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Abstract Ceramide, the precursor of all complex sphin-

golipids, is a potent signaling molecule that mediates key

events of cellular pathophysiology. In the nervous system,

the sphingolipid metabolism has an important impact.

Neurons are polarized cells and their normal functions,

such as neuronal connectivity and synaptic transmission,

rely on selective trafficking of molecules across plasma

membrane. Sphingolipids are abundant on neural cellular

membranes and represent potent regulators of brain

homeostasis. Ceramide intracellular levels are fine-tuned

and alteration of the sphingolipid–ceramide profile con-

tributes to the development of age-related, neurological

and neuroinflammatory diseases. The purpose of this

review is to guide the reader towards a better understanding

of the sphingolipid–ceramide pathway system. First, cera-

mide biology is presented including structure, physical

properties and metabolism. Second, we describe the func-

tion of ceramide as a lipid second messenger in cell

physiology. Finally, we highlight the relevance of sphin-

golipids and ceramide in the progression of different

neurodegenerative diseases.
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Introduction

Ceramides are a family of lipid molecules that consist of

sphingoid long-chain base linked to an acyl chain via an

amide bond. Ceramides differ from each other by length,

hydroxylation, and saturation of both the sphingoid base

and fatty acid moieties.

Sphingoid bases are of three general chemical types:

sphingosine, dihydrosphingosine (commonly known as

‘‘sphinganine’’, as it will be addressed in this review) and

phytosphingosine. Based on the nature of the sphingoid

base backbone, we can distinguish three main subgroups in

the ceramide family: the compound named ceramide con-

tains sphingosine, which has a trans-double bond at the

C4–5 position in the sphingoid base backbone; dihydro-

ceramide, the inactive precursor of ceramide, contains

sphinganine, which presents a saturated sphingoid back-

bone devoid of the 4,5-trans-double bond; phytoceramide,

the yeast counterpart of the mammalian ceramide, contains

phytosphingosine, which has a hydroxyl group at the C4

position [1] (Fig. 1).

The fatty acid components of ceramides vary widely in

composition, but they are typically long. Their acyl chain

lengths range from 14 to 26 carbon atoms (or greater),

although the most common fatty acids are palmitic (C16:0)

and stearic (C18:0) non-hydroxy fatty acids. The fatty acids

are commonly saturated or mono-unsaturated. a-Hydrox-

ylated fatty acids (a hydroxyl group at the C-2 position)

and x-hydroxy fatty acid (a hydroxyl group on the terminal

C atom) are often present as well [2].

Activation of ceramide

Small changes in the molecular structure of ceramide moiety

can regulate its biological function. Dihydroceramide is an
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early intermediate in the de novo ceramide biosynthesis.

Considered the innocuous precursor of ceramide, dihydro-

ceramide differs from ceramide only by reduction of the

C4–5 trans-double bond in the sphingoid backbone inhib-

iting [3] or reducing its biological activity [4] when

compared with ceramide moiety. The introduction of a

Fig. 1 Chemical structure of

sphingoid bases (sphinganine,

sphingosine, phytosphingosine),

ceramide species

(dihydroceramide, ceramide and

phytoceramide) and complex

sphingolipids. Sphingomyelin,

synthesized by the transfer of

the phosphorylcholine moiety to

the C-1 hydroxyl group of

ceramides, is the only cell

membrane phospholipid not

derived from glycerol.

Alternatively, modification of a

ceramide by addition of one or

more sugars directly connected

at the primary alcohol group

yields complex

glycosphingolipids.

Galactosylceramide and

glucosylceramide (cerebrosides)

have a single monosaccharide

(galactose or glucose) as polar

head group; sulfatides are the

sulfuric acid esters of

galactocerebrosides. Addition of

a galactose to glucosylceramide

gives rise to lactosylceramide,

precursor of globo-, ganglio-

and lactosides. Globosides

contain multiple sugar moieties.

Ganglio- and lactosides have a

complex oligosaccharide core

structures with one or more

sialic acids in the polar head
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trans-double bond between C4 and C5 results in the bio-

active molecule of ceramide. This reaction is catalyzed by

the enzyme (dihydro)-ceramide desaturase, which is local-

ized in the cytosolic leaflet of the endoplasmic reticulum

(ER) membrane [5, 6]. In this way, cells can fine-tune the

amount of biologically active ceramide. The presence of the

double bond in the sphingosine chain determines the tilt of

ceramides in the membrane and enables the lipid to interact

with enzymes such as hydrolases and phosphatases [7].

Moreover, unsaturation in the sphingoid backbone

augments intramolecular hydration/hydrogen bonding in

the polar region. This may allow the close packing of the

ceramide molecules, which exhibit a tighter intramolecular

interaction than comparable lipids [8–10]. This higher

packing density of ceramides within the lipid bilayer

affects the physical properties of membranes [11].

Short-chain ceramide

Synthetic short-chain ceramides (N-acyl chains of 2 to 8

carbon atoms) are commonly used to mimic the mecha-

nisms of action of naturally occurring long-chain

ceramides, which are highly hydrophobic compounds.

Short-chain ceramides are water soluble and membrane-

permeable and can be easily used as experimental tools

within living cells [12–16]. Small amounts of C2-ceramide

are normal components in brain (10 pmol/g) and liver

(25 pmol/g) [17] although the metabolic origin and phys-

iological activity of this short ceramide are uncertain.

NMR characterization of C-2 and C-18 ceramides

showed that the conformation of the polar region of the two

molecules is the same [9]. Since the interaction between

ceramides and their ligand molecules probably occurs

through the polar head, the maintenance of the headgroup

conformation irrespective of N-acyl chain length is enough

for C-2 ceramides to reproduce most of the long-chain

ceramides signaling effects. However, the length of the

fatty acyl chain modifies significantly the biophysical

properties of the ceramide moieties [18] and in some

reports long- and short-chain ceramides have been found to

have different biological effects [19, 20].

The major difference between short and long ceramides

is in the geometrical shapes they adopt at the membrane

level that consequentially gives rise to different behaviors.

The hydrophobic portion of C-2 is smaller than the polar

headgroup. Therefore, C-2 has a shape that favors a

positive curvature in lipid monolayer [21]. Long-chain

ceramides are cone shaped molecules with opposite geo-

metrical properties, which induce a negative curvature of

the two halves of the bilayer towards the aqueous milieu,

leading to membrane trafficking via vesiculation and

fusion [22, 23]. Moreover, long-chain ceramides increase

the order of the acyl chains in the bilayers, thus decreasing

fluidity and stabilizing the membrane [24–26]. Conversely,

short-chain ceramides perturb the structural order of the

lipid bilayer. Long-chain ceramides are immiscible with

phospholipids, while short-chain ceramides mix much

better and are therefore able to spontaneously overcome

membrane barriers [27]. Once inside the cell since they

possess the appropriate stereochemistry, short ceramides

might bind target proteins normally inaccessible for

the longer species. On the contrary, naturally occurring long-

ceramides are eminently hydrophobic even compared to

other lipid species and as a consequence their concentrations

in the cytosol are extremely low. This hydrophobicity of

ceramides justifies the need for a ceramide transfer protein

(CERT) in cells [28]. CERT localizes inside the cell and

modulation of its activity may result in significant changes in

ceramide levels [62]. Therefore, since short-chain ceramides

behave as soluble amphiphiles [29], they are suspected to

have cellular effects that cannot be extrapolated to natural

ceramide species (mainly insoluble amphiphiles) and their

use might lead to confusion on the role of ceramide in cellular

signaling.

