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Abstract The terpenoids constitute the largest class of

natural products and many interesting products are exten-

sively applied in the industrial sector as flavors, fragrances,

spices and are also used in perfumery and cosmetics. Many

terpenoids have biological activities and also used for

medical purposes. In higher plants, the conventional ace-

tate-mevalonic acid pathway operates mainly in the cytosol

and mitochondria and synthesizes sterols, sesquiterpenes

and ubiquinones mainly. In the plastid, the non-mevalonic

acid pathway takes place and synthesizes hemi-, mono-,

sesqui-, and diterpenes along with carotenoids and phytol

tail of chlorophyll. In this review paper, recent develop-

ments in the biosynthesis of terpenoids, indepth description

of terpene synthases and their phylogenetic analysis, reg-

ulation of terpene biosynthesis as well as updates of terp-

enes which have entered in the clinical studies are reviewed

thoroughly.
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Introduction

Plants produce various types of secondary metabolites,

many of which have been subsequently exploited by

humans for their beneficial roles in a diverse array of

biological functions (Balandrin et al. 1985). Several ter-

penoids have their roles in plant defense against biotic and

abiotic stresses or they are treated as signal molecules to

attract the insects of pollination. Out of the investigated

terpenoids, many have pharmacological and biological

activities and are, therefore, interesting for medicine and

biotechnology. The first step of terpenoid biosynthesis is

generation of C5 unit like as isopentenyl diphosphate (IPP)

or dimethylallyl diphosphate (DMAPP). For this study, two

different separate pathways have been investigated that can

generate the C5 unit: the mevalonate and methylerythritol

phosphate (MEP) pathway. On the basis of C5 units, we can

classify the terpenoids as C5 (hemiterpenes), C10 (mono-

terpenes), C15 (sesquiterpenes), C20 (diterpenes), C25

(sesterpenes), C30 (triterpenes), C40 (tetraterpenes), [C40

(polyterpenes) (Ashour et al. 2010; Martin et al. 2003).

The terpene synthases are responsible for the synthesis

of terpenes; they can easily acquire new catalytic properties

by minor changes in the structures (Keeling et al. 2008).

The synthesis of monoterpenes is initiated by dephospho-

rylation and ionization of geranyl diphosphate to geranyl

carbocation (Huang et al. 2010) and the synthesis of ses-

quiterpene starts with the ionization of farnesyl diphos-

phate to farnesyl cation, which can also be isomerized to

nerolidyl cation (Degenhardt et al. 2009). Diterpenes are

synthesized by diterpene synthases in two different path-

ways: via the ionization of diphosphate, as catalyzed by

class I enzyme and the other is via the substrate protonation

at the 14, 15-double bond of geranyl geranyl diphosphate;

reaction is catalyzed by class II enzymes (Tholl 2006). The

nonsteroidal triterpenoids are produced by conversion of

squalene into oxidosqualene and cyclization via formation

of dammarenyl cation; reaction is catalyzed by oxido-

squalene cyclases (Phillips et al. 2006). Many terpenoids

also possess the pharmaceutical properties and currently
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are being used in clinical practices. Among these terpe-

noids, taxol (diterpene) of Taxus buccata and artemisinin

(sesquiterpene lactone) from Artemisia annua are well

known antineoplastic and antimalarial agents (Croteau

et al. 2006; Pollier et al. 2011).

This review deals with biosynthesis of terpenoids,

phylogeny of terpene synthases, regulation of terpene

biosynthesis, and also about the studies of the clinical trials

of terpenoids. This review highlights the current approa-

ches of the phylogenetic analysis of terpene synthases and

regulation of terpenoids.

Biosynthesis of terpenoids

Terpenoids are important for plant survival and also possess

biological and pharmacological properties that are beneficial

to humans. In plants, isopentenyl diphosphate (IPP) and

dimethylallyl diphosphate (DMAPP) can be synthesized via

two compartmentalized pathways. The mevalonic acid

pathway of terpenoid biosynthesis operates in cytosol, the

endoplasmic reticulum and peroxisomes (Carrie et al. 2007;

Hemmerlin et al. 2003; Dudareva et al. 2006; Leivar et al.

2005; Merret et al. 2007; Sapir-Mir et al. 2008; Simkin et al.

2011; Lange and Ahkami 2013) (Fig. 1). The condensation

of acetyl CoA three units leads to the synthesis of 3-hydroxy-

3-methylglutaryl CoA, which later on produces mevalonic

acid. The mevalonic acid converted to isopentenyl diphos-

phate through the process of the phosphorylation and

decarboxylation. 3-hydroxy-3-methylglutaryl CoA reduc-

tase catalyzes the reduction of 3-hydroxy-3-methylglutaryl

CoA to mevalonic acid (Luskey and Stevens 1985; Basson

et al. 1988; Igual et al. 1992; Rodwell et al. 2000). In

Arabidopsis thaliana, mevalonate-5-diphosphate is pro-

duced from mevalonic acid by the phosphorylation and the

whole reaction is catalyzed by mevalonate kinase and

Fig. 1 Schematic overview of monoterpenoid, sesquiterpenoid, dit-

erpenoid and triterpenoid biosynthetic pathways. AACT acetoacetyl-

CoA thiolase, AcAc-CoA acetoacetyl-CoA, HMGS HMG-CoA syn-

thase, HMG-CoA 3-hydroxy-3-methylglutaryl, HMGR HMG-CoA-

reductase, IPP isopentenyl diphosphate, DMAPP dimethylallyl

diphosphate, FPP farnesyl pyrophosphate, ADS amorpha-4,11-diene

synthase, CYT450 cytochrome P450 hydroxylase, GlyAld-3P glycer-

aldehyde-3-phosphate, DXP deoxyxylulose-5-phosphate, DXS DXP

synthase, MEP methylerythritol-4-phosphate, DXR DXP reducto-

isomerase, CDP-OME 4-(cytidine-50-diphospho)-2-C-methyl-D-eryth-

ritol, MCT 2-C-methyl-D-erythritol-4-phosphate-cytidylyl transferase,

CDP-ME2P 4-(cytidine-50-diphospho)-2-C-methyl-D-erythritol phos-

phate, CMK CDP-ME Kinase, ME2, 4cPP 2-C-methyl-D-erythritol,

2,4-cyclodiphosphate, MDS 2-C-methyl-D-erythritol-2,4-cyclodiphos-

phate synthase, HMBPP (E)-4-hydroxy-3-methylbut-2-enyl diphos-

phate, HDS (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase,

GPP geranyl diphosphate, LS limonene synthase, NPP neryl diphos-

phate, SOLPN a-phellandrene synthase, FDS farnesyl diphosphate

synthase. Similarly chemical structures of (-)-methanol, a-phelland-

rene; taxol, artemisinin and cucurbitacin C are shown as represen-

tative examples of terpenoids
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phosphomevalonate kinase (Tsay and Robinson 1991; Lluch

et al. 2000). Later on, the mevalonate-5-diphosphate decar-

boxylase catalyzes the conversion of mevalonate-5-diphos-

phate to isopentenyl diphosphate, which is the end product of

mevalonic acid pathway of terpenoid biosynthesis (Dhe-

Paganon et al. 1994) (Fig. 1).

Another part of terpenoid biosynthetic pathway starts in

plastid by the condensation of pyruvic acid and glycer-

aldehydes-3-phosphate, which leads to the synthesis of

1-deoxy-D-xylulose 5-phosphate. The reaction is catalyzed

by the enzyme as 1-deoxy-D-xylulose 5-phosphate synthase

(Sprenger et al. 1997). The 1-deoxy-D-xylulose 5-phos-

phate reduced to 2-C-methyl-D-erythritol 4-phosphate by

1-deoxy-D-xylulose 5-phosphate reductoisomerase (Ta-

kahashi et al. 1998). The conjugation of 2-C-methyl-D-

erythritol 4-phosphate and 4-cytidine 5-phosphate leads to

the formation of 4-cytidine 5-phospho-2-C-methyl eryth-

ritol and the reaction catalyzed by the enzyme 2-C-methyl-

D-erythritol 4-phosphate cytidyltransferase. The 4-cytidine

5-phospho-2C-methyl erythritol converted to 2-C-methyl

erythritol 2,4-cyclodiphosphate by the enzyme 2-C-methyl

erythritol 2,4-cyclodiphosphate synthase (Rohdich et al.

