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Abstract

We present a parallel implementation for the nonlinear electromagnetic modelling using PVM environment. Theoretical
study shows that the computation can be highly parallelizable but the communication can be a handicap if we do not
overlap communication with computation especially when the machine communication parameters values are very high.
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1. Introduction

The validation of the electrotechnic systems by experimentation requires an important investment
associated with some sophisticated measurement devices. The modelling o�ers extended possibili-
ties for constructors and operators, it permits design optimization which leads to high performances
[2,9,12]. In this context, the numerical computation of spatial and temporal distribution of the mag-
netic �eld in the electrotechnic systems, is based on the resolution of the equation of magnetic vector
potential. The �nite elements method (FEM) [5] is one of the more used methods for approximating
this type of equation, it takes into account the saturation e�ects, the boundary conditions and also
allows the study of domains with complex geometrical shapes [1]. In order to solve real problems,
this method requires a large memory space and a prohibitive computation time. These two constraints
can be avoided by using parallelism concepts [7,10].
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In this work we study and present a parallel implementation of this method, taking into account
the saturation e�ects, on a distributed memory architecture composed of p processors. For the
linearization we have used successive approximations method. In Sections 2–4 we give a general
presentation of the model. In Section 5 we present the sequential algorithm and give the complexity of
the computation time. Sections 6 and 7 are devoted to the present parallel version of the algorithm
with the theoretical complexities of the computation and the communication times; after this we
present the experimental results obtained on a real parallel machine.

2. Magnetic vector potential formulation

2.1. Maxwell’s equations

Maxwell’s equations provide the mathematical basis for rigorous analysis of electromagnetic phe-
nomenon [5]:

curl(H) = J +
@D
@t

; (1)

curl(E) =− @B
@t

; (2)

div(B) = 0; (3)

div(D) = � (4)

with H is the magnetic �eld intensity (A=m), B the magnetic induction (T), E the electric �eld
intensity (V=m), D the electric induction (C=m2), J the current density (A=m2), and � the volumes
charge density (C=m3).

• Eqs. (1) and (2) express the coupling between the electric and magnetic sizes. Eq. (1) implies that
a variation in the time of the electric induction creates a variation of magnetic �eld. In the same
way, Eq. (2), called Faraday law, implies that a variation in the time of the magnetic induction
provokes a variation of electric �eld.

• Eqs. (3) and (4) represent the 
uxes conservation.
From Eqs. (1) and (4), we obtain the conservation of electric charge

div(J) +
@�
@t
= 0: (5)

2.2. General electrotechnic case

In the electrotechnic domains, the frequency of the studied phenomenon is such that the displace-
ment current (@D=@t) and (@�=@t) could be neglected. In this case Eqs. (1) and (5) become

curl(H) = J ; (6)

div(J) = 0: (7)
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The �elds H ; B; E and J satisfy additional relations which take into account material properties:

B = �H ; (8)

J = �E ; (10)

where � is the magnetic permeability (H=m), and � is the electric conductivity (
−1=m).
In this work, we assume that the conductivity is constant. Since we take into account the saturation

e�ects, the permeability will be nonlinear, �−1 = �(|B|), where � is the magnetic reluctivity.
Eq. (3) shows the existence of a magnetic vector potential P such that
B = curl(P): (11)

From this relation and Eq. (2), the electric �eld can be written as follows:

E =− @P
@t

− grad(V ); (12)

where V is the electric scalar potential. By using relations (8) and (10) and expressions (11) and
(12), Eq. (6) becomes

curl(� curl(P)) + �
@P
@t
=−� grad(V ): (13)

2.3. 2D electrotechnic case

In the remaining part of this work, we only consider the two-dimensional problems. The 2D
problems represent an invariance of the solution in one direction. They could be expressed in terms
of the vector potential where its direction is �xed and only the modulus is unknown.
With a current density of excitation following Oz direction: J0 = (0; 0; J0) = −� grad(V ), the

direction of the vector potential also follows the same axis, P = (0; 0; P), and Eq. (13) becomes

− div(� grad(P)) + �
@P
@t
= J0 in D; (14)

where D is the study global domain delimited by a border �. The boundary conditions are those of
Dirichlet (potential is �xed) or of Neumann (normal derivative of potential vanishes).

3. Discretization

3.1. Spatial discretization by FEM

In order to make a spatial discretization by FEM of Eq. (14), we use the weighted residual method
which consists in replacing (14) by an integral shape [2]:∫

D
�
[
−div(� grad(P)) + �

@P
@t

− J0

]
dD = 0; (15)

where � is an arbitrary function, called test function with �= 0 on the Dirichlet boundary.
By application of the Green formula to Eq. (15) and taking into account the boundary conditions,

we obtain∫
D
� grad(�)grad(P) dD +

∫
D
��

@P
@t
dD =

∫
D
�J0 dD: (16)
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Fig. 1. Structures of matrices [A] and [B].