Ceramides as precursors of sphingolipids

Free ceramides are molecules known to exert a wide range

of biological functions in many of the most critical cellular

events, including growth, differentiation, apoptosis and

oncogenesis. Ceramides are the core structure of a class of

complex lipid called sphingolipids, ubiquitous components

of eukaryotic cell membranes [30]. Sphingolipids were

initially described in brain tissue in the second half of the

19th century [31]. The name sphingolipids denotes their

enigmatic (namely sphinx-like) nature that, despite intense

research, still remains unclear. Sphingolipids have long

been regarded as inactive and stable structural compo-

nents of the membrane; however they are now well

recognized to be biologically active in processes of cellular

biology.

Sphingolipids are very heterogeneous and are classified

depending on their structural combinations in long-chain

(sphingoid) bases, amide-linked fatty acids [32] and hun-

dreds of headgroup variants [33].

Sphingolipids are generated by attachment of different

polar headgroups at the primary alcohol group (C1–OH) of

a ceramide molecule. Depending on the type of polar

group, two major classes are defined: phosphosphingolipids

and glycosphingolipids (GSLs) (Fig. 1). The typical

phosphosphingolipid in mammalian cells is sphingomyelin

(SM), synthesized by the transfer of the phosphorylcholine

moiety (from phosphatidylcholine) to the C1–OH of

ceramides.

Alternatively, modification of a ceramide by addition of

one or more sugars yields complex GSLs. As a result of the
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great heterogeneity in the glycan moiety, among GSLs

much variation exists. When a single monosaccharide is

present, the GSL is referred to as a cerebroside (also known

as monoglycosylceramides). Usually glucose or galactoses

are attached directly to the ceramide portion of the molecule,

resulting in glucosylceramide (GlcCer; glucocerebroside)

and galactosylceramide (galactocerebroside), respectively.

The sulfuric acid esters of galactosylceramide are the sul-

fatides. Galactosylceramide and sulfatide are highly

enriched in oligodendrocytes and myelin-forming cells

compared to other membranes [34]. By contrast GlcCer

is not normally found in neuronal cell membranes. Addi-

tionally, a galactose can be transferred by the enzyme

lactosylceramide synthase to GlcCer to form lactosylcera-

mide (LacCer) [35, 36], which plays a pivotal role as a

precursor for the synthesis of complex GSLs [37]. In fact, the

common LacCer structure is then elongated by different

glycosyltransferases, thereby defining the classes of GSLs

that are identified as ganglio-, globo-, lacto- and (neo)-lacto-

subtypes according to their specific saccharide core

structures.

Globosides represent cerebrosides that contain addi-

tional carbohydrates predominantly galactose, glucose or

N-acetylgalactosamine (GalNAc). Gangliosides are very

similar to globosides except that they also contain one or

more sialic acid residues on their carbohydrate chains.

Gangliosides comprise approximately 5 % of brain lipids

and are mainly present in astroglia, followed by neurons

and oligodendrocytes. Lacto and (neo)-lacto-series are

GSLs classified on the basis of the core oligosaccharide

structures present in their molecules and catalyzed by the

transfer of N-acetylglucosamine (GlcNAc) onto LacCer

[35]. Polar carbohydrate chains of GSLs extend toward the

extracellular milieu, forming specific patterns on the sur-

face of cells, contributing to cell recognition during

differentiation, development and immune reaction [38].

These different types of sphingolipids can be converted

back to ceramide by the removal of the polar headgroup by

specific enzymes.

Ceramide generation

Ceramides can be produced in cells either via the de novo

synthesis or via hydrolysis of complex sphingolipids [39].

The activation of different catabolic enzymes yields cera-

mide within a few minutes whereas the de novo synthesis

produces ceramide in several hours [40]. Different extra-

and intra-cellular stimuli dictate the pathway used for

ceramide generation resulting in distinct subcellular

localization of ceramide and different biochemical and

cellular responses.

De novo synthesis of ceramide takes place in the ER

In animal cells, ceramide is de novo-synthesized on the

cytoplasmic face of the smooth endoplasmic reticulum

(ER) [5, 41] and in mitochondria [42, 43].

The de novo synthesis of ceramides in eukaryotes begins

with the condensation of serine and palmitoyl-CoA to form

3-ketosphinganine, through the action of serine palmitoyl

transferase (SPT) (Fig. 2). This enzyme is composed of

two subunits: Lcb1 and Lcb2. Mutations in the human

Lcb1 gene underlie hereditary autonomous neuropathy, a

neurodegenerative disorder of the peripheral nervous sys-

tem [44].

Subsequently, 3-keto-sphinganine is reduced to the

sphingoid base sphinganine, which is subsequently N-acyl-

ated by (dihydro)-ceramide synthase (CerS) to form

dihydroceramide. The enzyme (dihydro)-ceramide desatur-

ase introduces the double bond to the position C4 to form

mammalian type ceramides [6, 45].

CerS represents a key enzyme in the pathway for de

novo sphingolipid biosynthesis. Interestingly, these highly

conserved transmembrane proteins are also known as

human homologues of yeast longevity assurance gene

(LASS1).

Six different CerSs (CerS1–6) have been identified in

vertebrates and plants [46], whereas most of the other

enzymes involved in sphingolipids metabolism exist in

only one or two isoforms [46]. Each CerS regulates the de

novo synthesis of endogenous ceramides with a high

degree of fatty acid specificity. In line with the presence of

multiple CerSs, ceramides occur with a broad fatty acids

length distribution inside the cell. Although some CerSs are

ubiquitously expressed, other isoforms present a very

specific distribution among tissues, according to the need

of each tissue for specific ceramide species [47, 48]. CerS1

specifically generates C18 ceramide and is highly expres-

sed in the brain and skeletal muscles but is almost

undetectable in other tissues. CerS2 mainly generates

C20–26 ceramides and has been found to have the highest

expression of all CerSs in oligodendrocytes and Schwann

cells especially during myelination. The selectivity of dif-

ferent CerS isoforms to synthesize different ceramide

species is important since ceramides with specific acyl

chain lengths might mediate different responses within

cells [46]. Fumonisins are toxic mycotoxins with a very

similar structure to sphingosine or sphinganine, which is a

substrate for CerS. Since these fungal metabolites are able

to inhibit CerS reaction, they are extensively used to study

the role of ceramide generated through the de novo path-

way in the ER [49]. On the contrary, the mitochondrial

CerS is not affected by fumonisins, suggesting that its

activity is distinct from the ER resident enzyme [42, 43].
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Neo-synthesized ceramides subsequently traffic from the

luminal face of the ER to the Golgi compartment where

different polar heads are incorporated into the ceramide

molecule to form complex sphingolipids [50].

Ceramide transport from ER to the Golgi

The high hydrophobicity and low polarity of ceramide

moiety limit free ceramide to circulate inside the cell or

more generally in solution. This may explain the occur-

rence of several isoenzymes of ceramide biosynthesis at

different subcellular sites and supports the view that the

site of ceramide formation might determine its function.