2000; Steinbacher et al. 2003; Herz et al. 2000; Calisto

et al. 2007) (Fig. 1). All the enzymes of the 2C-methyl-D-

erythritol-4-phosphate pathway are localized in plastids

(Hseih et al. 2008; Surie et al. 2000). In the 1-deoxy-D-

xylulose 5-phosphate pathway, the synthesis of hydrox-

ymethylbutenyl 4-diphosphate took place from 2-C-methyl

erythritol 2,4-cyclodiphosphate and the reaction was cata-

lyzed by hydroxymethylbutenyl 4-diphosphate synthase.

The hydroxymethylbutenyl 4-diphosphate directly con-

verted into the isopentenyl diphosphate and dimethylallyl

diphosphate mixture by the enzyme isopentenyl diphos-

phate and dimethylallyl diphosphate synthase (Baker et al.

1992; Cunningham et al. 2000).

In the steps of downstream process, mevalonate con-

verted into IPP, which involves phosphorylations and

decarboxylation events. The carried out reactions catalyzed

by the following enzymes: mevalonate kinase, phospho-

mevalonate kinase and mevalonate diphosphate decarbox-

ylase. Although the enzymes involved in these steps are

thoroughly studied in yeast and various animal systems,

very little information was reported in terms of their bio-

chemical characterization in plants (Gershenzon and Kre-

ish 1999). Recently, a cis-prenyl transferase, neryl

phosphate synthase, was reported to provide precursor for

monoterpene biosynthesis in several species of Solanum

(Schilmiller et al. 2009; Lange and Ahkami 2013). A

condensation of one molecule of DMAPP with two mole-

cules of IPP generates farnesyl diphosphate (C15), the

direct precursor of most sesquiterpenes, which is catalyzed

by farnesyl diphosphate synthase. Plant genomes appear to

encode various farnesyl diphosphate synthase isoforms that

localize to the cytosol, plastids, mitochondria or peroxi-

somes (Cunillera et al. 1997; Thabet et al. 2011). In tomato,

a cis-prenyl transferase, farnesyl diphosphate synthase is

localized to plastids of the glandular trichomes, where it is

involved in the biosynthesis of sesquiterpene volatiles

(Salland et al. 2009). Diterpenes are formed from geranyl

geranyl diphosphate which itself is synthesized by the

catalysis of geranyl geranyl diphosphate synthase from

DMAPP and three molecules of IPP. Isoforms of this

enzyme have been reported to occur in plastids, the

endoplasmic reticulum and mitochondria (Thabet et al.

2012; Sitthithaworn et al. 2001; Okada et al. 2000;

Cheniclet et al. 1992). Terpene synthases often catalyze the

formation of multiple products from a prenyl diphosphate

substrate, resulting from a catalytic mechanism that

involves highly reactive carbocation intermediates (De-

genhardt et al. 2009). In general, monoterpene synthases

are localized on plastids, whereas sesquiterpene synthases

are found in the cytosol (Chen et al. 2011; Aharoni et al.

2003). A mitochondrial localization was determined for a

terpene synthase in tomato (Solanum lycopersicum), but

the in vivo substrate is currently unknown (Falara et al.

2011). The terpenoid skeletons are further functionized

through redox, conjugation and other related reactions

(Fig. 1).

The class of triterpenes includes sterols and triterpe-

noids, which can be synthesized as saponins and sapoge-

nins sufficient amount in plants (Sparge et al. 2004). The

linear triterpene squalene is derived from the reductive

coupling of the two molecules of farnesyl pyrophosphate

(FPP) by squalene synthase. Squalene is later on oxidized

biosynthetically by the other enzyme squalene epoxidase to

generate 2,3-oxidosqualene. 2,3-oxidosqualene converted

to triterpene alcohols or aldehydes by oxidosqualene cyc-

lases (Phillips et al. 2006; Jenner et al. 2005; Haralampidis

et al. 2002). In plants, triterpenoid biosynthetic diversity

has been developed and their diverse genomes encode

multiple oxidosqualene cyclase enzymes to form these

triterpene skeletons (Fig. 2). The level at which the struc-

tural diversity of triterpenes is generated, depends on the

cyclization of 2,3-oxidosqualene by different oxidosqua-

lene cyclases such as lupeol synthase (LS) and a/b-amyrin

synthase (Mangus et al. 2006; Sawai and Saito 2011). All

triterpene synthases appear to have diverged from cyclo-

artenol synthase gene (Zhang et al. 2003), but an inde-

pendent origin for b-AS in dicots and monocots has also

been reported (Phillips et al. 2003; Moses et al. 2013).

The ursolic acid, oleanolic acid and betulinic acid are

likely to be derived from a-amyrin, b-amyrin and lupeol,

respectively, followed by successive oxidation (Augustin

et al. 2011) at the C28 position. It has been shown that the

triterpene skeletons (a-amyrin, b-amyrin and lupeol) are

cyclized from 2,3-oxidosqualene, a common precursor of
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phytosterols and triterpenoids (Abe et al. 1993). Oxido-

squalene cyclases yielded one specific product, such as

lupeol synthase (Shibuya et al. 1999; Guhling et al. 2006;

Moses et al. 2013), b-amyrin synthase (Kushiro et al. 1998;

Kirby et al. 2008; Shibuya et al. 2009) and a-amyrin

synthase (Muffler et al. 2011), cycloartenol synthase

(Hayashi et al. 2000) and cucurbitadienol synthase (Shi-

buya 2004). Following the formation of the carbon skele-

tons, the triterpene alcohols are modified by various

cytochrome P450s, dehydrogenases, reductases and other

Fig. 2 Schematic overview of triterpenoid biosynthesis. Farnesyl

diphosphate synthase (FPS) isomerizes isopentenyl diphosphate and

dimethylallyl diphosphate (DMAPP) to farnesyl diphosphate, while

squalene synthase converts to squalene. Squalene epoxide oxidizes

the squalene to 2,3-oxidosqualene. Oxidosqualene cyclase (OSC)

catalyzes 2,3-oxidosqualene through cationic intermediates to one or

more cyclic triterpene skeletons. The other enzymes involved in the

biosynthesis include a/b amyrin synthase (a/b AS) which can also

form the lupenyl cation but further ring expansion and rearrangements

are required before the deprotonation to a/b amyrin, the precursors of

sapogenins. a-Amyrin oxidase involved in biosynthesis of ursolic acid

and oleanolic acid
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modification enzymes, while some triterpenoids are syn-

thesized in all plant cells. Laticifers are elongated epithelial

cells that produce chemically complex latex, which can

consist of a polyterpenoids such as natural rubber (Beilen

and Poirier 2007). Trichomes which are glandular in nat-

ure, are generally the known as storage organs of terpe-

noids and/ or phenolic compounds (Lange and Turner

2013).

The synthesis of isopentenyl diphosphate and dimeth-

ylallyl diphosphate, both are intermediates of terpenoid

biosynthesis, is compartmentalized. The mevalonic acid

pathway operates in cytosol, which is responsible for the

formation of sesquiterpenes and sterols; 1-deoxy-D-xylu-

lose 5-phosphate (DXP/MEP) pathway operates in the

plastids, involved in the synthesis of monoterpenes, diter-

penes and some sesquiterpenes as well as plastoquinones

(Laule et al. 2003). In plants, mevalonic acid pathway’s

enzyme localization is also fragmented. The 3-hydroxy-3-

methylglutaryl CoA reductase and squalene synthase are

localized in the endoplasmic reticulum (Leivar et al. 2005;

Sapir-Mir et al. 2008; Busquets et al. 2008) while the

acetoacetyl CoA is also important enzyme of mevalonic

acid pathway, localized in peroxisomes (Reumann et al.

