for B (on the basis of its
social dues to B , for instance).

An illustration of the possible exchange values that may
arise in such situation is as follows. First, A assigns to its
service an investment value. Let us say that such value is
denoted by high, meaning for instance that A considers
that the service required a high degree of involvement, used
a lot of resources, etc.

Second, after the service is finished, B assigns a satis-
faction value to it. Let us say that such value is denoted by
medium, meaning, for instance, that B considers that the
benefit it acquired from A’s service ranges among the aver-
age benefit B is used to receive from services performed by
agents with the same social position as A.

Third, B decides upon the debit it has acquired toward
A from the performance of the service. Let us say that such
value is denoted by low, meaning, for instance, that B con-
siders that not only the satisfaction it got from the service
was an average satisfaction but also that A did not care to
treat B as adequately as B thought A should have treated it
during the performance of the service (say, A did not care
to talk to B with a language that properly acknowledged the
difference between their social positions).

Finally, A decides upon the credit it has upon B for the
service performed. Let us say that such value can be denoted
by null, meaning for instance that A considers that it is
only an obligation of agents that have social positions simi-
lar to its own to perform that kind of service for agents that
have social positions similar to that of B .
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The full exploration of the situation created in Example 1
is out of the scope of this paper, but from it one can hint how
an interaction where A charges B for the service performed
could restore at least in part the social equilibrium. One can
also hint the role that social stratification plays in biasing the
agents toward certain evaluations and how such biases can
complicate the possibility of achieving equilibrium in social
exchanges.

See also [15, 16] for more details on this modeling,
and [4, 9, 19, 29, 57] for other approaches related to social
exchanges.

3 Previous work on the regulation of strategy-based
social exchanges in agent societies

The (centralized) mechanism for the regulation of social ex-
changes in agent societies, based on the concept of equi-
librium supervisor with an associated Qualitative Interval
Markov Decision Process (QI-MDP) was introduced by
Dimuro and Costa [12, 13, 16]. That approach was extended
by Dimuro et al. [14, 15] to consider strategy-based so-
cial exchanges.4 Following, we internalized the regulation
mechanism in the agents, through a BDI-POMDP hybrid
model [38], going toward the self-regulation of social ex-
changes. A comparison between social exchange regulation
models was also presented by Pereira et al. [40]

Observe that hybrid models have been proposed in the
literature in order to take advantages of both POMDPs and
BDI architecture (see, e.g., [33, 34, 37, 51–55]).5

Simari and Parsons [53] showed that the plans derived
from an optimal policy are exactly the same adopted by a
BDI agent that selects plans with the highest utility, and that
operate with an optimal reconsideration strategy.

So, for our hybrid BDI-POMDP model [38] to have
the social exchange regulation process internalized in the
agent model, we introduced the policyToBDIplans algo-
rithm, which extracts BDI plans from policy graphs related
to optimal policies of POMDP models defined for the dif-
ferent social exchange strategies that the partner agents may
follow, one plan for each different exchange strategy [39].
Such plans are said to “obey optimal POMDP policies” (cf.,
[53]). At each interaction step, one of such plans is put to
use, depending on the partner of the interaction and on the
current balance of material values.

4In our previous works (e.g., [15–17, 38]), the agents’s social exchange
strategies were called agents’ exchange personality traits. However,
differently from other works on agent personality traits (e.g., [6–8,
22, 36]), where traits are defined internally to the agent models, our
model describes the agents’ observable behaviors in terms of state tran-
sition and observation functions, so actually modeling agents’ observ-
able strategies, hence our change of terminology.
5See [1, 31, 35], for other approaches on hybrid agent models in the
context of uncertain domains, based on either BDI or MDP models.

In that work, the problem of the decision about the best
exchanges that an agent should propose to its partner in or-
der to achieve social equilibrium, or to promote new inter-
actions, was modeled as a global POMDP for each social
exchange strategy that its partner is used to adopt. Consider-
ing a set of different strategies (e.g., egoistic, altruistic, tol-
erant strategies), each global POMDP was decomposed into
three sub-POMDPs, according to the current internal state
(favorable, equilibrated or unfavorable balance of material
exchange values) of the agent that was trying to regulate the
interaction [38].

For the sake of simplicity, in that work, the agents were
not allowed to adopt a strategy different from the ones pre-
viously defined for them, which were globally known to the
agent society.

That was the problem that motivated the present paper,
i.e., the overcoming of the restriction of the recognition pro-
cess to pre-defined sets of possible exchange strategies, in
order to allow for its use in open agent societies.

4 Modeling strategy-based social exchanges

In this section, we present the basic concepts of our model
of social exchanges between two agents α and β .

The possible ranges of material results of social exchange
processes constitute the internal states of an agent. The sets
of internal states of the agents α and β are then given by

Eα = {
E−

α ,E0
α,E+

α

}
and Eβ = {

E−
β ,E0

β,E+
β

}
, (1)

respectively, where E0
α and E0

β denote the range of equi-
librated results (e.g., material results around the zero), E+

α

and E+
β represent favorable results (e.g., positive material

results), whereas E−
α and E−

β denote the ranges of unfavor-
able results (e.g., negative material results). At any time, the
current material results are calculated as the sum total of the
material exchange values, namely, the investment and satis-
faction values, as explained in Sect. 2.

By convention, the agent that performs exchange propos-
als is denoted by α, and the agent that has to decide on ac-
cepting or refusing α’s exchange proposals is represented
by β . The set of exchange proposals that the agent α may
make to the agent β is construed as the set of the two pos-
sible actions that α may perform in each exchange stage,
given by

P = {do-service,ask-service}, (2)

with do-service meaning that α proposes to perform
a service to β (exchange stage of type Iαβ ), and ask-
service meaning that α proposes that β performs a ser-
vice to α (exchange stage IIαβ ).
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Table 1 Example patterns of operation of the state transition function of a social exchange strategy-based agent β

(a) Exchange stages of type Iαβ , α performing a do-service action

Π(Eβ) Egoistic strategy Altruistic strategy Tolerant strategy

E0
β E+

β E−
β E0

β E+
β E−

β E0
β E+

β E−
β

E0
β very-low very-high 0.0 very-high very-low 0.0 very-low very-high 0.0

E+
β 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0

E−
β high high very-low low very-low very-high high high very-low

(b) Exchange stages of type IIαβ , α performing an ask-service action

Π(Eβ) Egoistic strategy Altruistic strategy Tolerant strategy

E0
β E+

β E−
β E0

β E+
β E−

β E0
β E+

β E−
β

E0
β very-high 0.0 very-low very-low 0.0 very-high very-low 0.0 very-high

E+
β low very-high very-low high very-low high high very-low high

E−
β 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0

4.1 The strategy-based social exchange state transition
functions

The agents may have different social exchange strategies
that give rise to different state transition functions, defined,
for an agent β , by the function:

T : Eβ × P → Π(Eβ), (3)

which specifies, given β’s current state in Eβ and α’s ex-
change proposal in P, a probability distribution over the set
of states that β will achieve next.