On the other hand, the cell needs to transport ceramide

from the ER to the Golgi compartment for the synthesis of

GSLs and SM. Ceramides destined for conversion to GSLs

appear to reach the Golgi only via the classical vesicular

route [28]. The step-wise addition of sugar groups to

ceramides is catalyzed by membrane bound glycosyl-

transferases and it is restricted to the ER-Golgi complex

[51]. The synthesis of most GSLs begins with glucosyla-

tion of ceramide to form GlcCer, at the cytosolic surface of

the Golgi [52]. The direction in which GlcCer is trafficked

is controversial. GlcCer normally localizes to trans-Golgi

and trans-Golgi network, whereas it remains in the cis-

Golgi on the knockdown of FAPP2. Two inhibitors of

intra-Golgi membrane trafficking did not affect the syn-

thesis of GSLs. These observations suggest that GlcCer is

transported from the cis-side of Golgi to the trans side by

FAPP2 in a nonvesicular manner [53]. On the other hand, it

has been suggested that GlcCer synthesized at the Golgi is

retrogradely transported to the ER, where it is translocated

to the lumen, and then transported to the Golgi again [54]

for the subsequent synthesis of LacCer and more complex

GSLs [55].

Ceramides destined for the formation of SM reach the

Golgi carried by CERT in a non-vesicular manner [28, 56–

58].

CERT mediates the transfer of ceramides containing

C14–C20 fatty acids but not longer-chain ceramides [59].

This correlates with the presence of a C14–20 acyl chain

SM in many tissues and cell lines whereas GSLs are

formed by longer ceramides. CERT, works as mediator of

sphingolipids homeostasis. Loss of functional CERT in

Drosophila affects plasma membrane fluidity and increases

oxidative stress [60] and CERT is critical for mitochondrial

and ER integrity [61]. Interestingly, CERT has an alter-

natively spliced isoform characterized by the presence of

an additional 26 amino acids domain, responsible for its

localization at the plasma membrane and consequent

secretion to the extracellular milieu, named CERTL or

Goodpasture antigen binding protein (GPBP) [62]. These

two isoforms are differentially expressed during develop-

ment. CERTL is more abundant at early stages of

embryonic maturation and its knockdown leads to severe

developmental deficit in muscle and brain because of

increased apoptosis [63]. As development progresses, the

initially very low levels of CERT, gradually increase. Both

isoforms can be detected in adult brain [64].

Other reports showed elevated CERTL expression levels

to be associated with several autoimmune disorder e.g.,

lupus erythematosus, multiple sclerosis, myasthenia gravis,

Fig. 2 Overview of the metabolic pathways involved in the

synthesis of endogenous ceramide. Ceramide can be formed by de

novo synthesis, by degradation of complex SLs or by re-acylation of

sphingoid long-chain bases (salvage pathway). The de novo pathway

involves several enzymatic steps. Through catabolic pathways

ceramide is generated by either hydrolysis of the membrane lipid

SM by the SMase enzymes or by lysosomal breakdown of complex

GSLs. Ceramide itself is degraded by ceramidase to regenerate

sphingoid bases. The sphingosine formed is then phosphorylated and

finally degraded to phosphoethanolamine and C16-fatty aldehyde by

the action of S1P lyase. A salvage pathway uses the enzyme ceramide

synthase to produce ceramide from sphingosine. Once generated,

ceramide can serve as a substrate for the synthesis of SM and GSLs or

be converted into various metabolites such as sphingosine or Cer1P
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Addison disease [65]. An efficient execution of apoptotic

signaling is important to inhibit inflammation and auto-

immune responses against intracellular antigens [66] and

modulation of CERT/CERTL levels has a direct influence

in ceramide levels and could be responsible for balancing

cell death during embryogenesis and under pathophysio-

logical condition.

Once delivered to the Golgi apparatus, ceramide spon-

taneously translocates from the cytosolic to the luminal

leaflet for SM synthesis. Formation of SM from ceramide is

catalyzed by sphingomyelin synthase (SMS) [67] that

transfers the phosphocholine headgroup from phosphati-

dylcholine onto ceramide yielding SM as a final product

and diacylglycerol (DAG) as a side product [68]. If cera-

mide is a key metabolic intermediate for sphingolipids with

an amide backbone, DAG is the precursor for glycerol-

derived phospholipids and, as well as ceramide, it plays

important roles in many signaling pathways. Whether the

DAG generated by SMS regulates cellular processes

remains unclear. SMS exists in two isoforms, SMS1, faces

the lumen of the cis/medial Golgi [69, 70] and it is

responsible for the de novo synthesis of SM [70]; SMS2,

which resides in the plasma membrane [68, 71], could

instead play a more specific role in signal transduction

events. In neural cells the de novo SM is mostly synthe-

sized at the plasma membrane and the production at the cis

medial Golgi is less prominent [72, 73]. This indicates that

the subcellular localization of SM formation is cell type

specific and that SMS activities may be involved in dif-

ferent biological processes.

Catabolic pathways for ceramide production

Beside the de novo pathway, significant contribution to

intracellular ceramide levels occur also through hydrolysis

of complex sphingolipids by activation of different

hydrolases [74] (Fig. 2).

Ceramides derived from SM catabolism require the

activation of sphingomyelinases (SMase) [75], specific

forms of phospholipase C, which hydrolyze the phosphodi-

ester bond of SM yielding water soluble phosphorylcholine

and ceramide [76]. Several SMases have been characterized

and classified by their pH optimum, subcellular distribution

and regulation. The best-studied of these SMases is the acid

sphingomyelinase (aSMase), which exhibits an optimal

enzymatic activity at pH 4.5–5 [77]. This lipase is localized

in lysosomes and is required for the turnover of cellular

membranes [78]. ASMase is deficient in patients with the

neurovisceral form (type A) of Niemann–Pick disease, with

consequent abnormal accumulation of SM in many tissues

of the body [79]. Besides this lysosomal/endosomal aSMase,

a secreted zinc-activated form of aSMase was first identified

in serum [80] and found to be secreted by many cell types

[81, 82]. These two aSMases are differentially glycosylated

and processed at the NH2-terminal (72) but they are products

of the same gene [81]. Neutral SMases (nSMase) are

membrane bound enzymes with an optimal activity at a

neutral pH. Several isoforms have been characterized.

NSMase 1 is localized in the membranes of the ER, [83, 84]

and it is ubiquitously expressed and highly enriched in

kidney [85]. NSMase 2 has a different domain structure than

nSMase 1 and is specifically highly expressed in brain [86,

87] [88]. A third nSMase (nSMase 3) is ubiquitously present

in all cell types and distributed mainly in the ER and Golgi

membrane [89]. NSMases are further classified as Mg2?/

Mn2? dependent or independent. An alkaline SMase exists

only in intestinal cells and it is activated by bile salts [90].

The function of these multiple isoforms is still elusive;

however their membrane localization has lead to speculation

that they may contribute to the modification of local

microdomains in the membrane organization during vesicle

formation, transport, and fusion [91, 92].

