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Abstract

Inexact Newton method is one of the effective tools for solving systems of nonlinear equations. In each iteration step of the method,
a forcing term, which is used to control the accuracy when solving the Newton equations, is required. The choice of the forcing
terms is of great importance due to their strong influence on the behavior of the inexact Newton method, including its convergence,
efficiency, and even robustness. To improve the efficiency and robustness of the inexact Newton method, a new strategy to determine
the forcing terms is given in this paper. With the new forcing terms, the inexact Newton method is locally Q-superlinearly convergent.
Numerical results are presented to support the effectiveness of the new forcing terms.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In scientific and engineering computing areas, it is often needed to solve the large sparse systems of nonlinear
equations

F(x)= 0, (1)

where F : Rn→ Rn is a continuously differentiable nonlinear mapping.
Among all kinds of methods for solving the nonlinear equations (1), Newton method is one of the most elementary,

popular and important one [17]. One of the advantages of the method is its local quadratic convergence. However, its
computational cost is expensive, particularly when the size of the problem is very large, because in each iteration step,
the Newton equations

F(xk)+ F ′(xk)s = 0 (2)
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should be solved. Here xk is the current iterate, and F ′(xk) is the Jacobian matrix of F(x) at xk . The solution sN
k of the

Newton equations is the Newton step. Once the Newton step is obtained, then the next iterate is given by xk+1=xk+sN
k .

To reduce the computational cost of Newton method, Dembo, Eisenstat and Steihaug proposed inexact Newton
method [7], which is a generalization of Newton method and can be described concisely as follows.

Algorithm 1.1. IN (Inexact Newton Method [7])

1. Given x0 ∈ Rn.
2. For k = 0, 1, 2, . . . until {xk} convergence

2.1. Choose some �̄k ∈ [0, 1).
2.2. Inexactly solve the Newton equations (2) and obtain a step s̄k , such that

‖F(xk)+ F ′(xk)s̄k‖� �̄k‖F(xk)‖. (3)

2.3. Let xk+1 := xk + s̄k .

In the above algorithm, �̄k is the forcing term for the k-th iteration step, s̄k is the inexact Newton step and (3) is the
inexact Newton condition.

In each iteration step of the inexact Newton method, a real number �̄k should be chosen first, and then an inexact
Newton step s̄k is obtained by solving the Newton equations approximately with an efficient iteration solver for
systems of linear equations, such as the classical splitting methods or the modern Krylov subspace methods [20]. Since
F(xk) + F ′(xk)s̄k is both the residual of the Newton equations and the local linear model of F(x) at xk , the inexact
Newton condition (3) reflects essentially both the reduction in the norm of the local linear model and certain accuracy
in solving the Newton equations. Thus the role of forcing terms is to control the degree of accuracy when solving the
Newton equations. In particular, if �̄k = 0 for all k, then inexact Newton method will be reduced into Newton method.

Inexact Newton method has been used popularly in many areas, and now it is widely considered that various forms
of inexact Newton methods are among the most effective tools for solving systems of nonlinear equations [19]. In
particular, if the Krylov subspace iteration methods are used to compute an inexact Newton step, then it leads to a
kind of special inexact Newton method, named as Newton–Krylov subspace method, which is currently very popular
in many application areas [1–4,6,14].

Inexact Newton method, like Newton method, is locally convergent.

Theorem 1.1 (Dembo et al. [7, Theorem 2.3]). Assume that F : Rn → Rn is continuously differentiable, x∗ ∈ Rn

such that F(x∗) = 0 and F ′(x∗) is nonsingular. Let 0 < �max < t < 1 be the given constants. If the forcing terms {�̄k}
in inexact Newton method satisfy �̄k ��max < t < 1 for all k, then there exists � > 0, such that for any x0 ∈ N�(x

∗) ≡
{x : ‖x − x∗‖< �}, the sequence {xk} generated by inexact Newton method converges to x∗, and

‖xk+1 − x∗‖∗� t‖xk − x∗‖∗,
where ‖y‖∗ = ‖F ′(x∗)y‖.

By Theorem 1.1, if the forcing terms {�̄k} in inexact Newton method are uniformly strict less than 1, then the method
is locally convergent. About the convergence rate of inexact Newton method, we have the following result.