2007). In contrast, the DXP pathway enzymes are localized

in plastids of cyanobacteria (Ginger et al. 2010). However,

after constant observations of certain uncertainties, it has

been widely accepted that initial reactions of DXP pathway

are catalyzed in the cytosol while remaining reactions

operated in the plastid. In red algae and the Cyanophora

paradoxa, both mevalonic acid and DXP pathway run

concurrently (Grauvogel and Peterson 2007). However, it

has been proved that both the pathways are not separated

spatially. The taxol (sesquiterpenes) is synthesized by the

both mevalonic and DXP pathways (Adam and Zapp 1998;

Wang et al. 2003). The unidirectional proton symport

system of export of terpenoid intermediates and their

involvement between cytosol and plastid pathway have

been proved by the Ca2? gated channel (Bick and Lange

2003). Laule et al. (2003) have suggested in their experi-

ment that some limiting plastidial membrane transporters

must be operated in the exchange of terpenoid intermedi-

ate’s exchange in between cytosol and plastid (Liao et al.

2006).

Defense responses of terpenoids in plants

Plant kingdom has direct and indirect defense responses

when they come in contact of microbial pathogens. The

direct mode of defense mechanism includes physical

structures like as trichomes, thorns as well as accumulation

of phytochemicals that have antibiotic activities. The

compounds such as phytoalexins are low-molecular-weight

compounds that are produced as part of plant defense

mechanisms. In few plant species the diterpenes and ses-

quiterpenes act as phytoalexins, e.g., 14 diterpene phyto-

alexins have been investigated from Oryza sativa. These

phytoalexins can be grouped into four types—monilactones

A and B (Hwang and Sung 1989), oryzalexins A–F (Peters

2006) and oryzalexin S (Tamongani and Mitani 1993).

Polycyclic diterpenoids are synthesized from geranyl ger-

anyl diphosphate via the intermediate hydrocarbon pre-

cursors (e.g., 9-b-pimara-7, 15-diene, stemar-13-ene, ent-

sandaracopimaradiene and ent-cassa-12, 15-diene). All

these natural products are accumulated in leaves in

response to inoculation with the pathogenic blast fungus,

Magnaporthe grisea, or ultraviolet irradiation and exhibit

antimicrobial properties (Prisic et al. 2004).

Indirect mode of defenses indicates that the plants have

characteristics to defend against herbivores indirectly by

enhancing the effectiveness of natural enemies of the her-

bivores. One of the most amazing examples of the plant

indirect defense is the release of the blend of specific

volatiles, which attract the carnivores of herbivores, after

herbivore attacking. More attention has been paid in case

of corn, lima bean, poplar and cotton that are well studied

with genetics, biochemical, physiological and ecological

approaches (Rodriguez-Saona et al. 2003; Arimura et al.

2004a; Mithofer et al. 2005; Schnee et al. 2006). In an

olfactometer assay, the transgenic Arabidopsis plants used

as odor sources, females of the parasitoid Cotesia mar-

giniventris learned to exploit the TPS10 sesquiterpenes to

locate their lepidopteran host (Schnee et al. 2006). When a

strawberry nerolidol synthase gene was expressed in

Arabidopsis transgenic plants emitted two new terpenoids

(3,S)-(E)-neridol and its derivative (E)-4,8-dimethyl-1,3-7-

nonatriene [(E)-DMNT] and attracted more carnivorous

predatory mites (Kappers et al. 2005). The capacity to

produce deterrents to insects from plant-derived terpenoids

is typical of some Chrysolina species. Because feeding of

herbivores alters the aromatic profile of essential oil-pro-

ducing plants like Mentha aquatica, the issue is both

economically and ecologically relevant (Burse et al. 2009;

Atsbaha Zebelo et al. 2011).

Airborne terpenoids are also critical components of

plant defense responses to abiotic and biotic stresses

(Unsicker et al. 2009; Vickers et al. 2009). From agro-

nomic perspective, crop losses due to insect infestation are

a significant issue (El-Wakeil et al. 2010). Insecticide

applications are most common and effective strategy for

control of insects, but some of the agrochemicals have

undesirable side effects on useful insects and can pose

long-term risks to the environment (Dedryver et al. 2010;

Zulak and Bohlmann 2010).

When patchoulol synthase (PTS), a sesquiterpene syn-

thase from Pogostemon cabli L., was targeted to the
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cytosol in transgenic tobacco (Nicotiana tabacum L. cv.

Xanthi), only small amounts of the expected product,

patchoulol, were detected. When the same gene was

expressed coordinately with an additional copy of farnesyl

diphosphate synthase, the patchoulol accumulation in

transgenic tobacco also remained very low (Wu et al.

2006), while both gene products patchoulol synthase and

farnesyl diphosphate synthase were targeted to plastids, a

patchoulol accumulation was increased, which appeared to

be volatilized. It was also observed that volatile emitted

from these transgenic plants significantly deterred tobacco

hornworms and pine beetles from feeding on leaves (Wu

et al. 2006; Bohlmann 2012).

Plant terpene synthases

The investigations of terpene synthases have been an

interesting and active area of plant metabolic engineering

research and may genes have been isolated from various

plant species (gymnosperms and angiosperms), including

Picea abies (Martin et al. 2004), Taxus media (Wildung

and Croteau 1996), Arabidopsis thaliana (Chen et al. 2003;

Degenhardt et al. 2009), Cucumis sativus (Mercke et al.

2004), and Nicotiana attenuata (Facchini and Chappel

1992). The total numbers of terpene synthases reported

from Thapsia laciniata are 8 monoterpene and 5 sesqui-

terpene (Drew et al. 2013) which are slightly larger than

the number reported in Arabidopsis thaliana and Artemisia

annua (Tholl and Lee 2011). Several sesquiterpene syn-

thases have also been cloned and characterized from maize

(Kölner et al. 2004). In general, the lengths of monoterpene

synthases are between 600 and 650 amino acid residues

and are 50–70 amino acids are larger than sesquiterpene

synthases (Martin et al. 2004). Most diterpene synthases

are approximately 210 amino acids longer than monoter-

pene synthases because of an additional internal element

that is conserved in both sequence and position (Prisic et al.

2004). All the terpene synthases contain the aspartate-rich

DDxxD motif involved in the coordination of divalent

metal ions for substrate binding (Lesburg et al. 1997). The

terpene synthases are further sub-classified into four sub-

families—TPSa, TPSb, TPSd and TPSg. The TPSa family

consists of angiosperm terpene synthases (Bohlmann et al.

1998; Dudareva et al. 2003), the TPSb family contains

angiosperm monoterpene synthases (Bohlmann et al. 1998;

Dudareva et al. 2003), the TPSb includes angiosperm

monoterpene synthases (Bohlmann et al. 1998; Dudareva

et al. 2003), TPSd of gymnosperm monoterpene synthases

(Bohlmann et al. 1998; Dudareva et al. 2003) and TPSg

Antirrhinum majus monoterpene synthases (Bohlmann

et al. 1998; Chen et al. 2003) also share common evolu-

tionary origin.

The triterpene synthases lead to synthesis of tricyclic,

tetracyclic and pentacyclic molecules in complex of con-

certed reaction steps catalyzed by single enzyme. The

sterol and triterpenoid biosynthetic pathways diverged at

some point, depending on the involvement of the type of

the oxidosqualene synthases. Cyclization of 2,3-oxido-

squalene in the chair–boat–chair conformation leads to

protosteryl cation intermediate, sterol precursor, via the

synthesis of cycloartenol or lanosterol in plants (Koles-

nikova et al. 2006; Suzuki et al. 2006), while in contrast to

2,3-oxidosqualene in the chair–chair–chair conformation is

cyclized into a dammarenyl carbocation intermediate,

which subsequently gives rise to diverse triterpenoid

skeletons after further re-arrangements. Many different

types of oxidosqualene synthases have been isolated from

various plant species including lanosterol synthase (Baker

et al. 1995; Sung et al. 1995), cycloartenol synthase (Bach

1995; Kawano et al. 2002), lupeol synthase (Hayashi et al.