Salvage pathway

Ceramides can be generated by an alternative acyl-CoA-

dependent route (Fig. 2). This pathway relies upon the

reverse activity of the enzyme ceramidase (CDase), which

is called the ‘‘salvage pathway’’ since catabolic fragments

are recycled for biosynthetic purposes [93, 94]. As the

name suggests, CDase catalyses the hydrolysis of ceramide

to generate free sphingosine and fatty acid. Together with

ceramide production, CDase regulates also sphingosine

levels. In fact, it is important to note that whereas sphin-

ganine is generated by de novo sphingolipid biosynthesis

(Fig. 2), free sphingosine seems to be derived only via

turnover of complex sphingolipids, more specifically by

hydrolysis of ceramide [5]. The catabolism of ceramide

takes place in lysosomes from where sphingosine can be

released [95] in contrast to ceramide, which does not

appear to leave the lysosome [96]. Free sphingosine is

probably trapped at the ER-associated membranes where it

undergoes re-acylation (condensation with a fatty-acyl-

CoA) to again generate ceramide. This ‘‘reverse’’ activity is

carried out by the same CDase [96, 97].

As with SMase, different CDases have been identified

associated with different cellular compartments according

to the pH at which they achieve optimal activity (acid,

neutral and alkaline). Acid CDases (aCDase) are lysosomal

[98–100], whereas neutral/alkaline CDases (nCDase and

alCDase) have been purified from mitochondria [42, 101]

and nuclear membranes [102]. CDases have been isolated

from soluble fractions of rat brain [103], mouse liver and

human kidney. A purely alkaline CDase has been localized

to the Golgi apparatus and ER [104, 105]. This variability

in CDases subcellular localizations and distribution in
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tissues suggests that these enzymes may have diverse

functions in the biology of the cell.

N/a CDases have been shown to catalyze the reverse

reaction to generate ceramide from sphingosine and fatty

acids [97, 104, 106, 107] whereas the acid isoform resides

in lysosome. Mitochondria are also capable of generating

ceramide via the action of reverse CDase [42, 101, 108].

Sphingosine-1-phosphate and ceramide-1-phosphate

Phosphorylation/dephosphorylation reactions represent a

mechanism through which cells respond to specific chan-

ges: the phosphorylated state of a molecule often exhibits

effects that are diametrically different from those of the

unphosphorylated state. Besides being used to resynthesize

ceramide, sphingosine can be converted into sphingosine-

1-phosphate (SP1) via sphingosine kinase, an enzyme that

exists in the cytosol and ER [109, 110] (Fig. 2). The ter-

minal catabolism of sphingosine involves the action of SP1

lyase, which degrades the SP1 to form ethanolamine

phosphate and a fatty aldehyde [111]. Sphingosine is

associated with growth arrest [112] whereas its phosphor-

ylated form, SP1, is able to promote cell proliferation and

prevent programmed cell death [110] (for a review [113]).

Ceramide and S1P that exert effects of opposite nature

in their regulation of apoptosis, differentiation, prolifera-

tion and cell migration [114, 115]. The concentration of

ceramide and S1P is counter-balanced by enzymes that

convert one lipid to the other and their levels are believed

to balance between cell viability and cell death.

However, this is not the only way the cell can balance to

ensure tissue homeostasis. Ceramides can also be phos-

phorylated by the enzyme ceramide kinase (CERK) to form

ceramide-1-phosphate (Cer1P) [116–119]. As expected,

phosphorylation of ceramide in Cer1P allows a switch of

ceramide properties: comprehensive studies indicate that

Cer1P inhibits apoptosis and can induce cell survival [120–

122].

CERK was first observed in brain synaptic vesicles

[117] and found to be highly expressed in brain, heart,

skeletal muscles and liver [116]. It appears that at least two

different CERK isoforms exist in neural tissue, a calcium

dependent enzyme at the plasma membrane level and a

second cytosolic enzyme [123, 124]. The former enzyme

localizes at synaptic-vesicles suggesting a possible role for

CERK in neurotransmitter release [116, 117, 125].

CERK specifically utilizes ceramide transported to the

Golgi apparatus by CERT [126]. Stable downregulation of

CERT by RNA interference results in strong decrease in

Cer1P levels, suggesting that Cer1P formation mostly

relies on ceramide de novo synthesis [126]. Together with

CERK and Cer1P phosphatases, CERT could modulate an

appropriate balance between the intracellular levels of

ceramide and Cer1P. However it is important to mention

that short-term pharmacological inhibition of CERT

appears to slow down SM synthesis without decreasing

Cer1P synthesis [127], suggesting either an alternative

route for delivery of ceramide to CERK at the Golgi

complex or a process which is dependent on long-term

responses.

Maintenance of equilibrium between ceramide and

Cer1P seems to be crucial for cell and tissue homeostasis

and accumulation of one or the other results in metabolic

dysfunction and disease.

Recently, S1P was reported to function not only as an

intracellular but also as an extracellular mediator of cell

growth through endothelial-differentiation gene family

receptors [128]. Cer1P could exert similar functions at the

plasma membrane level. Further research is necessary to

study if ceramide could reach the plasma membrane

transported by CERTL allowing plasmatic membrane

CERK to form Cer1P.

Plasma membrane, not just a lipid bilayer

Structural organization of the membrane

The plasma membrane is the densest structure of eukary-

otic cells and it defines the outer limit of the cell with

its environment. Far from being a passive skin around a

cell, plasma membranes are highly dynamic structures with

a central role in a vast array of cellular processes

[129, 130].

Plasma membrane of eukaryotic cells comprises three

major classes of lipids: glycerophospholipids, sphingolipids

and sterols, principally cholesterol [131]. Glycerophos-

pholipids are the main building blocks of eukaryotic

membranes and differ from sphingolipids (ceramide based

lipids) in that they are built on a glycerol backbone [132].

Sphingolipid acyl chains are characteristically highly satu-

rated, this allows them to pack tightly in the lipid bilayer

and results in a liquid ordered phase with little opportunity

for lateral movement or diffusion. This characteristic makes

sphingolipids suitable to contribute heavily to the structure

of the outer leaflet [30]. Conversely, glycerophospholipids

are rich in unsaturated acyl chains that are typically kinked,

this means they pack loosely thus increasing the fluidity of

the lipid bilayer. The inner leaflet has a higher content of

unsaturated phospholipids. This lipid asymmetry in mem-

branes accounts for the greater fluidity of the inner layer

relative to the outer layer (Fig. 3).

Sphingolipids molar ratio relative to glycerophospho-

lipids and cholesterol varies within cell types. For instance,

GSLs are a very minor component in certain cell types such

as erythrocytes but they have been shown to be particularly
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abundant in neurons and oligodendrocytes where they

make up 30 % of total lipids in myelin sheets [133, 134].

Cholesterol affects the consistency of the plasma mem-

brane making the outer surface firm and decreasing its

permeability [135]. With its rigid ring structure, cholesterol

fills interstitial spaces between fatty acid chains of the

nearest phospholipids, restricting their movement. At the

same time cholesterol helps plasma membrane to maintain

its fluidity, separating the long saturated fatty acid tails of

phospholipids, avoiding their condensation. Despite the

significance of ceramide metabolism in the synthesis and

degradation of sphingolipids, ceramide content is normally

very low in cell membrane and increases in ceramide

concentration are highly localized and temporally regu-

lated. The occurrence of ceramide in the lipid bilayer

directly affects both the structural organization and the

dynamic properties of the cell membrane [11, 136].