In the following, we illustrate some of those strategies
that constitute our initial set of social exchange strategies:

Egoistic Strategy: the agent is mostly seeking his own
benefit, with a very high probability to accept exchanges
that represent transitions to favorable results (i.e., exchange
stages in which the other agent performs a service to it);

Altruistic Strategy: the agent is mostly seeking the ben-
efit of the other agent, with a very high probability to accept
exchanges that represent transitions toward states where the
other agent has favorable results (i.e., exchange stages in
which it performs a service to the other agent); in this case,
there is a very high probability of transitions to unfavorable
results;

Tolerant Strategy: the agent has a high probability to ac-
cept all kinds of exchanges, provided they are sensible from
its point of view.

Table 1(a) illustrates the patterns of operation of the prob-
ability distribution Π(Eβ) over the set of internal states
Eβ , as it is determined by the state transition function T

that characterizes a social exchange strategy-based agent
β , when another agent α offers to perform a service to β

(i.e., an exchange stage of type Iαβ , with an action do-
service).

In Table 1(a), observe that, for an agent β with an egois-
tic strategy, transitions ending in favorable results (E+

β ) are
the most probable, meaning that there is a very high proba-
bility that β will accept the service proposed by α. On the
other hand, if β is an agent with an altruistic strategy then
there is a high probability that it will refuse such proposal,
remaining in the same state.

In Table 1(a), the probability of β to change this state
from E0 to E− or from E+ to E− or from E+ to E0, consid-
ering any strategy model, is always equals to 0, since there
is no possibility of β to decrease its material results for re-
ceiving a service performed by α. However, there is always
a probability different from 0 of β to remain in the state E−,
whenever its current state is E−, which is the case when β

rejects α’s proposal.
See Table 1(b) to compare the converse probabilistic be-

havior of an agent β with an egoistic/altruistic strategy,
when α requests a service from β (i.e., exchange stage of
type IIαβ , with an action ask-service). In this table, the
probability of β to change this state from E0 to E+ or from
E− to E+ or from E− to E0, in any strategy model, is al-
ways equals to 0, since there is no possibility of β to in-
crease its material results for performing a service to α. On
the contrary, there is always a probability of β to stay in the
state E+, whenever its current state is E+, which is the case
when β rejects α’s proposal.

Observe also that there is a very high probability that an
agent β with a tolerant strategy will accept any kind of sen-
sible exchange proposal, as shown in the third column of
Table 1.
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Table 2 Example patterns of
operation of the observation
function of a social exchange
strategy-based agent β

(a) Exchange stages of type Iαβ , α performing a do-service action

Π(Ω) Egoistic strategy Altruistic strategy Tolerant strategy

A R A R A R

E0
β high low low high very-high very-low

E+
β high low very-low very-high low high

E−
β very-high very-low low high very-high very-low

(b) Exchange stages of type IIαβ , α performing an ask-service action

Π(Ω) Egoistic strategy Altruistic strategy Tolerant strategy

A R A R A R

E0
β low high high low very-high very-low

E+
β low high very-high very-low very-high very-low

E−
β very-low very-high high low low high

4.2 The observable social exchange behaviors

Each agent is assumed to have direct access only to its own
internal states, that is, the agent can only evaluate its own
material results.

However, it is assumed that the agents are able to make
observations on each others’ exchange behaviors.

The behaviors that an agent β manifests for another agent
α on α’s exchange proposals (e.g., accepting or refusing α’s
service proposals) constitute the observations that α may
make about β , in order to figure out β’s social exchange
strategy.

So, the set of observable exchange behaviors of an agent
β is given by

Ω = {A,R}, (4)

where A and R mean that the agent β accepts and refuses
the exchange proposal, respectively.6

An observation function, based on the strategy model of
an agent β , in then defined as:

O : Eβ × P → Π(Ω), (5)

which, given β’s (non-observable) state in Eβ and the ex-
change proposal in P, performed by α, gives a probability
distribution over the set of possible observable exchange be-
haviors Ω (i.e., the probability that β accepts or refuses α’s
exchange proposal).

6We remark that β’s exchange behaviors are considered here by α from
an external, observational point of view. That is, we are not dealing
with cases where α makes use of psychological theory about personal-
ity traits that lead β to behave the way it is behaving.

Table 2 illustrates the patterns of operation of the obser-
vation function of the exchange behaviors of a social ex-
change strategy-based agent β , in each of β’s possible (non-
observable) states, for each of α’s possible exchange pro-
posal.

5 The BDI-POMDP model for the self-regulation of
social exchanges

The self-regulation of social exchanges is performed by hy-
brid BDI-POMDP agents with an internal social control me-
chanism based on BDI plans extracted from POMDPs opti-
mal policies, using the algorithm policyToBDIplans intro-
duced in previous work [38, 39].

The BDI plans are specified for each known social ex-
change strategy. Initially, the strategy base is composed only
by the social exchange strategies mentioned in Sect. 4.1.

We consider that the exchanges between each pair of
agents suffer no influence from the exchanges occurring be-
tween other pairs of agents. Also, we assume that the agents
do not have access to the internal states of each other, so
that an agent’s internal decision process has only partial ob-
servability to the states of the other agents (that is, it has
only access to the external aspects of their exchange behav-
iors).

Thus, the agents are able to observe the social exchange
behaviors of the other agents, and so are able to evaluate
their indices of exchange refusals (see Sect. 6), which allows
them to recognize already known social exchange strategies,
or strategies similar to those already known.

Once an agent recognizes the social exchange strategy
adopted by its partner as equal or similar to one stored in
its internal base of exchange strategies (see Sect. 6), it is



J Braz Comput Soc (2011) 17:143–161 149

able to choose a plan for social exchanges, and to propose
it to its partner, in order to achieve the equilibrium and/or to
promote the continuity of their interaction.