2004; Segura et al. 2000) and b-amyrin synthase (Hayashi

et al. 2001; Iturbe-Ormaetxe et al. 2003). Besides these

synthases, some multifunctional triterpene synthase have

also been characterized from other different plant species

(Basyuni et al. 2006; Shibuya et al. 2007).

Phylogenetic analysis of terpenoid synthases

On the basis of the phylogeny, the gymnosperm terpene

synthases have been subdivided into three distinct clades—

TPS-d1 to TPS-d3. The TPS-d1 subclade are (-)-a/b-

pinene synthases, (-)-linalool synthases and (E)-a-farne-

sene synthases; in TPS-d2 clade are longifoline synthase

and in TPS-d3 clade are levopimaradiene/abietadiene

synthases and isopimaradiene synthase (Martin et al. 2004).

The functional identification of spruce terpene synthase

genes account for several terpenoid compounds of the

oleoresin and volatile emissions. Many terpene synthase

genes (TPSd) of terpenoid metabolism, especially ent-

copalyl diphosphate synthase and ent-kaurene synthase

gene appear to be expressed as single copy genes (Bohl-

mann et al. 1999). These primary metabolism terpene

synthase genes are basal to the specialized metabolism

genes and are the descendants of an ancestral plant diter-

pene synthase similar to the non-vascular plant as Physc-

omitrella patens (Hayashi et al. 2006; Keeling et al. 2010,

2011).

Sesquiterpene synthases sequence of roots of Cycus

species was investigated and it was found that gymno-

sperms form a distinct group from the angiosperms, which

displayed a pattern that seemed to be influenced by the

types of products of different plant species. By the phylo-

genetic analysis, it can be predicted that a-copaene syn-

thase gene is more homologous to germacrene B,
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germacrene D and valencene synthase gene (Hiltpold and

Turlings 2008; Wen et al. 2012). A sesquiterpene synthase

gene that produces a-copaene as its sole reaction product

has been reported. This enzyme is highly expressed in

potato and correspondence to the difference in tuber flavor

between two cultivars of potato (Ducreux et al. 2008; Zapta

and Fine 2013).

The terpenoid synthases of primary metabolism, (-)-

CDP synthase (Sun and Kamiya 1994; Ait-Ali et al. 1994;

Bensen et al. 1995) and kaurene synthase B (Yamaguchi

et al. 1996), are only distantly related to those of secondary

metabolism, including members of sub-families TPSa,

TPSb and TPSd. However, all plant terpene synthases share

a common evolutionary origin and it appears that the

bifurcation of terpenoid synthases of primary and second-

ary metabolism occurred before separation of angiosperms

and gymnosperms. Terpene synthases of secondary

metabolism constitute the most extensively studied TPS

sub-families including TPSa, TPSb, TPSd and the distant

and possibly ancient TPSf branch containing linalool syn-

thase (Bohlmann et al. 1998; Chen et al. 1996). Valencene

synthase (Sheron-Asa et al. 2003) and 5-epi aristolochene

synthase (Back and Chappel 1996) are related to one

another based on the biosynthesis of sesquiterpenes within

the eremophilene class of compounds. The Magnolia pos-

sesses a single intron positioned near the 50 region of the

gene, similar to the first intron in all other three classes of

terpene synthases from plants. The intron found in fungal

trichodiene synthase gene is inserted into the middle of the

trichodiene synthase gene and is not spatially oriented

similar to the insertion site of the first intron in any of the

plant genes including Mg25 (Trapp and Croteau 2001; Lee

and Chappel 2008). The dendrogram analysis was con-

ducted to determine the evolutionary relatedness of

chamomile terpene synthases to those of others Asteraceae.

MrTPS1, MrTPS2, MrTPS3 and MrTPS5 were found to

belong to the TPSa sub-family covering angiosperms,

whereas MrTPS4 fell into the TPSb sub-family covering

angiosperm monoterpene synthases (Irmisch et al. 2012).

The monoterpenes are formed in plastids and the nucleus-

encoded monoterpene synthases are targeted by N-terminal

transit peptides of approximately 40–70 amino acids which

reside upstream of the conserved RRx8W motif and are

cleaved during import from the nucleus. (Williams et al.

1998; Turner et al. 1999). In contrast to the multiple closely

related AtTPS of the TPSa and TPSb groups, only one

AtTPS member is found in each of three sub-families

TPSc, TPSe and TPSf (Arabidopsis thaliana terpene syn-

thases). The copalyl diphosphate synthases show between

45 and 55 % identity. The AtTPS GA2 enzyme (Yamag-

uchi et al. 1998) is a diterpene synthase of the TPSe sub-

family of kaurene synthases. Finally AtTPS04 has a TPSf

type primary structure reminiscent of that of linalool

synthase from Clarkia breweri (Dudareva et al. 1996). It

has been suggested that AtTPS04 is an orthologue of this

linalool synthase in Arabidopsis thaliana (Cseke et al.

1998; Aubourg et al. 2002). The comparison of Grtps

(grape fruit terpene synthases) amino acid sequence with

the sequences of other terpene synthase indicated that this

Grtps cDNA is truncated at the 50 terminus and that the

truncation represents 18 amino acid residues of the pre-

sumptive transit peptide region at the N-terminus of the

deduced protein. The peptide is found in both monoterpene

and diterpene synthases and supposedly facilitates the

import of these nuclear encoded gene products into plas-

tids, a process that involves cleavage of the preproteins to

the mature active enzymes (Mau and West 1994; Vogel

et al. 1996; Jia et al. 2005). The phylogenetic analysis of

large number of Vitis vinifera terpene synthase genes

resolved a bifurcation of TPSb and TPSg sub-families at a

juncture that was previously ambiguous and had misclas-

sified some TPSg genes as TPSb members. Later on it was

concluded that grapevine geraniol and linalool synthase

matches with basil geraniol and linalool synthase and

showed same proximity which indicates that these TPS

functions already existed have evolved from same ancestor

(Martin et al. 2010).

Azadirachta indica and Citrus belong to the order Ru-

tales and the phylogenetic studies reaffirmed their taxo-

nomic closeness. Additionally, phylogenetic studies

grouped A. indica with Melia species, one that is also

known to harbor bioactive compounds suggesting a com-

mon evolutionary process with regard to synthesis of these

compounds in Meliaceae. The repeat analysis showed low

repeat content in A. indica genome compared with other

sequenced angiosperms. This could have been due to pre-

sence of xenobiotic terpenoids specific to the plant, which

might have been a major impediment for horizontal gene

transfer (Richardson and Palmer 2007; Krishnan et al.

2012). The phylogenetic analysis of cycloartenol synthase,

lupeol synthases and the dicot b-amyrin synthase reported

them as multifunctional enzymes. These enzymes have

same specificity clusters by which authors have suggested a

molecular evolution mechanism for lupeol synthase and b-

amyrin synthase arising from a common ancestral cyclo-

artenol synthase (Shibuya et al. 1999; Zhang et al. 2003).

The increasing diversification of the cyclization reaction

sequence from the dammarenyl to the oleanyl cation via

the lupenyl cation is consistent with this evolutionary

scheme. MdOSC1, MdOSC2 and MdOSC3 are located

with in the group of enzymes that produce a dammarenyl

cation intermediate in Malus domestica. In MdOSC1 and

MdOSC3 cluster, lupeol synthases are more related to b-

amyrin synthases than to lupeol synthases (Basyuni et al.