For the FEM discretization we proceed as follows:

• We partition D into subdomains De.
• In (16), we replace the test functions � by a set of N independent functions �i; 16i6N , where
N is the number of nodes in the domain D and Ne is the number of nodes in each subdomain De.
• We replace P in every subdomain De, by a polynomial approximation:

P(x; y; t) =
Ne∑
j=1

 j(x; y)Pj(t);

where  i are the nodal approximation functions. The Galerkin method [5,11] leads to the following
matrix equation (after insertion of the boundary conditions):

[A]{P(t)}+ [B]d{P(t)}
dt

= {F(t)}; (17)

where {P(t)} is the unknown potential vector of size N . Matrices [A]; [B] and vector {F(t)} are
obtained after assembling the following elementary matrices and vectors:

[A]ei; j =
∫
De

�e grad( i)grad( j) dDe; (18)

[B]ei; j =
∫
De

�e i j dDe; (19)

{F(t)}e
i =

∫
De

 iJ e
0 (t) dDe; (20)

where [A] and [B] are sparse, symmetric and positive-de�nite matrices. These characteristics are
exploited for the storage scheme.
With triangular �nite elements, and using natural ordering of domain nodes, the structure of the

matrices [A] and [B] is given in Fig. 1.
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3.2. Temporal discretization

We note that Eq. (14) depends on the space and time. FEM is used to approximate the spatial
derivation and the temporal derivation is approximated by the �nite di�erence method. For this, we
retained the implicit Euler method where the convergence and the stability are independent from the
discretization step �t. Then Eq. (17) becomes(

[A] +
1
�t
[B]
)
{P(t +�t)}= 1

�t
[B]{P(t)}+ {F(t +�t)}: (21)

4. Saturation e�ects

In the nonlinear material, the magnetic reluctivity � is a nonlinear function of |B|. In order to
introduce this nonlinearity, the �rst magnetization curve is necessary and generally given by the
constructor for increasing magnetic induction and �elds. For the numerical modelling one must
eliminate a continuous expression. From the di�erent methods describing the curve �(|B|), we use
the approach of Hecht and Marrocco [8]:

�(|B|) = �0

(
�+ (c − �)

|B|2�
|B|2� + �

)
(22)

where �0=1=4�×10−17 is the magnetic reluctivity of air, �; c; � and � are positive constants depending
on the materials.
In this case, [A] depends on the magnetic induction, therefore on the potential vector. Then it is

necessary to use an iterative method. The two mainly used methods are the successive approximations
and the Newton–Raphson.

4.1. Successive approximations method

The successive approximations algorithm of resolution of nonlinear systems (21) consists, at every
instant t +�t, in:

1. Computation of vector {F(t +�t)} from (20).
2. Initialization: k = 0 and {P(t +�t)}0 = {P(t)}.
3. while err ¿ tol do (tol is a given precision).
3.1. Computational of �(|B|) from (22), in each subdomain.
3.2. Computation of the matrix [A] (18).
3.3. Computation of {P(t +�t)}k+1 from (21) by the Conjugate Gradient (CG) method.
3.4. Approximation error:

err =
‖{P(t +�t)}k+1 − {P(t +�t)}k‖

‖{P(t +�t)}k‖ :

4. End do.

This method converges only for “small” values of the densities J0. In the case where J0 is “large”
enough, we prefer to use the Newton–Raphson method.
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We note that from Eq. (11), we compute the magnetic induction B in each triangle, then from
Eq. (22) we obtain the reluctivity �, therefore � can be computed in terms of potential P in
Section 3.1.

4.2. Newton–Raphson method

The ideal of this method is: if x k is an approached solution of the equation g(x) = 0 then a new
approached solution x k+1 is given by the relation g′(x k)�x k+1 =−g(x k) with �x k+1 = x k+1 − x k .
In our case, we apply Newton–Raphson method to Eq. (20), and obtain(

[A]k + [NR]k +
1
�t
[B]
)
{�P}k+1

t+�t =−
(
[A]k +

1
�t
[B]
)
{�P}k

t+�t +
1
�t
[B]{P}t + {F}t+�t :

(23)

The terms of the matrix [NR] are given in every subdomain De by the following expression:

[NR]ei; j = 2
∫
De

@�(|B|)
@|B|2

Ne∑
n=1

grad( i)grad( n)Pn

Ne∑
m=1

grad( j)grad( m)Pm dDe: (24)

One notes that the matrices of system (23) remains band ones and symmetric positive de�nite. The
algorithm of the resolution of this system remains the same as the one presented in Section 4.1, with
the following modi�cations: at stage 3.2, we also compute the matrix [NR] (24) and at stage 3.3 we
solve the system (23) in order to calculate {P}k+1

t+�t . The convergence of this method is fast. When it
exists, the error decreases quadratically. The choice of the initial guess determines the convergence.