Theorem 1.2 (Dembo et al. [7, Corollary 3.5]). Assume that F : Rn → Rn is continuously differentiable, x∗ ∈ Rn

such that F(x∗) = 0 and F ′(x∗) is nonsingular. If the sequence {xk} generated by inexact Newton method converges
to x∗, then

(1) {xk} converges to x∗ superlinearly when �̄k → 0;
(2) {xk} converges to x∗ quadratically if �̄k = O(‖F(xk)‖) and F ′(x) is Lipschitz continuous at x∗.

Theorem 1.2 shows that the convergence rate of inexact Newton method is determined by the choice of the forcing
terms.
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When inexact Newton method is used in practical computations, it is necessary to give some way to determine the
forcing terms. The choice of the forcing terms is very important for inexact Newton method. It not only determines
the asymptotic speed of convergence to a solution of the nonlinear equations (1), but also affects the efficiency and
robustness of the algorithm. In fact, if xk is away from the solution set of the nonlinear equations and a very small
�̄k is used to control the accuracy for solving the Newton equations, then it is probable that the obtained step sk is so
bad that F(xk + sk) significantly disagrees with the local linear model F(xk)+F ′(xk)sk . Consequently, “oversolving”
phenomenon may occur. This means reducing the linear residual norm without achieving a commensurate reduction
in the nonlinear residual norm [11,18,22,23]. Reducing the linear residual norm is not our ultimate purpose; what we
really want is to reduce the nonlinear residual norm in each iteration step. “Oversolving” phenomenon introduces much
unnecessary computation, or even worse, the whole iteration may be broken down [22,23].

Usually, it is hard to choose a good sequence of forcing terms. In practical computations, many researchers have
proposed some concrete strategies. Here we list several representatives.

1. The choice �̄k = 10−4 of Cai et al. [5].
2. The choice �̄k =min{1/(k + 2), ‖F(xk)‖} of Dembo and Steihaug [8].
3. Eisenstat and Walker [11] proposed two strategies for choosing �̄k:

(a) given �̄0 ∈ [0, 1), choose

�̄k =
‖F(xk)− F(xk−1)− F ′(xk−1)sk−1‖

‖F(xk−1)‖ , k = 1, 2, . . . ,

or

�̄k =
?F(xk)‖ − ‖F(xk−1)+ F ′(xk−1)sk−1?

‖F(xk−1)‖ , k = 1, 2, . . . .

(b) given � ∈ (0, 1], � ∈ (1, 2], �̄0 ∈ [0, 1), choose

�̄k = �

( ‖F(xk)‖
‖F(xk−1)‖

)�

, k = 1, 2, . . . .

Among the above strategies for choosing forcing terms, the first one never uses any information of F(x), while all
the rest use some information about F(x).

At present, the two strategies given by Eisenstat and Walker are more popular and have been used widely. Note that
choice (a) reflects the agreement between F(x) and its local linear model at the previous step, while choice (b) reflects
the reduction rate of ‖F(x)‖ from xk−1 to xk . Under suitable conditions, the authors proved that if the initial iterate
x0 is sufficiently close to a solution x∗ of the equations, then the inexact Newton methods resulted from choice (a) or
(b) are well-defined, and the iterates {xk} converges to x∗. For choice (a), the convergence is Q-superlinear, two-step
Q-quadratic and of R-order (1 + √5)/2; for choice (b), the convergence is Q-order � whenever � < 1, or Q-order p
whenever �= 1, where p ∈ [1, �) is arbitrary. In addition, choice (a) and (b) are scale independent: they do not change
if F(x) is multiplied by a constant.

In practical computations, for the purpose of preventing the forcing terms from becoming too small too quickly, the
authors added some safeguards to choice (a) and (b), consequently the following more concrete strategies are obtained.

(a) Given �̄0 ∈ [0, 1), choose

�̄k =
⎧⎨
⎩

�k, �̄(1+√5)/2
k−1 �0.1,

max{�k, �̄(1+√5)/2
k−1 }, �̄(1+√5)/2

k−1 > 0.1,

where

�k = ‖F(xk)− F(xk−1)− F ′(xk−1)sk−1‖
‖F(xk−1)‖ , k = 1, 2, . . . , (4)
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or

�k = ?F(xk)‖ − ‖F(xk−1)+ F ′(xk−1)sk−1?
‖F(xk−1)‖ , k = 1, 2, . . . . (5)

(b) Given � ∈ (0, 1], � ∈ (1, 2], �̄0 ∈ [0, 1), choose

�̄k =
{�k, � (�̄k−1)

� �0.1,

max{�k, � (�̄k−1)
�}, � (�̄k−1)

� > 0.1,

where

�k = �

( ‖F(xk)‖
‖F(xk−1)‖

)�

, k = 1, 2, . . . .