2007; Guhling et al. 2006; Brendolise et al. 2011). This

new class of lupeol synthase includes BgLUS, RcLUS and
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multifunctional triterpene synthase KcMS and another

putative OSC (EtOSC—Euphorbia terucalli triterpene

synthase) for which no triterpene synthase activity has been

detected when it is expressed in yeast (Kajikawa et al.

2005).

The phylogenetic analysis using neighbor-joining

methods showed that SlTTS1 and SlTTS2 (Solanum lyco-

persicum) terpene synthases are more closely related to

each other than to any other oxidosqualene cyclases and

they together with the Panax ginseng b-amyrin synthases

(Kushiro et al. 1998) form the subclad within a group of

oxidosqualene cyclase enzyme that were all characterized

as b-amyrin synthases from different plant species. The

intron patterns and exon lengths of the two S1TTS1 genes

are very similar to those of the other oxidosqualene cyc-

lases, while S1TTS2 gene organization most closely

resembles OSC3 of Lotus japonicus (Sawai et al. 2006;

Wang et al. 2011). The close match in localization of

transcripts and metabolites makes it very likely that

S1TTS1 and S1TTS2 genes dedicated entirely making the

triterpenoids destined for the cuticular wax of the fruit

surface. This major biological function can be assigned to

the OSCs; the cuticular triterpenoids contribute signifi-

cantly to the chemical composition and to the ecophysio-

logical properties of the fruit cuticle (Vogg et al. 2004;

Isaacson et al. 2009). It should be noted that similar bio-

logical functions had previously been attributed to a few

other OSCs, for example, a glutinol synthase and a frie-

delin synthase from Kalanchoe daigremontiana (Wang

et al. 2010).

It has been reported that 13 Arabidopsis thaliana OSC

genes and the 11 triterpene synthase genes are grouped into

one functional group. Furthermore, 20 out of 36 Poaceae

OSC genes were also assigned either to the pentacyclic

triterpene synthase-like group based on the characterized

b-amyrin synthase from Avena species (Haralampidis et al.

2001; Qi et al. 2004) or to the rice isoarborinol synthase

group (Xue et al. 2012). In Arabidopsis thaliana, a tandem

cluster on chromosome 1 containing four homologous OSC

genes, At1g78950, At1g78955/CAMS1, At1g78960/LUP2

and At1g78970/LUP1, is likely to have arisen by three

tandem duplication events. Another tandem duplicate gene

pair At4g15340 and At4g15370, encoding arabidiol syn-

thase and baruol synthase, respectively (Xiang et al. 2006;

Lodeiro et al. 2007), is located on A. thaliana chromosome

4. Indeed, most triterpene synthase genes in the Poaceae

family appear to have arisen from CS genes by the D3 gene

duplication event, which caused the divergence of the 20

triterpene synthase genes (D3-2) from 12 CS genes and

other closely related genes form group D3-1. The D3

duplication event is highly likely to have been a tendem

duplication that occurred during the ancient Poaceae gen-

ome before the q whole genome duplication, which was

estimated to have occurred between 117 and 50 mya (Gaut

2002; Yu et al. 2005; Lescot et al. 2008; Jaio et al. 2011).

In pairwise comparison of all predicted Citrus terpene

synthases with all Arabidopsis AtTPS proteins, it was

found that the overall sequence identity varies widely from

18 to 91 %. Citrus terpene synthase EST contigs were long

enough to allow the complete encoded protein sequences to

be deduced (ranged from 547 to 617 amino acids), which

corresponds to the size of known monoterpene synthases,

sesquiterpene synthases and diterpene synthases of sec-

ondary metabolism (Bohlmann et al. 1998; Aubourg et al.

2002). Most terpene synthases encoded by class-III genes

contain variations of a conserved motif RR(x)8W, close to

the N-terminus (Dornelas and Mazzafera 2007).

2-Methyl-3-buten-2-ol (MBO-hemiterpene) is a five-

carbon alcohol produced and emitted by plant species of

pine in large quantities. The gene most closely related to

MBO synthase is a linalool synthase from Picea abies with

which MBO shares 82 % amino acid identity. Also closely

related to MBO synthase are farnesene synthase from P.

abies and P. taeda. These enzymes form a strongly sup-

ported clade of related enzymes producing MBO, linalool

and E-a-farnesene nested within what is otherwise a clade

dominated by enzymes producing cyclic monoterpene

(Gray et al. 2011). MBO synthase and isoprene synthase

comparison clearly demonstrate that hemiterpene synthase

evolved independently in gymnosperms and angiosperms.

The MBO synthase clusters with gymnosperm monoter-

pene synthase, isoprene clusters with angiosperm mono-

terpene synthases and these gene families diverged

between 250–290 million years ago (Martin et al. 2004).

Regulation of terpenoid biosynthesis

The role of light and temperature in modulating a range of

terpenoids and the corresponding transcripts has been

reported, but there is no universal behaviour and it varies

depending upon the type of metabolites as well as plant

species. The 3-hydroxy-3-methylglutaryl CoA reductase is

stimulated by light in Triticum aestivum (Aoyogi et al.

1993), pea (Wong et al. 1982) and potato (Korth et al.

2000), but down-regulated by light in Lithospermum ery-

throrhizon (Lange et al. 1998). The effects of light as

promoter on 3-hydroxy-3-methylglutaryl CoA reductase

activity has been documented and also the light-mediated

alteration in 3-hydroxy-3-methylglutaryl CoA reductase

transcripts (Learned and Connolly 1997; Kawoosa et al.

2010). Rodrı̀guez-Concepción (2006) suggested about the

light-dependent regulation of terpenoid biosynthesis during

the early stages of development in Arabidopsis thaliana.

As per their model, the seedlings which were grown in the

dark obtain lower level of precursors for the synthesis of
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sterols from the mevalonic acid pathway. Some of the

prenyl diphosphates of the mevalonic acid pathway might

be translocated to the plastid for the synthesis of carote-

noids and gibbrellins; while those seedlings were grown in

the light, the activity of mevalonic acid pathway increased

and the isoprenoid precursors are not required by the

plastid (Vranova et al. 2012). In Artemisia annua, the

discharging of b-pinene fluctuates as per the rhythm of day

as well as night and it is higher in the day light than night

(Lu et al. 2002). The all terpenoid compounds of Arabi-

dopsis thaliana flowers showed clear diurnal emission

patterns (Aharoni et al. 2003).

Jasmonate was reported to be general inducer of bio-

synthesis of plant secondary metabolite (Memelink et al.

2001; van der Fits and Memelink 2000). Jasmonate and its

derivative methyl jasmonate were shown to induce the

terpenoid indole biosynthesis in suspension cell cultured

with auxin and to enhance the terpenoid indole alkaloid

production when cells were cultured in an auxin-free

medium (Gantet et al. 1998). Genes involved in secolog-

anin biosynthesis (Crdxs, Crcpr) were upregulated by

methyl jasmonate as well as most of the known other genes

of terpenoid indole alkaloid biosynthesis pathway (Hedhili

et al. 2007; Siamaru et al. 2007; Zhao et al. 2004).

Downstream of the conserved jasmonate hormone per-

ception and initial signaling cascade, species-specific

transcriptional machineries exist that regulate the tran-

scriptional activity of specific biosynthetic genes (Pauwels

et al. 2009; Pauwels and Goosens 2011). A few transcrip-

tional factors regulated by the jasmonate hormone signal-

ing cascade that activate the transcription of

sesquiterpenoid biosynthetic genes have already been

reported (De-Geyter et al. 2012). The triterpenoid contents

in Ocimum basilicum was produced higher in quantity after

the treatment with methyl jasmonate rather than control

plants. The exogenous treatment of methyl jasmonate

affected the production of terpenoids by regulating the

terpene synthase genes (Li et al. 2007; Prins et al. 2010).

It is well known that the monoterpene synthase gene

SIMTS1 activity is induced by jasmonic acid (van Schie et al.