Lipid raft

Many cellular processes such as endocytosis, exocytosis

and membrane budding involve changes in membrane

topology. While biological membranes are typically in a

fluid or liquid-disordered state at physiological tempera-

tures, combinatorial interactions between specific lipids

drives the formation of dense, liquid-ordered domains, or

‘lipid rafts’ within membranes [13, 130, 137, 138] (Fig. 3).

The characteristics of these microdomains differ from

those of the whole membrane. They are generally enriched

in lipids with saturated acyl chains, especially SM and

cholesterol which pack tightly within the lipid bilayer [139,

140]. These separated regions seem to exist as preformed

entities in the membrane of resting cells [141] and are

present in different parts of the lipid bilayer [142].

The straight saturated acyl chains of sphingolipids in

rafts are more extended than unsaturated chains of sur-

rounding phospholipids and as a result lipid rafts extend

1 nm beyond the phospholipids background [143]. The

isolation of biologically relevant lipid rafts is problematic.

In the past, highly saturated lipid rafts have been isolated

based on their detergent resistance [144]. More recently, it

has been shown that these detergent resistant membranes

(DRMs) are in fact a product of the extraction method and

do not reflect any specific membrane structure. Therefore,

it is important to recognize that rafts are not equivalent to

DRMs [145]. The majority of studies have investigated

lipid rafts mainly at the plasma membrane, due to their

accessibility from the outside of the cell [146–148].

However many intracellular organelles contain raft-like

domains [144, 149–152]. Membranes of the Golgi are rich

in cholesterol/SM [153–155] and it has been suggested that

rafts function in sorting of lipids and proteins in the

secretory and endocytic pathways. In particular, raft like

domains are thought to be abundant in the trans-Golgi [152,

156] and in late endosomes [151].

Lipid rafts are dynamic structures without any charac-

teristic morphology [157]: during the steady state, rafts

may be very small, nanometers in diameter [139, 158, 159]

Fig. 3 Schematic representation of lipid raft structures in a plasma

membrane. The phospholipid bilayer of cellular plasma membranes

contains many different lipid components such as glycerophospho-

lipids, sphingolipids and cholesterol. The compositions of the inner

and outer membrane leaflets are different. The cytoplasmic monolayer

is largely composed of aminophospholipids as phosphatidylserine (4)

and phosphatidylethanolamine (3). By contrast, the choline-contain-

ing lipids SM (6) and phosphatidylcholine (5) and a variety of

glycolipids (7, 8) are significant components of the exofacial leaflet of

plasma membranes [45]. SM (6) together with cholesterol and

different GSLs (7, 8), form highly organized microdomains called

lipid rafts on the plasma membrane. Since these microstructures are

formed by lipid species with long saturated acyl chains, rafts are rigid

platforms which float in the more fluid surrounding membrane that

consists of phospholipids with saturated (1) and unsaturated (2) fatty

acyl chains and less cholesterol. Lipids rafts are enriched in

glycosylphosphatidylinositol (GPI)-anchored proteins (8) at their

external surface and studded with transmembrane integral proteins
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but upon proper stimuli they can coalesce into large

domains making even micrometer-size rafts [159]. The

fundamental principle by which lipid rafts exert their

functions is a segregation or concentration of specific

membrane proteins and lipids to form distinct microdo-

mains [147] that represent specialized signaling organelles

within the plasma membrane [160]. These dynamic mem-

brane sites have been implicated in mechanisms of cell

polarity [161], membrane trafficking including endocytosis

[149, 162] and exocytosis [163–165] and in intracellular

signaling [160, 166–168].

Proteins which localize into lipid rafts often show post-

translational modifications with lipids such as glycosylpho-

sphatidylinositol (GPI)-anchors, palmitoylation, prenylation,

myristoylation, [169] or directly bind cholesterol or phos-

pholipids as caveolins [138, 170] and annexins [171],

respectively.

Ceramide-enriched platforms

As a highly hydrophobic second messenger, ceramide

presumably acts at the level of lipid rafts in transducing

external signal. Rafts are the primary site of action of the

enzyme SMase that releases ceramide from SM [172]

(Fig. 4). The tight interaction between SM and cholesterol

serves as the basis for raft formation. Ceramides, on the

other hand, mix poorly with cholesterol and have a

tendency to self associate and segregate into highly ordered

microdomains [13, 173]. The nature of ceramide has a

strong impact on membrane structure. In fact, long-chain

saturated ceramide molecules, are intermolecularly stabi-

lized by hydrogen bonding and van der Waal forces [25,

174] and form a liquid ordered domains that induce lateral

phase separation of fluid phospholipid bilayers into regions

of liquid-crystalline (fluid) phases. Moreover, the small

size of ceramide polar headgroup results in a low hydration

and allows ceramide molecules to pack tightly avoiding

any interference with surrounding lipids [175]. In fact it has

been shown that as little as 5 mol% ceramide is sufficient

to induce ceramide partitioning in the lipid bilayer and to

drive the fusion of small inactive rafts into one (or more)

larger active ceramide-enriched membrane platforms

[174].

Among lipids, DAG is structural similar to ceramide.

DAG is produced in the cell membrane by hydrolysis of

phosphatidylinositol 4,5-bisphosphate [176] and phospha-

tidylcholine [177]. Both are very minor components of

membrane being formed and removed rapidly at specific

locations in response to signaling. As well as ceramides,

DAGs also give rise to phenomena of lateral phase sepa-

ration in small domains within phospholipid bilayers. Both

ceramide [178] and DAG [179] have a small polar head

and a large hydrophobic region; they tend to bend the

bilayer and to facilitate the formation of non-bilayer (non-

Fig. 4 Scheme of lipid raft reorganization up in ceramide formation

by SMase activity. Hydrolysis of SM through the enzyme Smase

generates ceramide in the outer leaflet of the cell membrane. For its

biochemical features, ceramide mixes poorly with the other rafts

components and shows self-assembling capability in the membranous

environment forming large distinct ceramide-enriched membrane

platforms which serve to reorganize the cell membrane, resulting in

clustering of activated receptor molecules

Ceramide function in the brain: when a slight tilt is enough 189

123



lamellar) phases which are important for cellular processes

such as pore formation, vesicle fusion and budding, as well

as membrane protein function. Also, both lipids act as

second messengers that play important roles in many sig-

naling pathways. DAG is able to induce structural changes

in membrane, more efficiently than ceramide, requiring as

little as 2 mol% [180]. This difference in efficiency is

likely due to the different physical properties of these

lipids. It is though that the different proficiencies of cera-

mide and DAG for induction of membrane structural

change through transient destabilization of the lamellar

structures provide opportunity for fine control of membrane

properties.

The ceramide-enriched membrane platforms serve as

clustering components to achieve a critical density of

receptors involved in signaling. In fact, rafts are too small

to engage in membrane processes [160, 181]. This high

density of receptors seems to be required for effective

transmission of the signal into cells. For example, CD95

signaling is amplified a hundred-fold by the formation of

ceramide-enriched membrane platforms [182].