The numerical experiments in [11] show that the above two choices can effectively overcome the “oversolving”
phenomenon, and thus improve the efficiency of inexact Newton method. Besides, choice (a) and choice (b) with
��0.9 and ��(1+√5)/2 have the best performances.

The choice of the forcing terms should be related to specific problems and the information of F(x) should be used
effectively. Note that the choices given by Eisenstat and Walker use some information of F(x), but choice (a) only
reflects the agreement between F(x) and its local linear model, while choice (b) only reflects the rate of reduction of
‖F(x)‖. Is it possible to give a choice that can reflect both of the two aspects?

We propose a new way of choosing forcing terms that can reflect not only the agreement between F(x) and its local
linear model, but also the rate of reduction of ‖F(x)‖ in some sense. In addition, like choices 3, our choice is also scale
independent. Numerical results show that the new choice is more effective than all the above strategies 1–3.

In Section 2, we present the new strategy for choosing forcing terms and analyze the local convergence of the
corresponding inexact Newton method. In Section 3, some numerical results are given to show the efficiency of our
strategy; and finally, we give a short conclusion in Section 4.

2. The new choice

Assume that xk is the current iterate, sk is a step from xk . The actual reduction Aredk(sk) and predicted reduction
Predk(sk) of F(x) at xk with step sk are defined, respectively, as

Aredk(sk)= ‖F(xk)‖ − ‖F(xk + sk)‖,
Predk(sk)= ‖F(xk)‖ − ‖F(xk)+ F ′(xk)sk‖.

Furthermore, let

rk = Aredk(sk)

Predk(sk)
.

In trust region method, rk is used to adjust the radii of the trust regions [9,15]. Here we use rk to adjust the forcing
term �̄k .

Assume that F(xk) �= 0. By inexact Newton condition (3), we know that Predk(sk)�(1−�̄k)‖F(xk)‖> 0. Therefore,
if rk ≈ 1, then the local linear model and nonlinear model will agree well on their scale, and at this time, ‖F(x)‖
usually will be reduced obviously; if rk nears 0 but rk > 0, then the local linear model and nonlinear model disagree and
‖F(x)‖ will be reduced very little; if rk < 0, then the local linear model and nonlinear model disagree and ‖F(x)‖ will
be enlarged; finally, if rk?1, then the local linear model and nonlinear model also disagree, but at this time, ‖F(x)‖
will be reduced greatly.

Usually, we hope that the local linear model and nonlinear model agree well, thus the case rk ≈ 1 is the best
one because in this situation, the linear model and nonlinear model agree at least on scale; besides, the case rk?1
is relatively acceptable because it leads to a great reduction point; however, the worst case is that rk nears or is less
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than 0, because at this point we cannot obtain anything useful. According to the above property of rk , we can choose
forcing terms by the following way:

�̄k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1− 2p1, rk−1 < p1,

�̄k−1, p1 �rk−1 < p2,

0.8�̄k−1, p2 �rk−1 < p3,

0.5�̄k−1, rk−1 �p3,

k = 1, 2, . . . , (6)

where 0 < p1 < p2 < p3 < 1 are prescribed at first, and p1 ∈ (0, 1
2 ). In addition, assume that �̄0 is given.

Our choice of forcing terms is to determine �̄k by the magnitude of rk−1. If rk−1 < p1, i.e., rk−1 is relatively small,
then it is possible that the property of F(x) at the iterate xk is not so good such that F(x) and its local linear model
cannot agree well. In this case, let �̄k = 1− 2p1 (p1 is small, and so 1− 2p1 is relatively large), and relax the accuracy
for solving the Newton equations. If rk−1 is relatively large (rk−1 �p2), then F(x) and its linear model agree well (the
case rk−1?1 is quite few in our experiments, so we omit this case), and ‖F(x)‖will be reduced obviously. In this case,
shrink �̄k properly so that the Newton equations can be solved more accurately. Otherwise (p1 �rk−1 < p2), �̄k is not
changed.