The decision process on the best exchanges an agent α

can propose to an agent β is modeled as a POMDP, denoted
by POMDPαβ .7

For any pair of agents α and β , the POMDPαβ of the
decision process internalized in the agent α has its set of
states Eαβ composed by pairs of agent internal states:

Eαβ = {(
E∗

α,E
†
β

) | ∗,† ∈ {−,0,+}}, (6)

where α’s state E∗
α ∈ Eα is known by α, but β’s state E

†
β ∈

Eβ is non-observable to it. In the following, we denote each
pair (E∗

α,E
†
β) by E

∗†
αβ . The set of states of the POMDPαβ is

then given by

Eαβ = {
E

∗†
αβ | ∗,† ∈ {−,0,+}}. (7)

By fixing the internal state E∗
α of the agent α in one of its

possible three values in Eα = {E−
α ,E0

α,E+
α }, a partitioning

of the set Eαβ is possible, obtaining the following sets of
states:

E−
αβ = {

E−−
αβ ,E−0

αβ ,E−+
αβ

}
, (8)

E0
αβ = {

E0−
αβ ,E00

αβ,E0+
αβ

}
, (9)

E+
αβ = {

E+−
αβ ,E+0

αβ ,E++
αβ

}
. (10)

The partitioning of the set of states of the POMDPαβ

gives rise to three sub-POMDPs, one for each of α’s possible
internal state, which we denote by POMDP−

αβ , POMDP0
αβ

and POMDP+
αβ , whenever the current α’s state is E−

α , E0
α or

E+
α , respectively.
For simplicity, whenever it is clear from the context,

the sets of states E−
αβ , E0

αβ and E+
αβ , given in (8)–(10), are

denoted by E∗
αβ , with ∗ ∈ {0,+,−}. Similarly, the sub-

POMDPs POMDP−
αβ , POMDP0

αβ and POMDP+
αβ are de-

noted by POMDP∗
αβ .

The partitioning of the full POMDPαβ allows to reduce
the state space and to obtain directly the BDI plans for
each of α’s current state. As a consequence, since every
exchange stage leads α to change its internal state, α will
have to change plans for the next interaction, according to
the POMDP∗

αβ that corresponds to its current state.
Then, for each ∗ ∈ {−,0,+}, we define

7Decentralized POMDP’s [3] were not considered here, since the
agents do not perform actions in parallel; they perform a sequence of
alternating individual actions in each exchange stage, with an agent de-
ciding the action to perform after knowing the action previously done
by its partner.

Definition 1 (The POMDP∗
αβ model of social exchange stra-

tegies) The sub-POMDP for α’s internalized equilibrium
control mechanism when its current state is E∗

α , is defined
as a tuple of the form:

POMDP∗
αβ = (

E∗
αβ,P, T ∗,Ω,O∗,R∗), (11)

where

(i) E∗
αβ is the set of POMDP∗

αβ states, corresponding to the
state ∗ of α, as given by one of (8)–(10);

(ii) P is the set of exchange proposals available for α to
perform in each exchange state, defined in (2);

(iii) T ∗ : E∗
αβ × P → Π(E∗

αβ) is the POMDP∗
αβ state transi-

tion function, which embeds the state transition func-
tion T of β’s strategy model given in (3), such that, for
all p ∈ P and Ei

β,E
j
β ∈ {E−

β ,E0
β,E+

β }:

T ∗(E∗i
αβ,p

)(
E

∗j
αβ

) = T
(
Ei

β,p
)(

E
j
β

); (12)

(iv) Ω is the set of observations that may be realized by α

about β’s exchange behavior, defined in (4);
(v) O∗ : E∗

αβ × P → Π(Ω) is the observation function,
embedding the observation function O of β’s strat-
egy model given in (5), such that, for all p ∈ P , Ei

β ∈
{E−

β ,E0
β,E+

β } and ω ∈ Ω :

O∗(E∗i
αβ,p

)
(ω) = O

(
Ei

β,p
)
(w); (13)

(vi) R∗ : E∗
αβ × P → R is the reward function for the agent

α, giving the expected immediate reward to be gained
by α for each exchange effectively performed in each
state Ei

β ∈ {E−
β ,E0

β,E+
β }.

The solution of a POMDP∗
αβ , its optimal policy [30], in

a form of a policy graph, helps the agent α to elaborate ex-
change proposals that may lead both agents toward the equi-
librium.

We use the algorithm policyToBDIplans to build BDI
plans that obey such optimal policies. The BDI plans are
represented in the language AgentSpeak of Jason plat-
form [5], the plans being formed by sets of rules of the
form:

+!State(X1): obs==0 -> act(Y), !State(X2).

where X1 represents a belief state concerning the current
state of the system (pairs of agents’ material results), 0 is
the current observation (the acceptation or rejection to the
latest exchange proposal) and the rule says that, in such situ-
ation, the agent should perform the action Y (either an action
do-service or an action ask-service), and change
its belief state about the system to X2.

For more details on this subject, see our previous work
in [38, 39].
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6 Recognizing social exchange strategies

For the process of recognizing social exchange strategies
that an agent may adopt, the Index of Exchange Refusals
(IER) is defined as the ratio between the number of observed
refusals (NR) to a kind of exchange proposal (either ask-
service or do-service actions) and the total num-
ber of such kind of proposals (NP), evaluated over a large
enough number of interactions:

IERask-service = NRask-service

NPask-service
, (14)

IERdo-service = NRdo-service

NPdo-service
. (15)

The IERs of the initial social exchanges strategies dis-
cussed in Sect. 4.1 are globally known by all the agents of
the society.

Denote by Iask-service and Ido-service the sets of all
observed IERask-service and IERdo-service of a given so-
cial exchange strategy, respectively. For each initial social
exchange strategies introduced in Sect. 4.1 and each kind of
exchange proposal, we compute the related ranges of IERs,
denoted by RIER and defined as the least interval containing
all observed IERs:

RIERask-service

= [inf Iask-service, sup Iask-service], (16)

RIERdo-service

= [inf Ido-service, sup Ido-service], (17)

where inf and sup are the supremum and the infimum of a
set, respectively.

The ranges of IERs can be used by an agent either to
recognize an already known social exchange strategy or to
classify some new social exchange strategy that its partner
may adopt. For that, the agent observes the exchange behav-
ior of its partner for a fixed number of exchange proposals
(see Sect. 8), in order to evaluate its IERs. If the IER of
this new strategy is contained in a previously known range
of IERs, then this supposed new strategy is considered suf-
ficiently similar to one already known by the agent. Then,
it recognizes its partner agent’s social exchange strategy as
corresponding to that range of IER, and is able to select the
adequate plans to equilibrate the interactions with that agent.
Otherwise, the agent calculates the range of IERs of this new
strategy for future comparisons.