The neuronal plasma membrane is particularly enri-

ched in lipid rafts [183]. More than 1 % of total brain

protein is recovered in a lipid raft fraction, whereas less

than 0.1 % of total protein is associated with lipid raft

isolated from non neuronal tissues [184]. In cultured

neurons, lipid rafts are distributed throughout the cell

surface including the soma and dendrites. As well as

across cell types, lipid and protein raft composition dif-

fers according to neuronal developmental stage. Mature

neuron lipid raft content is higher than that of immature

neurons and astrocytes. [185]. Synaptic proteins such as

synaptophysin or synaptotagmin localize in lipid rafts

[186, 187] and lipid rafts are critical for maintaining the

stability of synapses and dendritic spines [188]. Neuro-

transmitter signaling seems to occur through a clustering

of receptors and receptor-activated signaling molecules

within lipid rafts. Several lipid raft associated neuro-

transmitter receptors have been isolated from brain

tissues, examples include: nicotinic acetylcholine recep-

tors [189], gamma aminobutyric acid type B receptors

[190], a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid receptor and N-methyl-D-aspartate receptors [188,

191, 192]. Aberrant organization of SM and cholesterol

in rafts has been linked to loss of synapses and changes

in nerve conduction [188]. Depletion of sphingolipids or

cholesterol leads to gradual loss of inhibitory and excit-

atory synapses and dendritic spines [188]. Rafts also play

an important role in neuronal cell adhesion [193], local-

ization of neuronal ion channels [194, 195] and axon

guidance [196]. In oligodendrocytes, rafts mediate the

interaction between myelin associated glycoprotein on

myelin and its receptor on neurons [197].

Ceramide signaling in apoptosis

Apoptosis is an essential process for normal embryonic

development and to maintain cellular homeostasis within

mature tissues. A proper balance between regulation of

normal cell growth and cell death is the basis of life.

Deregulated apoptosis is a feature of most pathological

conditions such as neurodegeneration, auto immune disor-

ders and cancer. In neurodegenerative diseases such as

Alzheimer’s, Parkinson’s, Huntington’s and Prion’s diseases

aggregated misfolded proteins contribute to the neuronal

pathogenesis; in multiple sclerosis, autoimmune mechanisms

accompany the demyelination; in HIV-associated dementia,

viral products are crucial for neuronal demise. Factors

affecting neurodegeneration can differ, but these devastating

disorders are all characterized by a massive loss of specific

populations of neurons or damage to neuronal transmission.

Premature death of terminally differentiated cells such

as neurons and oligodendrocytes results in progressive and

irreversible functional deficits since these post mitotic cells

cannot be easily replaced [198]. The role of ceramide in

apoptosis is extensive and complex and despite intense

investigations remains controversial [199]. An increase of

ceramide levels leads to cell death [200, 201]; in contrast,

depletion of ceramide can reduce the progression of

apoptosis [202–204]. However, ceramide is indispensable

for proper function of the central nervous system (CNS)

[205–207]. Ceramide levels inside the cell determine its

dual role: protection and cell sustenance at low concen-

trations but death and threat when over produced. This

outlines the importance for cells to maintain a strict cera-

mide balance by a tight regulation of sphingolipid based

signaling networks.

Ceramide can induce apoptosis via different routes and

different intracellular organelles are the target of its action.

SM hydrolysis by neutral and/or acid SMases is known to

be a very important pathway for production of pro-apop-

totic ceramides [208]. However, the de novo synthesis

pathway has also been reported to be relevant in the gen-

eration of a signaling pool of ceramide leading to cellular

apoptosis [209–211]. These two pathways can induce

apoptosis independently or jointly (Fig. 5).

SM hydrolysis generates a rapid and transient increase

of ceramide and results in formation of ceramide-enriched

membrane platforms. In contrast, the ceramide de novo

pathway requires multiple enzymatic steps and it is

responsible for a slow but robust accumulation of ceramide

over a period of several hours.

SMase activation occurs in response to stimulation of

cell surface receptors of the tumor necrosis factor (TNF)

upon the binding with specific ligands such as TNF alpha,

TNF-related apoptosis-inducing ligand (TRAIL) and Fas

ligands.
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SM hydrolysis in response to TNF signals involves both

nSMase and aSMase but their activation occurs through

different mechanisms [212, 213]. The cytoplasmic tail of

the TNFR1 contains two distinct portions that differently

associate with nSMase or aSMase [214, 215]. Activation of

aSMase requires the C-terminal of the TNFR1 identified as

death domain (DD) [216]. DD associates with the adaptor

protein TRADD (TNF receptor 1-associated death domain)

that together with another cytoplasmic protein, termed

FADD/MORT-1 [217] induces activation of aSMase [218].

ASMase is normally present in the endosomal/lysosomal

compartment. However, upon phosphorylation by protein

kinase C, aSMase translocates from its intracellular loca-

tions to the plasma membrane where it reaches SM [219].

ASMase is reported to be functional at physiological pH

after translocation to the plasma membrane [220]. The

ceramide produced by aSMase activates the aspartyl pro-

tease cathepsin D [221] that can subsequently cleave the

pro-apoptotic Bcl-2 family member Bid. Activation of Bid

induces cytochrome c release from mitochondria [222] and

activation of caspase-9 and -3, leading to apoptotic cell

death by the intrinsic pathway [223].

Conversely, activation of nSMase requires a short motif

adjacent to the DD of TNFR1, called neutral sphingomye-

linase domain (NSD). The NSD binds an adaptor protein,

FAN (factor associated with nSMase) which couples nSM-

ase to TNFR1 [224]. The ceramide generated by nSMase

leads to the activation of ceramide-activated protein kinase

(CAPK) [14] and ceramide-activated protein phosphatases

(CAPPs) [225], direct downstream targets of ceramide.

CAPK, Ser/Thr protein kinase, is involved in the mitogen-

activated protein kinase (MAPK) cascades that induce the

extracellular-signal regulated kinases (ERK) activation.

ERK cascade leads to cell cycle arrest and cell death.

CAPPs, which comprise the serine threonine protein

phosphatases PP1 and PP2A [226], mediate the effect of

ceramide through dephosphorylation and inactivation of

several substrates, such as retinoblastoma gene product

(RB) [227], Bcl-2 and Akt [228] and through downregu-

lation of the transcription factors c-Myc [229] and c-Jun

[230].

Although aSMase and nSMase seem to induce death

receptor dependent and independent mediated apoptosis

through apparently separate mechanisms, both enzymes are

activated by the same stimuli, i.e. UV light [231], hypoxia

[232, 233], radiation [204, 234], TNF-related apoptosis-

inducing ligands [235] and the DNA-damaging drug

doxorubicin [236]. Disruption of rafts or prevention of

ceramide generation by inactivation of aSMase, renders

cells resistant to receptor clustering and apoptosis indicat-

ing that aSMase plays an important role in death receptor-

mediated apoptosis [2, 237, 238]. Accordingly, aSMase-

deficient mice are resistant to the induction of apoptosis by

CD95 [239] and TNF alpha signaling [240].

Selective activation of nSMase has been reported to

occur for some apoptotic stimuli as CD40 [241], ethanol

[242], free oxygen radicals [243] and chemotherapy drugs

[244] (Fig. 5). In contrast, specific activation of aSMase

with subsequent formation of ceramide-enriched mem-

brane domains occurs after infection with Pseudomonas

aeruginosa [245], Staphylococcus aureus [246] or rhino-

virus [247].