It should be noted that the current forcing term �̄k is determined by the previous value rk−1; while �̄k determines the
current value rk through solving the Newton equations approximately. Thus, the sequences {�̄k} and {rk} are interrelated.
In practical computations, there is no warranty that the current forcing term �̄k is always proper (that is, with this �̄k , the
local linear model and nonlinear model can agree relatively well.). In particular, something unexpected may happen:
in some sequent nonlinear iterations, if some relatively small �̄k is used, then the corresponding rk may be large; but
the actual values of �̄k are so large that rk < p1. In order to prevent the happening of such unexpected occasions, we
modify the new choice as follows:

�̄k ←− 0.5�̄k−1 whenever �̄k−2, �̄k−1 > 0.1 and rk−2, rk−1 < p1. (7)

In the modification above, the value �̄k+1 is set to be half of the previous forcing term only if, in the previous sequent
two steps, the forcing terms are larger than a threshold 0.1 and the ratios of actual reduction to predicted reduction are
less than p1.

Remark 2.1. The shrinking factors 0.8 and 0.5 in (6) and the threshold value 0.1 in (7) are arbitrary. But these values
are more effective in our experiments.

Remark 2.2. The new choice of {�̄k} can be refined further. For example, we may give much more pj and determine
�̄k in more different cases according to the magnitude of rk → rk−1.

To obtain the local convergence of the inexact Newton method with the new forcing terms, we need the following
lemmas.

Lemma 2.1 (Ortega and Rheinboldt [17, 2.3.3]). Assume that F : Rn → Rn is continuously differentiable and
x ∈ Rn. If F ′(x) is nonsingular, then for any ε > 0, there exists � > 0, such that F ′(y) is nonsingular and

‖F ′(y)−1 − F ′(x)−1‖< ε

whenever y ∈ N�(x).

Lemma 2.2 (Ortega and Rheinboldt [17, 3.2.10]). Assume that F : Rn→ Rn is continuously differentiable. Then for
any z ∈ Rn and ε > 0, there exists � > 0, such that

‖F(x)− F(y)− F ′(y)(x − y)‖< ε‖x − y‖
whenever x, y ∈ N�(z).

Now we can show that the inexact Newton method with our forcing terms is locally convergent.
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Theorem 2.1. Assume that F : Rn → Rn is continuously differentiable, x∗ ∈ Rn such that F(x∗) = 0 and F ′(x∗)
is nonsingular. Given �̄0 ∈ (0, 1), 0 < p1 < p2 < p3 < 1, and let p1 ∈ (0, 1

2 ). If x0 is sufficiently close to x∗, then the
sequence {xk} produced by the inexact Newton method with forcing terms (6) and (7) converges to x∗ Q-superlinearly.

Proof. Let �̂=max{�̄0, 1− 2p1} and �= ‖F ′(x∗)−1‖, then it is easy to see that �̂ ∈ (0, 1). By Lemmas 2.1 and 2.2,
there exists � > 0, such that F ′(x)−1 is invertible and the inequalities

‖F ′(x)−1‖< 2� (8)

and

‖F(x)− F(y)− F ′(y)(x − y)‖< (1− p3)(1− �̂)

2�(1+ �̂)
‖x − y‖ (9)

hold whenever x, y ∈ N�(x
∗).

By (6) and (7), it is obvious that

�̄k � �̂ < 1, k = 1, 2, . . . ,

thus by Theorem 1.1, the sequence {xk} converges to x∗. This shows that there exists a positive integer K, such that
xk ∈ N�(x

∗) whenever k > K . Therefore, for all k > K , by the inexact Newton condition and (8), we have

‖sk‖ = ‖F ′(xk)
−1[F ′(xk)sk + F(xk)− F(xk)]‖�2�(1+ �̂)‖F(xk)‖.

Consequently, for all k > K , the inexact Newton condition and (9) show that

rk = ‖F(xk)‖ − ‖F(xk + sk)‖
‖F(xk)‖ − ‖F(xk)+ F ′(xk)sk‖

� ‖F(xk)‖ − ‖F(xk + sk)− F(xk)− F ′(xk)sk‖ − ‖F(xk)+ F ′(xk)sk‖
‖F(xk)‖ − ‖F(xk)+ F ′(xk)sk‖

= 1− ‖F(xk + sk)− F(xk)− F ′(xk)sk‖
‖F(xk)‖ − ‖F(xk)+ F ′(xk)sk‖

�1−
(1− p3)(1− �̂)

2�(1+ �̂)
‖sk‖

(1− �̄k)‖F(xk)‖

�1− (1− p3) · 2�(1+ �̂)‖F(xk)‖
2�(1+ �̂)‖F(xk)‖

= p3.