2007). The jasmonic acid has been shown to increase tri-

chome density on newly formed leaves of Arabidopsis and

tomato (Boughton et al. 2005; Traw and Bergelson 2003).

The production of acyl sugars on the leaf surface of Datura

wrightii plants increased without affecting trichome density

(Hare and Walling 2006). The expression levels of most of

the genes of the mevalonic acid pathway and monoterpene or

sesquiterpene synthesis follow the same profile during

development, suggesting coordinated regulation of terpe-

noid biosynthesis at the gene level. However, although

expression of these genes is relatively trichome specific, the

expression profiles do not alter metabolic accumulation

during development, suggesting that terpenoid synthesis is

not regulated at the transcript level in tomato trichomes but

rather involves other (post-transcriptional) regulatory

mechanisms. Similarly, only a loose correlation between

terpenoid pathway gene expression and enzyme activity has

been found in Ocimum basilicum terpenoid metabolism

(Iijima et al. 2004; Besser et al. 2008). Jasmonic acid is

essential for induction of defenses in glandular trichomes.

Production of many trichome metabolites is also regulated

tightly by transcriptional control, thereby allowing for tem-

porally regulated emission of plant volatiles (Dudareva et al.

2006; Glas et al. 2012).

Methyl jasmonate is a cyclopentanone ring bearing

lipophilic hormone synthesized in plants from octadeca-

noid pathway and they play role in development of

responses to biotic stress (Creelman and Mullet 1997). The

changes in accumulation of terpene synthase transcripts

were also observed in methyl jasmonate-treated Norway

spruce; this supports the view that the transcription of

terpene synthase genes also regulated by this hormone

(Fäldt et al. 2003). The accumulation of taxoid (diterpene

taxadiene) was enhanced by supplementation of methyl

jasmonate in cell cultures of Taxus (Ketchum et al. 1999;

Phillips et al. 2006). Traumatic ducts are specialized ana-

tomical structures for the accumulation of resin terpenes,

which are formed in Norway spruce and other conifer

plants. Like other resin ducts, traumatic ducts are lined

with epithelial cells thought to be the site of terpene bio-

synthesis. The development of traumatic ducts in xylem of

Norawy spruce, induced by the treatment of methyl jasm-

onate was similar in fashion, which caused by the attack of

fungal elicitation and mechanical wounding (Krokene et al.

2008; Herrera et al. 2005; Martin et al. 2002). The mor-

phological changes are accompanied by an increase in

monoterpene and diterpene synthase activity peaking at the

highest rate at 10–15 days after treatment of methyl

jasmonate (Martin et al. 2002). The significant increase in

the resin terpenoid quantity in bark and wood of Norway

spruce followed by methyl jasmonate treatment has also

been reported (Martin et al. 2004; Miller et al. 2005).

The level of mRNAs of squalene synthase and b-amyrin

synthase was upregulated by adding methyl jasmonate to

Glycyrrhiza glabra cell cultures and it was observed that the

level was higher 3 days after the treatment and lasted for

7 days. The mRNA levels of cycloartenol synthase and ox-

idosqualene cyclase, which are involved in the biosynthesis

of phytosterols, were relatively constant (Hayashi et al.

2003). Artemisia annua plants treated with methyl jasmonate

showed only slight change in the transcription levels of the

control plants. 3-hydroxy-3-methylglutaryl CoA reductase

gene expression decreased 1.5-fold at 24 h and then

increased threefold by 48 h (Mehjerdi et al. 2013).

When the zeatin and ethylene were added together to the

culture medium of Catharanthus roseus cell cultures, the
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mRNA level of mevalonic acid pathway genes coordi-

nately increased in suspension culture cells (Papon et al.

2005). In addition, the zeatin stimulates the bioconversion

of exogenic secologanin to the terpenoid indole alkaloid

ajmalicine, suggesting that cytokinin may also act on other

downstream enzymatic steps of the terpenoid indole alka-

loid biosynthesis pathway (Decendit et al. 1992). Similarly,

the ethylene treatment itself induces the formation of

traumatic ducts in Pseudotsuga menziesii and Sequoia-

dendron giganteum (Hudgins and Franceschi 2004) and

stimulates the accumulation of b-thujaplicin in C. lusita-

nica at low levels (Phillips et al. 2006).

Dudareva et al. (2003) reported that the biosynthesis and

emission of the monoterpenes (E)-b-ocimene and myrcene

in Antirrhinum majus flowers correlate with specific

expression patterns of the lobes of flower petals during

floral development, with the highest transcripts levels

detected at day four post anthesis. In Arabidopsis flowers,

monoterpene and sesquiterpene synthases are not expressed

in flower petals; instead their expression is limited to the

stigma, anthers and sepals (Tholl et al. 2005). Many

monoterpene and sesquiterpene synthase genes have been

reported from terpene accumulating cells and tissues such

as leaf glandular trichomes of Citrus and grapes (Picaud

et al. 2005; Lücker et al. 2004; Shimada et al. 2004; Kai

et al. 2006). Most of the terpene synthase genes belonging

to TPSa and TPSb sub-families reached the highest

expression in accordance with the peak of accumulation of

the respective compounds, while in TPSg sub-family, only

one gene for linalool synthase showed major transcript in

the ripening of berries. The geraniol synthase had a peak of

expression that started to increase and overcome the lin-

alool concentration (Matarese et al. 2013; Chen et al. 2011;

Falara et al. 2011).

Ginsenoside backbones are synthesized via the isoprenoid

pathways where squalene acts as precursor. The squalene is

synthesized by a series of several reactions with geranyl

diphosphate synthase, farnesyl pyrophosphate synthase and

squalene synthase through mevalonate pathway (Kuzuyama

2002) and subsequent reactions with squalene epoxidase

yielded 2,3-oxidosqualene (Fig. 3). The cyclization of 2,3-

oxidosqualene into dammarenediol and b-amyrin is cata-

lyzed by oxidosqualene cyclases including dammarenediol-

II synthase and b-amyrin synthase (Han et al. 2006, 2010;

Tansakul et al. 2006; Kim et al. 2010). Both glycyrrhizin and

soyasaponins share a common biosynthetic intermediate, b-

amyrin (Fig. 3), which is synthesized by b-amyrin synthase,

an oxidosqualene cyclase (OSCs). OSCs catalyze the cycli-

zation of 2,3-oxidosqualene, a common intermediate of both

triterpene and phytosterol biosynthesis (Abe et al. 1993;

Haralampidis et al. 2002). In Glycyrrhiza glabra three OSCs:

b-amyrin synthase, lupeol synthase and cycloartenol syn-

thase are situated at the branching step for biosynthesis of

oleanane-type triterpene saponins, lupane-type triterpene

(betulinic acid) and phytosterol, respectively (Fig. 4).

cDNAs of b-amyrin synthase (Hayashi et al. 2001) and cy-

cloartenol synthase (Hayashi et al. 2000) have already been

isolated from cultured cells of licorice (Kölner et al. 2004;

Hayashi et al. 2003).

Terpenoid biosynthesis occurs within specific tissues or

at specific stages of development in plants (Nagegowda

2010; Vranova et al. 2012). In many plant species those

have glandular trichomes, specialized structures for secre-

ted terpenoid natural products (Lange and Turner 2013).

The glycyrrhizin accumulates only in underground organs,

stolons and roots of licorice plants (Seki et al. 2008).

Avenacins, the bioactive saponins in Avena sativa accu-

mulate only in epidermis of roots, where they develop

resistance to plant pathogenic fungal organisms (Hara-

lampidis et al. 2001). The biosynthesis of avenacin genes

are co-regulated and exclusively expressed in the epidermis

of roots in which the avenacins are accumulated (Qi et al.

2006; Field and Osbourn 2008).