5. Sequential algorithm

In this work we have only implemented the successive approximations method which can be easily
adapted to the Newton–Raphson method. According to the algorithm of Section 4.1, at each step of
time we need to compute the vector {P} from relation (21) using the Conjugate Gradient method
since the matrix is sparse, symmetric and positive de�nite. Note that matrix [B] is computed one
time while matrix [A] is computed at each iteration of linearization.
Let Isa denote the number of iterations of the successive approximations and Icg the number of

iterations of the conjugate gradient method.
a. Computation of vector {F(t)} from relation (20) requires 7N 
ops.
b. Computation of �(|B|) from relation (22) requires 25N 
ops.
c. Computation of the second member of Eq. (21) requires 15N 
ops.
d. Computational of the matrix [A] from relation (18) requires 22N 
ops.
e. Computational of {P(t)} from (21) by the conjugate gradient (CG) algorithm requires 23N

ops in the initialization phase and 28N 
ops in each iteration, which means that it requires
(23 + 28Icg)N 
ops.

f. Approximation error requires 5N 
ops.



M. Azizi et al. / Journal of Computational and Applied Mathematics 115 (2000) 51–61 57

Fig. 2. Partitioning domain into strips.

We deduce that the execution time of the sequential successive approximations algorithm, at each
step of time, is estimated to

Tseq = (7N + (90N + 28N ∗ Icg) ∗ Isa) ∗ !;

where ! is the execution time for one 
op.

6. Parallel implementation

In this section we present a parallel implementation of the successive approximations on a parallel
distributed machine composed of p processors numbered by Pi; 06i6p − 1. The communication
of m data between two neighbor processors is modeled by �+m�, where � is the start-up time, � is
the time to transmit one data. The parallelization consists in partitioning the global domain D into
p strips each of size Nx by Ny=p, where Nx is the number of nodes in the x-axis, Ny is the number
of nodes in the y-axis.
At each processor Pi, for 06i6p− 1, we a�ect one strip as shown in Fig. 2.
The computation of {F} and [A] is highly parallelizable since it does not need any communication

between processors. In parallel, each processor computes one part of the matrix [A] and the vector
{F}. We deduce that the computation of [A] and {F} requires, respectively, 22N=p 
ops and 7N=p.
In the following, two processors are neighbors if the strips assigned to these processors are

neighbors, which means that each processor has two neighbors except the processors P0 and Pp−1.
For the computation of the reluctivity �(|B|) in each subdomain one needs communication between

neighbor strips since the calculation of the induction requires the values of the potential vector at
each node of the subdomain. We deduce that the computation time is estimated to be 25N=p 
ops
and the communication time is 2(� + Nx�).
The conjugate gradient method needs two inner products, one matrix-vector product and one vector

update in the initialization phase and at each step, three major operations: two inner products, one
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matrix-vector product and three vector updates of the form y = y + �x (x; y ∈ Rn; � ∈ R). For the
parallelization of each operation is done as follows:

• Inner product: The computation of the inner product is done in two steps. Each processor:
(1) Computes its local inner product.
(2) Exchanges the local inner product with the other processors in order to compute the global

inner product.
Note that the performance of (2) depends on the architecture of the parallel machine. We deduce

that the computation time is estimated to be 2N=p 
ops and the communication time is log2(p)(�+�)
for an hypercube.

• Matrix-vector product: Unlike the inner product where global communications are done, the
matrix-vector product needs only communication between neighbor processors. For 06i6p−2; Pi

sends Nx data to Pi+1 and for 16i6p−1; Pi sends Nx data to Pi−1. We estimate the computation
time to 18N=p 
ops and the communication time to 2(� + Nx�).

• Vector updates: The vector updates needs only local computation. The cost is 2N=p 
ops.
We deduce that, at each step of time: the computation time is estimated to be

Tcomp =
Tseq
p

;

and the communication time is estimated to be:

Tcom = ((3 + Icg)(� + Nx�) + 2 log2(p)(� + �)(Icg + 1))Isa:

When communication and computation do not overlap, the execution of the algorithm, at each step
of time, is Tpar = Tcomp + Tcom.