Observe that the pattern of refusals is more useful (for
the purpose of strategy classification) than the pattern of ac-
ceptances. In the former case, the exchange does not occur,
and the agents’ balances of exchanges remain the same. In
the second case, there are a lot of different possibilities of
variations on the balances of exchanges.

7 Learning social exchange strategies

If an agent is not able to recognize its partner’s strategy, then
it uses a mechanism based on HMMs in order to discover
the state transition and observation functions that best fit the
sequence of observations about the partner agent’s exchange
behavior.

Given two agents α and β , denote by HMMαβ the HMM
of the strategy learning mechanism of an agent α that needs
to learn the POMDP model of the social exchange strategy
adopted by its partner agent β .

Considering a sequence of observations on β’s exchange
behavior and an arbitrary initial HMMαβ , it is possible to
apply the well-known Baum Welch algorithm [42] in order
to optimize the HMMαβ for β’s social exchange strategy.
Then, the elements of the optimized HMMαβ can be trans-
lated into the elements of a POMDPαβ , allowing the agent
α to compute optimal policies for the new social exchange
strategy, and, afterwards, to extract the BDI plans for the
agent’s plan base, together with the respective range of IERs.

In a way similar to the case of the POMDPαβ models,
the HMMαβ models can be partitioned into smaller HMM∗

αβ

models, by restricting the set of state to fixed values of α’s
states, in order to reduce the state space of the learning pro-
cedure.

In the following, we discuss the three main problems of
such learning process:

(i) The definition of the HMM∗
αβ model;

(ii) The choice of the initial values of the HMM∗
αβ to serve

as input data for the Baum Welch algorithm, which
imply the translation of an arbitrary POMDP∗

αβ model
into a HMM∗

αβ model; and
(iii) The translation of the HMM∗

αβ model that results
from the Baum Welch learning algorithm back to a
POMDP∗

αβ model, which consists in the reverse pro-
cess of (ii).

7.1 The HMM model of social exchange strategies

Observe that, although both HMMαβ and POMDPαβ mod-
els have many elements in common, the translation of the
HMMαβ state transition and observation functions into the
action-dependent POMDPαβ state transition and observa-
tion functions cannot be done directly.

In the POMDPαβ model, the probability distribution over
the set of states is directly linked to the kind of action (either
do-service or ask-service actions) performed by α

in each actual state, whereas in the HMMαβ those distribu-
tions provide overall probabilistic values, independent of the
action that might have been performed at each state.

In order to be able to relate the state transition functions
of both models, we unify the POMDPαβ state transition ma-
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trices for both kind of actions into a single extended state
transition matrix. For that, the set of states in the HMMαβ is
extended to specify the kind of action that may be performed
by α, obtaining:

EXαβ = Eα × Eβ × P

= {
E−−

αβ(do),E
−0
αβ(do),E

−+
αβ(do),E

0−
αβ(do),E

00
αβ(do),

E0+
αβ(do),E

+−
αβ(do),E

+0
αβ(do),E

++
αβ(do),E

−−
αβ(ask),

E−0
αβ(ask)

,E−+
αβ(ask)

,E0−
αβ(ask)

,E0+
αβ(ask)

,E00
αβ(ask),

E+−
αβ(ask),E

+0
αβ(ask),E

++
αβ(ask)

}
. (18)

With such set of states, the restriction to particular values
of states of α in Eα = {E−

α ,E0
α,E+

α } amounts to define the
following sets of states:

EX−
αβ = {E−

α } × Eβ × P

= {
E−−

αβ(do),E
−0
αβ(do),E

−+
αβ(do),E

−−
αβ(ask),

E−0
αβ(ask),E

−+
αβ(ask)

}
. (19)

EX0
αβ = {

E0
α

} × Eβ × P

= {
E0−

αβ(do)
,E00

αβ(do),E
0+
αβ(do)

,E0−
αβ(ask)

,

E00
αβ(ask),E

0+
αβ(ask)

}
. (20)

EX+
αβ = {

E+
α

} × Eβ × P

= {
E+−

αβ(do),E
+0
αβ(do),E

++
αβ(do),E

+−
αβ(ask),

E+0
αβ(ask),E

++
αβ(ask)

}
. (21)

Analogously to what was obtained in Sect. 5, the par-
titioning of the set of states of the HMMαβ gives rise to
three sub-HMMs, one for each of α’s possible internal state,
which we denote by HMM−

αβ , HMM0
αβ and HMM+

αβ , when-

ever the current α’s state is E−
α , E0

α or E+
α , respectively.

Again, for simplicity, whenever it is clear from the con-
text, the sets of states EX−

αβ , EX0
αβ and EX+

αβ , given in (19)–
(21), are denoted by EX∗

αβ , with ∗ ∈ {0,+,−}. Similarly,

the sub-HMMs HMM−
αβ , HMM0

αβ and HMM+
αβ are denoted

by HMM∗
αβ .

Then, for each ∗ ∈ {−,0,+}, we define

Definition 2 ( The HMM∗
αβ of social exchange strategies )

The sub-HMM for α’s learning mechanism when its current
state is E∗

α , is defined as a tuple of the form:

HMM∗
αβ = (

EX∗
αβ,Π0

EX∗
αβ

,TX∗,Ω,OX∗), (22)

where

(i) EX∗
αβ is the extended set of states corresponding to α’s

state E∗
α , given by one of (19)–(21);

(ii) Π0
EX∗

αβ
is the initial probability distribution of the ex-

tended set of states;
(iii) TX∗ : EX∗

αβ → Π(EX∗
αβ) is the state transition func-

tion patterned on β’s strategy model, which, given the
current state in EX∗

αβ , gives a probability distribution
over the set EX∗

αβ of states;
(iv) Ω is the set of observations that may be realized by α

about β’s exchange behavior (4);
(v) OX∗ : EX∗

αβ → Π(Ω) is the observation function pat-
terned on β’s strategy model, which, given the current
state in EX∗

αβ , indicates a probability distribution over
the set Ω of possible observations.

Observe that there is an isomorphism between the set
EX∗

αβ , the domain of the state transition and observation
functions of a HMM∗

αβ (respectively, TX∗ and OX∗, in Def-
inition 2), and the set E∗

αβ × P, the domain of the state tran-
sition and observation functions of a POMDP∗

αβ (respec-
tively, T ∗ and O∗, in Definition 1). Such isomorphism, de-
fined, for all p ∈ P = {do-service,ask-service} and
∗,† ∈ {−,+,0}, by

Ψ : EX∗
αβ → E∗

αβ × P, (23)

such that

Ψ
(
E

∗†
αβ(p)

) = (
E

∗†
αβ,p

)
, (24)

guarantees that the translation processes between the mod-
els, in both directions, is viable, as explained in the follow-
ing sections.