Instead, exposition to the chemotherapeutic agent eto-

poside [211] and cannabinoids [248], retinoic acid [249]

and B cell receptor (BcR)-induced apoptosis [250] all

involve a large increase in ceramide levels formed spe-

cifically through the de novo pathway. However, the

downstream targets of the de novo ceramide dependent cell

death are largely unknown.

In conclusion, evidence suggests that ceramide acts

either by changing the physical state and organization of

cellular membranes or by direct binding and activation of

target proteins. The spatial reorganization of plasma

membrane driven by generation of ceramide may serve

to cluster signaling molecules and to amplify death sig-

naling. However, rather than a specific mechanism for

apoptosis induction, this process appears to represent a

generic mechanism for transmembrane signaling. In fact,

receptors that are not involved in apoptosis (IL5, LFA 1,

CD28, CD20) [251] can activate the SMase signaling

pathway with subsequent raft clustering into micro-

domains. Beside its effect at the level of cellular mem-

branes, ceramide is capable of direct binding with

components that lead to death as CAPP, CAPK, protein

kinase C-n, cathepsin D [252] and mediate induction of

signaling cascades that lead to apoptosis, growth arrest

and inflammation.

Fig. 5 Ceramide production occurs in response to diverse apoptotic

stimuli and with different mechanisms. Many inducers of cell death

activate one or more ceramide generation pathways. For example both

SM hydrolysis (by either a nSMase or an aSMase) and the de novo

pathway have been implicated in the action TNFa, radiation,

doxorubicin and UV. Ultimately, ceramide production results in cell

death regardless of the pathway
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Aging

Sphingolipids hold a major role in regulating development

and lifespan [253] and deregulation in sphingolipid

metabolism increase the risk and progression of age-related

neurodegenerative disease [254, 255]. Since ceramide is

the core of sphingolipids, its contribution to cellular path-

ophysiology is object of intense study. A close connection

between ceramide levels and aging comes from studies

carried on Saccharomyces cerevisiae where a gene

involved in ceramide synthesis has been identified as a

regulator of yeast longevity. This gene called longevity

assurance homolog 1 (LAG1), together with LAC1, func-

tions as a key components of CerS in vivo and in vitro

[256] and its lost correlates with a marked increase in yeast

lifespan [257]. The human homolog LAG1Hs (CerS1) is

highly expressed in the brain, testis and skeletal muscles

and specifically generates C18-ceramide [46]. This con-

clusion seems to be supported by cell culture studies where

overexpression of CerS1 with increased C18-ceramide

generation resulted in apoptosis [258]. Interestingly, C18-

ceramide generated by CerS1 was found to downregulate

the expression of the enzyme telomerase [259]. Telomerase

functions by elongating the end of existing chromosomes

and thus preventing cellular senescence. Since cellular

aging is dependent on cell division, these enzymes play a

critical role in long-term viability of highly proliferative

organ systems [260]. Specifically C18-ceramide is able to

mediate a negative regulation of the human telomerase

reverse transcriptase (hTERT) promoter, whereas different

ceramides generated by other ceramide synthases do not

have such a function. Telomerase is expressed in neurons

in the brains of rodents during embryonic and early post-

natal development and is subsequently downregulated

[261]. Terminally differentiated neurons are postmitotic,

therefore there is not need to maintain the telomere length

[262]. However, telomerase is constitutively expressed in

restricted regions of the hippocampus and the olfactory

bulbs which are continuously supplied with neural stem

and progenitor cells [263]. These cells are required for

adult neurogenesis throughout life because they produce

new neurons and support brain cells. Therefore, besides the

telomeric roles, telomerase was found to protect the post-

mitotic neuronal cells from stress-induced apoptosis and

may serve a neuron survival-promoting function in the

developing brain and be important for regulating normal

brain functions. Thus, the regulation that C18-ceramide

seems to exert on telomerase expression may contribute to

increase neuronal vulnerability of the adult brain in various

age-related neurodegenerative disorders.

Several studies support the role of ceramide in inducing

senescence and in activating genetic/biochemical pathways

involved with aging. Accumulation of ceramide occurs

normally during development and aging in single cells

[264] and young cells treated with exogenous ceramide

exhibit a senescent-like phenotype [265].

In addition, a significant change in ceramide metabolic

enzyme activities seems to occur in specific organs or even

in specific cell types with aging [264, 266]. The activities

of the sphingolipid catabolic enzymes (SMase and CDase)

seem to change more robustly than that of the anabolic

enzymes (SMS and CerS).

ASMase and nSMase activity significantly increase in

rat brain during aging [267] demonstrating that aging is

accompanied by an increase in SM turnover. NSMase was

also reported to be dramatically activated in senescent

fibroblasts [264]. ACDase, nCDase and alCDase activities

are increased specifically in brain tissue from aging rats

and among the isoforms of CDases, alCDase shows the

highest activity [267]. Increase in the CDase activity in

kidney and brain indicates an increase in the production of

sphingosine and its contribution toward aging in these

tissues. In contrast, CerS shows a lower activity, suggesting

a minor contribution of ceramide de novo synthesis to

ceramide accumulation [267].

Ceramide and neurodegeneration

Lipid storage disorders

Ceramide is defined as a central element in the metabolic

pathways of sphingolipids. All sphingolipids are synthe-

sized from ceramides and are hydrolyzed to ceramides. In

addition to CDase and SMase, there are other hydrolytic

enzymes which hydrolyze complex sphingolipids produc-

ing ceramides as product. More than ten specific acid

exohydrolases are responsible for intracellular GSLs

digestion in a stepwise action that takes place within the

lysosome. Deficiency or malfunctioning of one of these

enzymes results in accumulation of the corresponding lipid

substrate in the lysosomal compartment leading to cellular

enlargement, dysfunction and death. Due to its high syn-

thesis of lipids, the brain is the organ mainly affected by

accumulation of lipid products. Their abnormal storage and

slow turnover results in severe dementia and mental

retardation. Inherited metabolic disorders which have

been linked to lysosomal dysfunction belong to a family

of diseases identified as lysosomal storage disorders

(LSDs).

LSDs include Farber’s disease, caused by the dysfunction

of aCDase; Krabbe’s disease (Globoid leukodystrophy),

caused by the absence of galactosylceramidase (GalCer/3-

galactosidase); Gaucher’s disease due to the absence of

glucosylceramidase (GlcCer/3-glucosidase) and Niemann–

Pick disease (NP) characterized by the absence of aSMase.
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Farber’s disease

Farber’s disease is an inherited disorder characterized by

high levels of ceramides due to deficient activity of lyso-

somal aCDase [268]. The rate of ceramide synthesis is

normal but ceramide resulting from degradation of complex

sphingolipids cannot be hydrolyzed and it is confined into

the lysosomal compartment [269]. There is a significant

correlation between the ceramide accumulated in situ and

the severity of Farber disease [270]. The abnormal ceramide

storage in the brain results in neuronal dysfunction, leading

to progressive neurologic deterioration. The inflammatory

component of this disease consists in chronic granuloma-

tous formations [271]. Granuloma are small areas

characterized by the presence of lymphocytes, monocites

and plasma cells [272] and appear to result from a dysreg-

ulation of leukocyte functions. However, the sequence of

molecular mechanisms leading from defect in ceramide

metabolism to leukocyte dysregulation is still unknown.