7. Experimental results

We have implemented this method on the distribution memory architecture TN310 of Telmat
composed of 32 Transputers under PVM environment with real double precision. Using PVM, the
estimated values for communication parameters are � = 0:002 s; � = 22 �s and for computation
!=0:25 �s. This shows that the communication for our system is very expensive. As a test example,
we have considered the electromagnetic relay (Fig. 3) [3], taking into account the saturation e�ects
and assuming that the current in the spool (electrical material) is constant. The system is placed in
a box of air with Dirichlet conditions. The geometrical structure is symmetric following the y-axis;
this leads to the treatment of only one half of the domain with Neumann condition on the symmetric
axis. Fig. 4 shows the equipotential lines obtained for this example.
In Table 1 we compare the execution times obtained with di�erent number p of processors and

di�erent number N of unknowns (Fig. 5).
As shown in Table 1, the use of p processors improves the execution time compared to the

sequential one but the ratio sequential time over the parallel one is very small compared to the
number of processors (we hope that this ratio will be equal to p).
In Table 2, we give the e�ciency (e�ciency =Tseq=(Tpar ∗p)) which measures the rate of the use

of p processors (see Fig. 6).
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Fig. 3. Example of electromagnetic relay.

Fig. 4. Equipotential lines.

Table 1
Execution time for di�erent number of processors and unknowns

Number of unknowns Number of processors

1 2 4 8 16

3290 10.16 06.15 04.78 04.55 05.54
4410 13.82 07.96 05.78 05.35 06.42
5530 19.77 12.04 08.27 07.89 10.12
6650 30.94 24.58 16.48 16.40 22.29
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Fig. 5. Time of execution.

Table 2
E�ciency for di�erent number of processors and unknowns

Number of unknowns Number of processors

2 4 8 16

3290 82.59 53.08 27.91 11.45
4410 86.76 59.77 32.26 13.44
5530 82.07 59.73 31.31 12.20
6650 62.93 46.91 23.57 08.67

These results show clearly the penalty due to the communication. Notes that the communication
time increases with the number of processors (factor log2(p) in Tcom) and also with the number of
unknowns (Isa and Icg increase with N ).

8. Conclusion and remarks

In this work we have presented a parallel version for the nonlinear electromagnetic systems.
The e�ective implementation are done on a parallel distributed system based on transputers. The
experimental results are not those desired since the communication parameter values of our system
are very big. In order to improve the global execution time we will use the techniques to overlap the
communication by the computation in the phases of the computation of the matrix-vector product and
the magnetic induction. On the other hand, we will use the preconditioning techniques to improve
the convergence of the CGM [4,6].
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Fig. 6. E�ciency.

References

[1] M. Azizi, R. El Hani, Elaboration d’un code de calcul bidimensionnel pour la mod�elisation des syst�emes
�electrotechniques complexes, Proceedings of the JNAEETSA, Marrakech, Morocco, October 1996, pp. 246–251.

[2] M. Azizi, R. El Hani, Les e�orts �electromagn�etiques des machines polydisco��des �a aimants altern�es, Proceedings of
the ISVANEM, B�ethune, France, May 1998, pp. 129–133.

[3] F. Boualem, Contribution �a la mod�elisation des syst�emes �electrotechniques �a l’aide des formulations en potentiels:
Application �a la machine asynchrone, Ph.D. Thesis �a l’UST de Lille, 1997.

[4] E.M. Daoudi, P. Manneback, Implementation of ICCG algorithm on distributed memory architecture, Iterative
Methods in Linear Algebra, North-Holland, Amsterdam, 1992, pp. 339–347.

[5] R. Dautray, J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 1, Springer,
New York, 1990.

[6] H.C. Elman, Ordering technics for the preconditioned conjugate gradient method on parallel computers, Computers
Physics Communications, Vol. 53, North-Holland, Amsterdam, 1989, pp. 253–269.

[7] I.T. Foster, Designing and Building Parallel Programs, Addison-Wesley, Reading, MA, 1995.
[8] F. Hecht, A. Marrocco, A �nite element simulation of an alternator connected to an nonlinear external circuit, IEEE

Trans. Magn. 26 (2) (1990) 964–967.
[9] T. Kawai, Role of computer simulation in scienti�c research and engineering development. Electromagnetic

Phenomena and Computational Techniques, Elsevier, Amsterdam, 1992, pp. 3–18.
[10] A. Kumar et al., Introduction to Parallel Computing: Design and Analysis of Algorithms, Benjamin=Cummings,

Menlo Park, CA, 1994.
[11] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston, 1996.
[12] S. Williamson, Induction motor modelling using �nite elements, RGE 8 (1994) 2–8.