Sometimes the regulation of terpenoid biosynthesis is

induced by herbivore feeding, attack by pathogen or abiotic

stresses (Nagegowda 2010; Vranova et al. 2012). The

enhancement of concentration of terpenoids in response to

various abiotic stresses is often is mediated by an increase in

transcriptional activity of the specific terpenoid biosynthetic

genes (Tholl 2006; Nagegowda et al. 2004, 2010; Xi et al.

2012). This type of transcriptional response is controlled by

complex signaling cascade in which jasmonate hormone

play important role. The pathogen attack causes transcrip-

tional and metabolic changes in plant cell cultures of Medi-

cago sativa (Suzuki et al. 2005). The defence mechanism-

related synthesis of terpenoids has been studied by various

authors (Van Poecke et al. 2001; Rodriguez-Saona et al.

2003). The synthesis of several terpenoids in poplar is

induced and emitted from the Malacosoma disstria infested

leaves (Arimura et al. 2004a). Tetranychus urticae infests on

the Lotus japonicas and after this it induces the emission of

the (E)-b-ocimene and also accumulation of (E)-b-ocimene

synthase gene transcript (Arimura et al. 2004b).

In addition to the transcriptional, developmental and

spatiotemporal modulation of terpenoid biosynthetic genes,

the post-translational regulation mechanisms were also

reported in the biosynthesis of terpenoids. The HMGR

activity, the specific enzyme that catalyzes crucial regula-

tory steps of the mevalonic acid pathway, is controlled at

the protein level through the activity of protein phosphatase

A or by the E3 ubiquitin ligase SUD1 (Leivar et al. 2011;

Doblas et al. 2013). The role of jasmonic acid in the

induction of trichome-specific terpene synthases has been

well reported (van Schie et al. 2007). Upon perception of

pathogens or herbivores, signal transduction pathways are

activated, which lead to induced defense responses.
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Terpenoids under clinical trials

Terpenes are the largest group of natural bioactive com-

pounds including monoterpenes, sesquiterpenes, diter-

penes, hemiterpenes and triterpenes. Out of these natural

compounds, several terpenes are under studies of clinical

trials, which are as follows:

D-Limonene

Monoterpenes such as D-limonene and peryl alcohol pre-

vent mammary, live and other types of cancers. The

monoterpenes have several cellular and molecular activi-

ties that could potentially underlie their positive therapeutic

index. The monoterpenes inhibit the isoprenylation of

small G proteins. Such inhibitions could alter signal

transduction and result in altered gene expression. When

mammary cancers were initiated in rats by either the direct

acting carcinogen N-methyl-N-nitrosourea or indirectly

acting carcinogen DMBA, they could be prevented from

developing if the carcinogen-exposed rats were fed D-lim-

onene (Elson et al. 1988; Yoon et al. 2010).

D-Limonene is considered to have fairy low toxicity. It

has been tested for carcinogenicity in mice and rats.

Although initial results showed D-limonene increased the

incidence of renal tubular tumours in male rats, female rats

and mice in both genders showed no evidence of any

tumor. Subsequent studies have determined how these

tumors occur and established that D-limonene doses pose

mutagenic or nephrotoxic risks to humans as well as human

prostate cancers. In humans, D-limonene has demonstrated

toxicity after single and repeated dosing for up to 1 year.

Being a solvent of cholesterol D-limonene has been used to

clinically to dissolve cholesterol containing gallstones

(Igimi et al. 1991; Rabi and Bishayee 2009a, b). Because of

its gastric acid neutralizing effect and its support of normal

peristalsis, it has been also used for relief of heartburn and

gastroesophageal reflux (Kodama et al. 1976; Sun 2007). In

Fig. 3 Biosynthetic pathways

of ginsenosides from squalene

in P. ginseng
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phase I clinical trial of orally administered D-limonene, 17

women and 15 men aged 35 to 78 with advanced metastatic

solid tumors received an average of three treatment cycles

of 21 days at dose ranging from 0.5 to 12.0 g/m2 body

surface area. D-Limonene was slowly absorbed, the maxi-

mal plasma concentration being attained at 1–6 h. The

mean peak plasma concentrations of D-limonene were

11–20 lmol/L and the predominant metabolites were pe-

rillic acid (21–71 lmol/L), dihydroperillic acid

(17–28 lmol/L) and isomers of perillic acid. After reach-

ing these peaks, the plasma concentration decreased

according to first-order kinetics (Vigushin et al. 1998;

Saldanha and Tollefsbol 2012). Carcinomas regress when

D-limonene is added to the diet either when the tumour is

small or still capable of spontaneously regressing. D-Lim-

onene appears to act in cytostatic fashion. It is predicted

that D-limonene inhibits the isoprenylation of small G

proteins (Hogg et al. 1992; Gould et al. 1994; Miller et al.

2011).

1,8-Cineole

In humans, 1,8-cineole inhibits sensory irritations caused

by octanol and methanol with sensitive volunteers. Both

Fig. 4 Biosynthetic pathways of glycyrrhizin in Glycyrrhiza glabra

140 3 Biotech (2015) 5:129–151

123



methanol and octanol are well-known chemicals causing

skin irritation. The result that 1,8-cineole, whose ability to

activate TRMP8 is lower than methanol, inhibited metha-

nol-evoked skin irritation clearly suggests that inhibitory

effects of 1,8-cineole are probably due to inhibition of

TRPA1, but not activation of TRMP8 (Takashi et al. 2012;

Bastos et al. 2011). 1,8-cineole not only reduces exacer-

bation rate but also provides clinical benefits as manifested

by improved airflow obstruction, reduced severity of

dyspnea and improvement of health status (Juergens et al.

1998, 2003). Therefore, it can provide a useful treatment

option for symptomatic patients with COPD in addition to

treatment according to the guidelines. The results have to

be seen in context with socio-economic aspects. As COPD

is an extremely costly disease and cause of major financial

and social burden concomitant therapy with 1,8-cineole can

be recommended. These finding correspond to the inter-

pretation of the efficacy study with carbocysteine but not

with acetylcysteine because this medication did not show a

significant reduction of exacerbations (Zhang et al. 2008;

Decramer et al. 2005; Worth et al. 2009).

Boswellic acid

More recently extracts of resin enriched in pentacyclic tri-

terpenoid known as boswellic acid have been employed as

anti-inflammatory drugs (Anthoni et al. 2006). Pilot clinical

studies do indeed suggest that boswellic acid promotes pain

control and dampens inflammation in osteoarthritis and

colitis and helps to control the brain oedema associated with

radiotherapy of cerebral tumours; anti-inflammatory effects

of rodent models have also been demonstrated (Gupta et al.

2001; Kimmatkar et al. 2003). Initial attempts to clarify the

molecular target of boswellic acid in inflammatory disorders

determined that keto-boswellic acid can inhibit 5-lipoxyge-

nase in low molecular concentrations (Bhushan et al. 2007).

This suggested that boswellic acid preparation might dam-

pen inflammation by blocking leukotriene synthesis (Joos

et al. 2006). In vitro studies reveals boswellic acid in a dose-

dependent manner blocks the synthesis of pro-inflammatory

5-lipoxygenase product including 5-hydroxyeicosatetrae-

noic acid and leukotriene B4, which cause bronchocon-

striction chemotaxis and increase vascular permeability

(Shao et al. 1998). Boswellic acid from Boswellia serrata

also have inhibitory and apoptotic effect against the cellular

growth of leukemia HL-60 cells (Huang et al. 2000). Clinical

trials have demonstrated promising benefits from boswellic

acids in rheumatoid arthritis, chronic colitis, ulcerative

colitis, Crohn’s disease and bronchial asthma in addition to

benefits for brain tumour patients. The effects of boswellic

acid on central signaling pathways in human platelets and on

various platelet functions have been investigated. It also

caused a pronounced mobilization of Ca2? from internal

stores and induced the phosphorylation of p38 MAPK and

elicits functional platelet responses (Poeckel et al. 2005).