7.2 Preparing the input HMM for the Baum Welch
Algorithm: the translation process from POMDPs to
HMMs

The elements of the input HMM∗
αβ for the Baum Welch Al-

gorithm may be defined arbitrarily, or may be based in the
known POMDP∗

αβ strategy model that has the most similar
IERs to the IERs of the unknown strategy, which, however,
is not contained in any known RIER.

The translation process of the state transition function
of such POMDP∗

αβ into the state transition function of a
HMM∗

αβ is performed by the algorithm TPOMDPtoTHMM

(Algorithm 1).
Considering that the agent α performs, during the learn-

ing process, the action do-service with a priori prob-
ability π(do) and the action ask-service with a priori
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input: T(do), T(ask): 3 × 3 matrices of probability
values, representing the POMDP∗

αβ state
transition function T ∗ : E∗

αβ → Π(E∗
αβ), for

each kind of exchange proposal; π(do), π(ask):
the probabilities of each kind of exchange
proposal;

output: TX: a 3 × 3 matrix of probability values,
representing the HMM∗

αβ state transition
function TX∗ : EX∗

αβ → Π(EX∗
αβ);

{ For any matrix M = [mEE′ ], the expression
M[E,E′] denotes the entry mEE′ }
begin

for i ∈ {−,0,+} do
for j ∈ {−,0,+} do

for k1, k2 ∈ {do, ask} do
TX[E∗i

αβ(k1)
,E

∗j

αβ(k2)
] ←−

π(k2) · T(k1)[E∗i
αβ,E

∗j
αβ ];

end
end

end
end

Algorithm 1: Algorithm TPOMDPtoTHMM for translat-
ing POMDP∗

αβ transition functions into HMM∗
αβ transi-

tion functions

probability π(ask), such that π(do) + π(ask) = 1, then this al-
gorithm obtains the HMM∗

αβ transition function TX∗ defined
by

TX∗ : EX∗
αβ → Π

(
EX∗

αβ

)
, (25)

where, for each state E∗i
αβ(do)

,E
∗j

αβ(do)
,E∗i

αβ(ask)
,E

∗j

αβ(ask)
∈

EX∗
αβ

TX∗(E∗i
αβ(do)

)(
E

∗j

αβ(do)

)

= π(do) · T ∗(do-service)
(
E∗i

αβ

)(
E

∗j
αβ

)
,

TX∗(E∗i
αβ(do)

)(
E

∗j

αβ(ask)

)

= π(ask) · T ∗(do-service)
(
E∗i

αβ

)(
E

∗j
αβ

)
,

TX∗(E∗i
αβ(ask)

)(
E

∗j

αβ(do)

)

= π(do) · T ∗(ask-service)
(
E∗i

αβ

)(
E

∗j
αβ

)
,

TX∗(E∗i
αβ(ask)

)(
E

∗j

αβ(ask)

)

= π(ask) · T ∗(ask-service)
(
E∗i

αβ

)(
E

∗j
αβ

)

input: O(do),O(ask): 3 × 2 matrices of probability
values, representing the POMDP∗

αβ

observation function O∗ : E∗
αβ → Π(Ω), for

each kind of exchange proposal
output: OX: a 6 × 2 matrix of probability values,

representing the HMM∗
αβ observation function

OX∗ : EX∗
αβ → Π(Ω)

{ For any matrix M = [mEE′ ], the expression M[E]
denotes the row E of M }
begin

for i ∈ {−,0,+} do
OX[E∗i

αβ(do)] ←− O(do)[E∗i
αβ ];

OX[E∗i
αβ(ask)] ←− O(ask)[E∗i

αβ ];
end

end

Algorithm 2: Algorithm OPOMDPtoOHMM for trans-
lating POMDP∗

αβ observation functions into HMM∗
αβ

observation functions

with i, j ∈ {−,0,+}, do-service,ask-service ∈ P,
E∗i

αβ,E
∗j
αβ ∈ E∗

αβ , and E∗
αβ, T ∗,P as specified in Definition 1,

and EX∗
αβ , TX∗ as specified in Definition 2.

The translation process of the POMDP∗
αβ observation

function into a HMM∗
αβ observation function is performed

by the algorithm OPOMDPtoOHMM (Algorithm 2). This al-
gorithm gives the HMM∗

αβ observation function OX∗ de-
fined by

OX∗ : EX∗
αβ → Π(Ω), (26)

such that, for each state E∗i
αβ(do),E

∗i
αβ(ask) ∈ EX∗

αβ , and ob-
servation ω ∈ Ω :

OX∗(E∗i
αβ(do)

)
(ω) = O∗(do-service)

(
E∗i

αβ

)
(ω),

OX∗(E∗i
αβ(ask)

)
(ω) = O∗(ask-service)

(
E∗i

αβ

)
(ω)

with i ∈ {−,0,+}, do-service,ask-service ∈ P,
E∗i

αβ ∈ E∗
αβ , and Ω,E∗

αβ,O∗,P as specified in Definition 1,
and EX∗

αβ , OX∗ as specified in Definition 2.

Example 2 Suppose that the IERs presented by a social ex-
change strategy adopted by the agent β is not contained in
any range of IERs known by the agent α. Assume that the
strategy model that presents the most similar IERs to β’s ex-
change behavior identifies a POMDP∗

αβ model, whose state
transition function T ∗ and observation function O∗, for a
given ∗, are given in Table 3 and Table 4, respectively.

Consider that the agent α, for the learning process, uses a
uniform probability distribution over the set P of exchanges
proposals, that is, π(do) = π(ask) = 0.5. Then, the applica-
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tions of the Algorithms 1 and 2 produce the HMM∗
αβ state

transition function TX∗ and observation function OX∗ pre-
sented in Table 5 and Table 6, respectively.