Krabbe’s disease and Gaucher’s disease

Krabbe’s disease is a disorder involving the white

matter of the central and peripheral nervous systems. It is

characterized by a deficiency in the lysosomal enzyme gal-

actosylceramidase which removes galactose from galacto-

ceramide derivatives. Galactosylceramidase is necessary to

digest galactosylceramide, a major lipid in myelin forming

oligodendrocytes and Schwann cells [273]. Abnormal stor-

age of galactosylceramide due to the lack of this enzyme

leads apoptosis of myelin forming cells with a complete

arrest of the myelin formation and consequent axonal

degeneration. This accounts for the severe degeneration of

motor skills observed in the disease. Another GSL called

psychosine (the deacylated form of galactosylceramide, also

known as galactosylsphingosine) is normally broken down

by galactosylceramidase. Psychosine is present in the normal

brain tissues at very low concentrations, owing to its rapid

breakdown to sphingosine and galactose by galactosylce-

ramidase. In its absence, psychosine accumulates in the brain

acting as cytotoxic metabolite [274] and therefore contrib-

uting to oligodendroglial cell death. Psychosine was also

found to cause axonal degeneration in both the central and

peripheral nervous system by disrupting lipid rafts [275].

Myelin and/or oligodendrocyte debris produced by oligo-

dendrocyte death in Krabbe’s disease activates microglial

cells, resident macrophages in the brain, which are the pri-

mary mediators of neuroinflammation [276]. Because a

pathological hallmark of this rapidly progressive demyelin-

ating disease is the presence of multinucleated macrophages

(globoid cells) in the nervous system [277] the disease is also

known as globoid cell leukodystrophy. However, the func-

tion of these cells is unclear.

Gaucher’s disease is characterized by the lysosomal

accumulation of GlcCer due to defects in the gene encoding

the lysosomal hydrolase glucosylceramidase [278]. In the

brain, GlcCer accumulates due to the turnover of complex

lipids during brain development [279]. The cells most

severely affected are neurons because they process large

amounts of gangliosides which are components of their

membranes and synapses. The demyelination or disrupt of

the membrane structure may be the major consequence of

these diseases and it is conceivable that a change in the

ceramide at the plasma membrane level may contribute to

these disorders. Enzymes involved in ganglioside degrada-

tion are highly expressed in brain tissue and are of particular

importance in the first few years of life when axons elongate,

dendrites branch and synapses develop [279]. Deficiency of

these enzymes causes neuronal storage of gangliosides

leading to loss of neurons and their axons, resulting in cor-

tical atrophy and white matter degeneration. Cells and

organs that do not process large amounts of gangliosides are

either normal or show mild storage without cell damage.

Niemann Pick’s disease

Defects in SM degradation results in a neurodegenerative

condition known as NP. This kind of disorder exists in three

major forms. Both NP type A and type B are caused by defects

in lysosomal aSMase activity. Affected individuals cannot

convert SM to ceramide [280] and alteration of the ceramide–

SM ratio, rather than SM accumulation, is likely responsible

for the onset of the disease. The importance of SM as a source

of ceramide is indicated by the fact that activation of the

aSMAase occurs in response to numerous signals within the

cell and the production of ceramide is critical for an appro-

priate signaling cascade. NP type C diseases are caused by

defects in a protein, NP C1 protein, which is located in

membranes inside the cell and is involved in the movement of

cholesterol and lipids within cells [281]. A deficiency of this

protein leads to the abnormal accumulation of cholesterol and

glycolipids in lysosomes and leads to relative deficiency of

this molecule for steroid hormones synthesis.

Neurodegenerative dementia: Alzheimer’, Parkinson’

and Prion’s diseases

Neural cells are very complex morphologically. The large

plasma membrane surfaces of neurons are important for

neuronal trafficking, neuron–neuron communication and

signaling transduction. During aging and neurodegenera-

tion membrane dysregulation and dysfunction are often

found. These alterations in membrane microenvironment

occur very early in the CNS [282, 283]. Heightened oxi-

dative stress has a profound impact upon membrane lipid-

protein organization and signal transduction [284]. These
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changes might be at the basis of diseases such as Alzhei-

mer’s disease, Parkinson’s disease (PD), synucleinopathies,

prion diseases, and other dementias.

Lipid rafts have been shown to be involved in the reg-

ulation of APP processing and in Ab peptide formation

[285], and represent the principal sites within the mem-

brane where b-secretase and c-secretase generate the

pathological amyloid b peptide [286–290].

Other lipid raft components, such as the gangliosides

GM1 and GM2, have been associated with induction of Ab
transition from a a-helix-rich structure to a b-sheet-rich

conformation [291, 292]. Ganglioside binding with Ab
accelerates Ab fibril formation [293] which gradually causes

membrane raft disruptions and thereby has profound con-

sequences on signal transduction and neurotransmission.

Prion protein (PrPc) is a GPI-anchored protein [294] and

together with its pathological variant associates with lipid

rafts [295]. Moreover, the conversion of PrPc into PrPSc has

been shown to occur in these membrane domains [296].

Alpha-synuclein associates specifically with lipid rafts [297]

and abnormalities of lipid rafts in the frontal cortex occur

during the development of PD pathology [298]. Massive

modification of fatty acid content gives rise to more viscous

and liquid ordered rafts in PD brains than in the age-matched

control group [298]. Also, lipid rafts from AD brains exhibit

aberrant lipid profiles compared to healthy brains [299].

Similar lipid changes are also observed in epilepsy and

ischemia/stroke [300, 301]. Elevations of intracellular

ceramide levels, which may in turn be associated with

induction of apoptotic cell death, have been reported in

brain tissues and CSF of AD brain [302] together with

reduced SM [303] and altered ganglioside levels [304]. In

line with this, an increase of aCDase [305] and aSMase

activity [306] has been detected in the brain of AD patients.

The key enzyme in ceramide de novo synthesis, SPT, is

regulated by APP processing [307] suggesting that this

could be one of probably many mechanisms responsible for

the alterations in lipid metabolism at the plasma membrane.

Conclusions

Ceramide is an important signaling molecule involved in

the regulation of cell development, growth and apoptosis.

In healthy cells ceramide metabolism is finely tuned and

precisely coordinated and the level of ceramide generated

can dictate whether development is stimulated or whether

apoptosis is induced. Ceramide is beneficial for early

growth and development of neuronal cells [308, 309] and at

low levels it has trophic effects promoting cell survival and

division. Initial abnormal formation of ceramide can

potently induce more ceramide accumulation in a self-

sustaining way [200, 310] that results to be toxic and

supports pro-apoptotic actions in many cell types [311].

This induces drastic consequences leading to tissue damage

and organ failure [312]. The mechanisms by which cera-

mide induces these disparate effects is not known, but may

involve its effects in membrane structure and/or activation

of different downstream signaling pathways.

These apparently contradictory roles can be understood

only when we consider ceramide formation as a balanced

and vulnerable system. This is, however, a fine line to tread

and deviation in either direction can have drastic conse-

quences. Where ceramide is concerned, growth arrest or

apoptosis are only a slight tilt away.
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