Boswellic acids have also been observed to inhibit human

leukotriene elastase which may be involved in pathogenesis

of emphysema. Human leukotriene elastase also stimulates

mucus secretion and thus may play a role in cystic fibrosis,

chronic bronchitis and acute respiratory distress syndrome

(Rall et al. 1996; Safayhi et al. 1997). However, the clinical

trials of gum-resin of Boswellia serrata have shown to

improve symptoms in patients with osteoarthritis and rheu-

matoid arthritis (Poeckel and Werz 2006; Poeckel et al.

2006).

Betulinic acid

Betulinic acid is a naturally occurring pentacyclic triter-

pene that exhibits a variety of biological activities includ-

ing potent antiviral and anticancer effects (Alakurtti et al.

2006; Hsu et al. 2012). Mitochondria from cells, which

were treated with betulinic acid, induced the cleavage of

both caspase-3 and caspase-8 in cytosolic extracts. Cleav-

age of caspase-3 and 8 was preceded by disturbance of

mitochondrial membrane potential and by generation of

reactive oxygen species. Activation of caspase cascade was

required for betulinic acid-triggered apoptosis. Interest-

ingly, neuroblastoma cells resistant to doxorubicin-medi-

ated apoptosis were still responsive to treatment with

betulinic acid (Fulda et al. 1998; Fulda 2008). This

revealed that betulinic acid inhibits the catalytic activity of

topoisomerase I (Choudhary et al. 2002). Furthermore,

betulinic acid exerts context dependent effects on cell

cycle, it also reduces the expression of p21 protein in

glioblastoma cells (Rieber and Strasberg Rieber 1998).

b-Sitosterol

It is used to prevent and relieve prostate symptoms and has

been tested for thousands of years in Asia and Mediterra-

nean where the incidence of prostate problems—including

prostate cancer—is considerably lower than that in the

United States and Canada (Wilt et al. 1999; Richelle et al.

2004). Taking b-sitosterol at the dose of 60–110 mg/day

significantly improve urinary symptoms. It increases the

maximum urinary flow and decreases the volume of the

urine left in the bladder. Like saw palmetto, b-sitosterol

does not affect prostate size (Awad et al. 2000). b-Sitos-

terol is also used to lower cholesterol. It is an ingredient in

the cholesterol-lowering margarine which is used to be

known as take control (Berges et al. 2000). Aging is the

main cause of enlarged prostate glands (Glynn et al. 1985).

Testosterone is converted into another more powerful male

hormone dihydrotestosterone in prostate cells. Dihydro-

testosterone is responsible for triggering the division of
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prostate cells so their numbers increase by cell division

process. Levels of dihydrotestosterone are known to be five

times higher in enlarged prostate glands in those of normal

sized prostate. If the conversion of testosterone to dihy-

drotestosterone is prevented, the BPH may not occur and

may even be reversed once it has developed. b-Sitosterol

works for enlarged prostate by inhibiting an enzyme called

5-a-reductase, blocking the conversion of testosterone into

dihydrotestosterone, thereby decreasing the amount of

dihydrotestosterone. Since, dihydrotestosterone is consid-

ered to be responsible for the enlargement of prostate, b-

sitosterol helps to support normal prostate size. b-Sitosterol

has been recommended by physicians for over 20 years as

natural supplement to promote prostate health (Bent and

Kane 2006). Based on the highly preliminary evidence, it

has been suggested that b-sitosterol may also help

strengthen the immune system (Pegel 1997). One study

suggests that b-sitosterol can help prevent the temporary

immune weakness that typically occurs during recovery

from endurance exercise and can lead to post-race infec-

tions (Bouic et al. 1999). A randomized controlled trial of

47 patients with pulmonary tuberculosis investigated

adjuvant b-sitosterol therapy vs placebo (Silveira e Sá et al.

2013). The b-sitosterol treatment group (average dose

60 mg/day) demonstrated increased weight gain, higher

lymphocyte and eosinophil count and a generally faster

clinical recovery (Donald et al. 1997).

Ursolic acid

Mice fed with ursolic acid diet for 8 weeks delayed for-

mation of prostate intraepithelial neoplasia. Similarly, mice

fed with ursolic acid for 6 weeks inhibited progression of

prostate intraepithelial neoplasia to adenocarcinoma as

determined by hematoxylin and eosin staining. With

respect to the molecular mechanism, it was observed that

ursolic acid down regulated the activation of various pro-

inflammatory mediators including NF-jB, TNF-a and IL-6

(Shanmugum et al. 2012).

Future prospects

The terpenoids are synthesized from two five-carbon

building blocks, which are known as isoprenoid units.

Based on the number of building blocks, terpenoids are

grouped into several classes, such as monoterpenes (e.g.

carvone, geraniol, D-limonene and peril alcohol), diter-

penes (e.g. retinol and retinoic acid), triterpenes (e.g. bet-

ulinic acid, lupeol, oleanolic acid and ursolic acid) and

tetraterpenes (e.g. a-carotene, b-carotene, lutein, and

lycopene) (Thoppil and Bishayee 2011; Rabi and Bishayee

2009a; Withers and Keasling 2007). Terpenoids have been

found to be useful for the treatment of various types of

diseases and disorders viz, antimicrobial, antifungal, anti-

parasitic, antiviral, antihyperglycemic, antihypoglycemic,

anti-inflammatory and immunomodulatory properties

(Wagner and Elmadfa 2003; Shah et al. 2009; Sultana and

Ata 2008).

The development of transgenic plants against biotic

stress like as insects has been a major successful scientific

approach, mirrored by practical success of a limited num-

ber of pest-resistant transgenic crops in various countries.

In some well-developed countries, this has been a result of

vocal opposition to plant transformation technology itself;

but in many examples, in both developed and developing

countries, it is more a case of great potential economic

benefits not being sufficient to make the introduction of

transformed varieties of crops commercially viable.

The development of zero-cannabinoid cannabis chem-

otype has provided crude drugs that will facilitate dis-

cernment of the pharmacological effects and contributions

of different fractions. Breeding work has already resulted

in chemotypes that produce 98 % of monoterpenes as

myrcene or 77 % as D-limonene. Through selective

breeding of high terpenoid and phytocannabinoid-specific

chemotype, has thus become rational target that may lead

to novel approaches in treatment of different types of dis-

eases and disorders.

The terpenes play important roles in plant interactions,

plant defenses and the other environmental stresses (Chen

et al. 2011). To better understand the physiological and

ecological roles of specific terpene synthase genes and

enzymes research in various areas is required. Roles of

specific terpenes or general roles of classes of terpene

synthases, regulation of terpene synthesis, phylogeny of

terpene synthases, must be examined thoroughly in plants

and ideally in the natural environments of the plants that

produce these terpenes. The terpene synthase gene’s

manipulation and their expression in model and non-model

plants will be critical at this end. Despite many discoveries

about the functions of terpene synthase genes, the ongoing

and future structural and biochemical investigations of

terpene synthases will continue to be field of exciting new

discoveries. At present, functional characterization and

regulation of terpene synthases have been completed only

for subsets of terpene synthase families, including Arabi-

dopsis, grapevine and spruce. Similar to other plant spe-

cies, the biochemical functions and phylogeny of various

number of terpene synthase proteins have already been

established and known; there are only few experimentally

determined three-dimensional structures of terpene syn-

thases of plant origin (Gennadios et al. 2009; Kampranis

et al. 2007). At the same time, large transcriptome

sequencing projects targeted at plants species that produce

interesting medicinally important metabolites will enhance
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the identification of comprehensive sets of terpene synthase

genes in a large variety of non-model systems. An

improved and updated knowledge on regulation of terpene

metabolism and phylogeny of terpene synthases will

facilitate the manipulation of terpene biosynthetic path-

ways for improvement of agronomic traits, biotransfor-

mation of medicinally important terpenes, floral scents

(Lücker et al. 2001), plant defense against pests and

pathogens (Schnee et al. 2006) and production of known

and novel phytocompounds (Bohlmann and Keeling 2008).
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