Table 3 The POMDP∗
αβ state transition function T ∗ of Example 2

(a) Exchange stages of type Iαβ , with α performing
a do-service action

Π(E∗
αβ) E∗0

αβ E∗+
αβ E∗−

αβ

E∗0
αβ 0.80 0.20 0.00

E∗+
αβ 0.00 1.00 0.00

E∗−
αβ 0.20 0.20 0.60

(b) Exchange stages of type IIαβ , with α performing
an ask-service action

Π(E∗
αβ) E∗0

αβ E∗+
αβ E∗−

αβ

E∗0
αβ 0.80 0.00 0.20

E∗+
αβ 0.20 0.60 0.20

E∗−
αβ 0.00 0.00 1.00

Table 4 The POMDP∗
αβ observation function O∗ of Example 2

(a) Exchange stages of type Iαβ , with α performing
a do-service action

Π(Ω) A R

E∗0
αβ 0.50 0.50

E∗+
αβ 0.30 0.70

E∗−
αβ 0.35 0.65

(b) Exchange stages of type IIαβ , with α performing
an ask-service action

Π(Ω) A R

E∗0
αβ 0.20 0.80

E∗+
αβ 0.30 0.70

E∗−
αβ 0.15 0.85

Finally, considering that the exchange process for the
learning process starts in equilibrium, the initial probabil-
ity distribution Π0

EXαβ
of the extended set of states (Defi-

nition 2(ii)) is given in Table 7. Π0
EXαβ

, together with the
functions TX∗ (Table 5) and OX∗ (Table 6), constitute the
input data for the Baum Welch algorithm.

7.3 Obtaining a new social exchange strategy model: the
translation process from HHMs to POMDPs

Once the BDI-POMDP-HMM agent α has its HMM∗
αβ opti-

mized by using the Baum Welch algorithm, then, by a re-
verse process, it can compress the state space EX∗

αβ into
the original one E∗

αβ , making explicit the implicit action
argument of the HMM∗

αβ one-place transition and observa-
tion functions, and then generating the two-place POMDP∗

αβ

transition and observation functions.
The translation process of the HMM∗

αβ state transition
function into the POMDP∗

αβ state transition function is per-
formed by the algorithm THMMtoTPOMDP (Algorithm 3).
This algorithm gives the POMDP∗

αβ transition function T ∗
defined by two transition functions, one for each kind of ex-
change proposal in P = {do-service,ask-service},
which are given by

T ∗(do-service) : E∗
αβ → Π

(
E∗

αβ

)
, (27)

T ∗(ask-service) : E∗
αβ → Π

(
E∗

αβ

)
, (28)

where, for each state E∗i
αβ,E

∗j
αβ ∈ E∗

αβ :

T ∗(do-service)
(
E∗i

αβ

)(
E

∗j
αβ

)

= TX∗(E∗i
αβ(do)

)(
E

∗j

αβ(do)

) + TX∗(E∗i
αβ(do)

)(
E

∗j

αβ(ask)

)

and

T ∗(ask-service)
(
E∗i

αβ

)(
E

∗j
αβ

)

= TX∗(E∗i
αβ(ask)

)(
E

∗j

αβ(do)

) + TX∗(E∗i
αβ(ask)

)(
E

∗j

αβ(ask)

)
,

Table 5 The HMM∗
αβ state

transition function TX∗ of
Example 2

Π(EX∗
αβ ) E∗0

αβ(do) E∗0
αβ(ask) E∗+

αβ(do) E∗+
αβ(ask) E∗−

αβ(do) E∗−
αβ(ask)

E∗0
αβ(do) 0.40 0.40 0.10 0.10 0.00 0.00

E∗0
αβ(ask)

0.40 0.40 0.00 0.00 0.10 0.10

E∗+
αβ(do) 0.00 0.00 0.50 0.50 0.00 0.00

E∗+
αβ(ask) 0.10 0.10 0.30 0.30 0.10 0.10

E∗−
αβ(do) 0.10 0.10 0.10 0.10 0.30 0.30

E∗−
αβ(ask) 0.00 0.00 0.00 0.00 0.50 0.50
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Table 6 The HMM∗
αβ observation function OX∗ of Example 2

Π(Ω) A R

E∗0
αβ(do) 0.50 0.50

E∗0
αβ(ask) 0.20 0.80

E∗+
αβ(do) 0.30 0.70

E∗+
αβ(ask) 0.30 0.70

E∗−
αβ(do) 0.25 0.65

E∗−
αβ(ask) 0.15 0.85

Table 7 The initial probability distribution Π0
EX∗

αβ

State Probability

E∗0
αβ(do) 0.50

E∗0
αβ(ask) 0.50

E∗+
αβ(do) 0.00

E∗+
αβ(ask) 0.00

E∗−
αβ(do) 0.00

E∗−
αβ(ask) 0.00

with i, j ∈ {0,+,−}, E∗i
αβ(do)

, E
∗j

αβ(do)
, E∗i

αβ(ask)
, E

∗j

αβ(ask)
∈

EX∗
αβ , and E∗

αβ , T ∗ as specified in Definition 1, and EX∗
αβ ,

TX∗ as specified in Definition 2.
The translation process of the HMM∗

αβ observation func-
tion into the POMDP∗

αβ observation function is performed
by the algorithm OHMMtoOPOMDP (Algorithm 4). This al-
gorithm returns the POMDP∗

αβ observation function O∗ de-
fined by two observation functions, one for each kind of ex-
change proposal in P = {do-service,ask-service},
which are given by

O∗(do-service) : E∗
αβ → Π(Ω), (29)

O∗(ask-service) : E∗
αβ → Π(Ω), (30)

such that, for each state E∗i
αβ ∈ E∗

αβ , and observation ω ∈ Ω :

O∗(do-service)
(
E∗i

αβ

)
(ω) = OX∗(E∗i

αβ(do)

)
(ω),

O∗(ask-service)
(
E∗i

αβ

)
(ω) = OX∗(E∗i

αβ(ask)

)
(ω),

with i ∈ {0,+,−}, E∗i
αβ(do),E

∗i
αβ(ask) ∈ EX∗

αβ , and Ω,E∗
αβ ,

O∗ as specified in Definition 1, and EX∗
αβ , OX∗ as specified

in Definition 2.

Example 3 Considering the input HMM∗
αβ constructed in

Example 2, and a sequence of observations done by α when

input: TX: a 6 × 6 matrix of probability values,
representing the HMM∗

αβ state transition
function TX∗ : EX∗

αβ → Π(EX∗
αβ);

output: T(do), T(ask): 3 × 3 matrices of probability
values, representing the POMDP∗

αβ state
transition function T ∗ : E∗

αβ → Π(E∗
αβ), for

each kind of exchange proposal;

{ For any matrix M = [mEE′ ], the expression
M[E,E′] denotes the entry mEE′ }
begin

for i ∈ {−,0,+} do
for j ∈ {−,0,+} do

T(do)[E∗i
αβ,E

∗j
αβ ] ←−

TX[E∗i
αβ(do),E

∗j

αβ(do)] +
T [E∗i

αβ(do),E
∗j

αβ(ask)];
T(ask)[E∗i

αβ,E
∗j
αβ ] ←−

TX[E∗i
αβ(ask),E

∗j

αβ(do)] +
T [E∗i

αβ(ask),E
∗j

αβ(ask)];
end

end
end

Algorithm 3: Algorithm THMMtoTPOMDP for translat-
ing HMM∗

αβ transition functions into POMDP∗
αβ transi-

tion functions

input: OX: a 6 × 2 matrix of probability values,
representing the HMM∗

αβ observation function
OX∗ : EX∗ → Π(Ω);

output: O(do), O(ask): 3 × 2 matrices of probability
values, representing the POMDP∗

αβ

observation function O∗ : E∗
αβ → Π(Ω), for

each kind of exchange proposal;

{For any matrix M = [mEE′ ], the expression M[E]
denotes the row E of M }
begin

for i ∈ {−,0,+} do
Oαβ(do)[E∗i

αβ ] ←− OX[E∗i
αβ(do)];

Oαβ(ask)[E∗i
αβ ] ←− OX[E∗i

αβ(ask)];
end

end

Algorithm 4: Algorithm OHMMtoOPOMDP for trans-
lating HMM∗

αβ observation functions into POMDP∗
αβ

observation functions
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Table 8 The optimized
HMM∗

αβ state transition
function TX∗ of Example 3

Π(EX∗
αβ ) E∗0

αβ(do) E∗0
αβ(ask) E∗+

αβ(do) E∗+
αβ(ask) E∗−

αβ(do) E∗−
αβ(ask)

E∗0
αβ(do) 0.52 0.16 0.16 0.16 0.00 0.00

E∗0
αβ(ask) 0.49 0.43 0.00 0.00 0.04 0.04

E∗+
αβ(do) 0.00 0.00 0.54 0.46 0.00 0.00

E∗+
αβ(ask) 0.08 0.23 0.34 0.35 0.00 0.00

E∗−
αβ(do) 0.10 0.14 0.0 0.0 0.39 0.38

E∗−
αβ(ask) 0.00 0.00 0.00 0.00 0.50 0.50

Table 9 The optimized HMM∗
αβ observation function OX∗ of Exam-

ple 3

Π(Ω) A R

E∗0
αβ(do) 0.56 0.44

E∗0
αβ(ask) 0.02 0.98

E∗+
αβ(do)

0.18 0.82

E∗+
αβ(ask) 0.21 0.79

E∗−
αβ(do) 0.21 0.79

E∗−
αβ(ask) 0.27 0.73

Table 10 The new POMDP∗
αβ state transition function T ∗ of Exam-

ple 3

(a) Exchange stages of type Iαβ , with α performing a do-service
action

Π(E∗
αβ ) E∗0

αβ E∗+
αβ E∗−

αβ

E∗0
αβ 0.68 0.32 0.00

E∗+
αβ 0.00 1.00 0.00

E∗−
αβ 0.24 0.00 0.76

(b) Exchange stages of type IIαβ , with α performing an ask-
service action

Π(E∗
αβ ) E∗0

αβ E∗+
αβ E∗−

αβ

E∗0
αβ 0.92 0.00 0.08

E∗+
αβ 0.31 0.69 0.20

E∗−
αβ 0.00 0.00 1.00

performing exchange proposals randomly, the application of
the Baum Welch algorithm produces the optimized HMM∗

αβ

specified by the state transition and observation functions
given in Table 8 and Table 9, respectively.

Then, the applications of the Algorithms 3 and 4 produce
the POMDP∗

αβ state transition function T ∗ and observation

Table 11 The new POMDP∗
αβ observation function O∗ of Example 3

(a) Exchange stages of type Iαβ , with α performing
a do-service action

Π(Ω) A R

E∗0
αβ 0.56 0.44

E∗+
αβ 0.18 0.82

E∗−
αβ 0.21 0.79

(b) Exchange stages of type IIαβ , with α performing
an ask-service action

Π(Ω) A R

E∗0
αβ 0.02 0.98

E∗+
αβ 0.21 0.79

E∗−
αβ 0.27 0.73

function O∗ presented in Table 10 and Table 11, respec-
tively. Those functions specify the POMDP∗

αβ for regulating
this “new” social exchange strategy, for a specific ∗.

8 Simulation of strategy-based social exchanges

To analyze the mechanism for recognizing and learning so-
cial exchange strategies in interactions that happen in a sim-
ulated open society, we consider the self-regulating agent α

interacting with a multi-strategy agent β , so that α could ex-
periment the need to regulate different exchange strategies.

These two agents are as follows:

The multi-strategy (MS) agent β: The MS agent β is able
to adopt different social exchange strategies. For simplic-
ity, the MS agent chooses randomly the strategy to be
adopted in each exchange process, which is composed by
a fixed set of exchange stages, and uses the same strategy
until the processes ends.

The self-regulating (SR) agent α: The SR agent is a BDI-
POMDP-HMM agent that has to recognize or learn the
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Fig. 1 Recognizing and
regulating an Egoistic
strategy-based agent

Fig. 2 Recognizing and
regulating an Altruistic
strategy-based agent

social exchange strategy adopted by β , as explained in
Sects. 6 and 7, and then proceed to the regulation of the
exchanges, as explained in Sect. 5.

Any exchange process always starts in the equilibrium
state (material balance in the interval [−2;2]).

In the simulations, we consider exchange processes com-
posed by a set of 650 proposals of exchange stages. The first
150 proposals are used by the SR agent α for the process
of recognition/learning the social exchange strategy adopted
by the MS agent β , observing its behavior in each state (bal-
ance of material exchange values). For that, the SR agent α

performs four sequences of exchanges proposals:

1. 30 proposals of exchange stages of type Iαβ or IIαβ , alter-
natively, i.e., alternating the proposals of do-service
and ask-service actions, in order to analyze β’s ex-
change behavior around the equilibrium state.

2. 30 proposals of exchange stages of type Iαβ , i.e., only
proposing do-service actions, in order to observe β’s
behavior in favorable states;

3. 60 proposals of exchange stages of type IIαβ , i.e., only
proposing ask-service actions, leading the agent β’s
to unfavorable states, passing through the equilibrium
state, in order to observe β’s behavior in unfavorable
states;

4. 30 proposals of exchange stages of type Iαβ in order to
lead the agent β back again to the starting state (the equi-
librium state).

The implementation of the strategy-based social ex-
change simulator [38] was done in AgentSpeak using Ja-
son [5].

8.1 Recognizing and regulating known social exchange
strategies

The graphics on the left of Figs. 1, 2 and 3 show examples of
processes of recognition of already known social exchange
strategies, the egoistic, altruistic and tolerant strategies, re-
spectively.
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Fig. 3 Recognizing and
regulating a Tolerant strategy

Fig. 4 Learning and regulating
an unknown strategy

Analyzing Fig. 1 (left) and Fig. 2 (left), e.g., it is pos-
sible to observe the opposite exchange behaviors presented
by egoistic and altruistic strategy-based agents β during the
recognition processes conduced by α. The tendency of an
egoistic strategy-based agent β (Fig. 1 (left)) was to look
for favorable material balances (positive zone), meaning that
it prefers exchange stages of type Iαβ , when the agent α

performs a service to it. On the contrary, altruistic strategy-
based agents β (Fig. 2 (left)) preferred to stay in unfavorable
states (negative zone), that is, it opted for exchange stages of
type IIαβ , when it performs a service to the agent α.

Observe in Fig. 3 (left) that, in the recognition process
of the tolerant exchange strategy, the agent β has visited all
states (from unfavorable to favorable states, passing through
the equilibrium zone), since its IERs are very low, and then,
in general, it has accepted most of the exchange proposals.

The graphics on the right of Figs. 1, 2 and 3 show that
the SR agent was able to recognize the different strategies

and to deliberate on the adequate plans for regulating the
interactions around the equilibrium zone.

8.2 Learning and regulating new social exchange strategies

The graphics on the left of Figs. 4, 5 and 6 show examples
of processes of learning unknown social exchange strate-
gies. In those processes, the SR agent was not able to rec-
ognize the strategies adopted by the MS agent, since their
IERs were not contained in any range of IERs in its knowl-
edge base.

Then the SR agent used its learning mechanism based
in HMMs to build the POMDP model in order to extract the
BDI plans for each new social exchange strategy, registering
new ranges of IERs for future recognizing processes.

The graphics on the left of Figs. 4, 5 and 6 show that
the agent succeeded in constructing the adequate plans for
regulating the interactions.
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Fig. 5 Learning and regulating
unknown strategies

Fig. 6 Learning and regulating
unknown strategies

9 Related work on social exchanges in multiagent
systems

As discussed in the Introduction, our modeling of agent in-
teractions based on the Piaget’s Theory of Social Exchanges
was first proposed in 2005 [16], and, since then, our many
works on this subject have pointed out the problems in-
volved in the self-regulation of strategy-based social ex-
changes in open multiagent systems [12–15, 38–40]. To the
best of our knowledge, there is no other work by different
authors concerned with this subject.

However, social exchanges have been also considered in
different other agent scenarios, although the problem of the
equilibrium of the social exchanges has been always present,
since this is one of the main concerns of Piaget’s theory.

One such line of works is due to M. Rodrigues in cooper-
ation with different partners [45–47, 49]. In Rodrigues and
Costa [45] and Rodrigues et al. [46], an initial work on an
algebra of exchange values was introduced for the model-

ing of social interactions in agent societies, together with a
social-reasoning mechanism and the specification of struc-
tures for storing and manipulating such values, presenting
an example of a political process of lobbying through cam-
paign contributions. However, the approach to the exchange
values proposed in those works was not qualitative, as nei-
ther was the social-reasoning mechanism. Then, in [16], we
introduced an algebra of qualitative exchange values, result-
ing in our initial approach for manipulating exchange values
and reasoning about equilibrated social exchanges, reinter-
preting the politician/voters scenario [12, 15] first analyzed
by Rodrigues et al. [45, 46].

Rodrigues and Luck [44, 47–50] introduced a rich ap-
proach based on the Theory of Social Exchanges for the
modeling of interactions in open multiagent systems, pre-
senting a system for analysing/evaluating partner selection
and cooperative interactions in the Bioinformatics domain,
which is characterized by frequent, extensive and dynamic
exchanges of services.
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The works by Grimaldo et al. [23–27] presented an in-
teresting application of the Theory of Social Exchanges in
the coordination of intelligent virtual agents and sociability
in a virtual university bar scenario (in a 3D dynamic envi-
ronment), modeled as a market-based social model, where
groups of different types of waiters (e.g., coordinated, social,
egalitarian) and customers (e.g., social, lazy) interact with
both the objects in the scene and the other virtual agents.
In [26], they presented a multi-modal agent decision making
model, called MADeM, in order to provide virtual agents
with socially acceptable decisions, coordinated social be-
haviors (e.g., task passing or planned meetings), based on
the evaluation of the social exchanges.

In Franco et al. [20, 21], social exchange values are used
to support arguments about the assessment of exchanges.
Together with the power-to-influence social relationship,
those arguments were also used to help the agents to de-
cide about the continuation or the interruption of on-going
interactions.

Social exchanges were also considered to model in-
teractions in the Population-Organization model (PopOrg)
[10, 11], a formal model for studying the organization of
open multiagent systems and their functional and structural
dynamics. In the work by Barbosa and Costa [2], on the
other hand, social exchanges were model as processes of the
CSP [28] formal language for concurrent processes.

10 Conclusion

This paper introduced a hybrid BDI-POMDP-HMM agent
model for the self-regulation of social exchanges in open
societies.

We extended the model presented in previous work [38],
in order to solve the problems of the recognition and/or
learning of social exchange strategies.

For the recognition problem, the self-regulating agent ob-
serves the social exchange behavior of the partner agent in
order to compute its IERs, which are indices that represent
patterns of refusals to exchange proposals, observed in the
agents’ strategies.

For the learning problem, the self-regulating agent uses
HMM algorithms for learning the probabilistic state tran-
sition and observation functions of the global observable
behavior of any unknown social exchange strategy. Those
functions are then translated into the action-based state tran-
sition and observation functions, in order to define a new so-
cial exchange strategy POMDP model, from which optimal
policy the algorithm policyToBDIplans extracts BDI plans.

The translation algorithms were defined after formally
integrating the HMM and the POMDP models. This inte-
gration was possible since there is an isomorphism between
the sets of states of the models, although this isomorphism

could be established only because the HMM states are as-
sociated to stimulus from the environment (in this case, ex-
change proposals from the self-regulating agent).

The various simulations that we produced showed that
the proposed approach is viable and may be a good solution
in contextualized applications based on the theory of social
exchanges, such as the ones discussed in Sect. 9.

Future work will be concerned with the simulation of
organizations such as research institutes, hotels or firms,
which are organizational environments rich in non-economic
service exchanges (e.g., between department colleagues, be-
tween manager and secretaries, between costumers and em-
ployees), in order to help the analysis of the consequences
of equilibrated/non-equilibrated social interaction and work-
ers’ reciprocity for optimal organizational design [18, 32].
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