Thus, (6) shows that �̄k → 0. So by Theorem 1.2, {xk} converges to x∗ Q-superlinearly. �

From the proof of the theorem, we know that rk > p3 for all sufficiently large k. Thus, by (6), the forcing terms are
shrank by half for all k large enough.

3. Numerical results

In this section, we present three numerical examples to show the efficiency of the new strategy to choose forcing
terms. We compare the new strategy with some old strategies on their numerical behavior.
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3.1. The algorithm

Since the initial guesses for inexact Newton method cannot always be guaranteed to be near a solution of the nonlinear
systems, we use an inexact Newton method globalized by backtracking strategy [10], which can be described as follows:

Algorithm 3.1. INB (Inexact Newton Backtracking Method [10])

1. Given x0 ∈ Rn, �max ∈ [0, 1), � ∈ (0, 1) and 0 < 	min < 	max < 1.
2. For k = 0, 1, 2, . . . until {xk} convergence

2.1. Choose some �̄k ∈ [0, �max].
2.2. Inexactly solve the Newton equations (2) and obtain a step s̄k , such that

‖F(xk)+ F ′(xk)s̄k‖� �̄k‖F(xk)‖.
2.3. Implement backtracking loop:
2.3.1 Let sk = s̄k , �k = �̄k .
2.3.2 While ‖F(xk + sk)‖> [1− �(1− �k)]‖F(xk)‖
• Choose 	 ∈ [	min, 	max].
• Update sk ←− 	sk and �k ←− 1− 	(1− �k).

2.4. Let xk+1 = xk + sk .

In each iteration step of the above algorithm, when an inexact Newton step s̄k at level �̄k is obtained, then the
backtracking loop along s̄k is implemented until the condition

‖F(xk + sk)‖�[1− �(1− �k)]‖F(xk)‖ (10)

is satisfied. (10) is called the sufficient decrease condition, and it is used to guarantee that ‖F(xk+1)‖ has a certain
decrease in each iteration step [2,10,11]. In theory, Lemma 5.1 in [10] guarantees that the backtracking loop will be
terminated in finite iterations. In practical computations, a positive integer usually is given in advance to control the
maximal backtracking loop number along s̄k [2,11,23].

Theorem 6.1 in [10] shows that if a sequence {xk} produced by Algorithm INB has a limit point x∗ such that F ′(x∗)
is invertible, then F(x∗)=0 and xk → x∗. Furthermore, in this case, �̄k and s̄k can be accepted for all sufficiently large
k; in particular, it follows that the ultimate convergence rate of {xk} is determined by the choice of the forcing terms
{�̄k}.

It should be noted that in Algorithm INB, each �̄k is required to be less than �max, so additional safeguard

�̄k ←− min{�̄k, �max}
is needed for the strategies of Eisenstat and Walker. As for our new strategy, since

�̄k � �̂ ≡ max{�̄0, 1− 2p1}
for all k (see the proof of Theorem 2.1), no safeguard is needed.

In our tests, GMRES method [21] without restarting is employed to produce an inexact Newton step s̄k . In addition,
in GMRES iterations, the starting vector s0

k = 0 and the number of maximal iteration steps is 40. This number is large
enough because in our test the GMRES iteration never reaches 40.

For any x, y ∈ Rn, the product F ′(x)y is approximately computed by the finite difference formula

F ′(x)y ≈ F(x + �y)− F(x)

�
, �= 10−7 ‖x‖

‖y‖ .

Thus Jacobian matrix is never formed. See [2,3,11].
In the while loop of Algorithm INB, each 	 is chosen by minimizing a quadratic polynomial p(	) on [	min, 	max],

where p(	) is obtained by interpolation such that p(0)=g(0), p′(0)=g′(0) and p(1)=g(1), with g(	)=‖F(xk+	sk)‖22.
See [2,11].
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The norm in our tests is Euclidean norm ‖ · ‖2 and the stopping criteria is that either the current iterate xk satisfies

max

{
1√
n
‖F(xk)‖, ‖F(xk)‖

‖F(x0)‖
}

�10−6, (11)

or the number of iteration steps has exceeded 300. Within each nonlinear iteration, the maximal backtracking number
along inexact Newton direction s̄k is limited by 20. In addition, a failure is declared if any of the following three
situations occurs during the iteration process:

F1. The number of nonlinear iteration reaches 300, but no xk satisfies (11) is obtained;
F2. In one iteration, the backtracking number reaches 20 but no satisfactory step is produced; and
F3. ?F(xk−1)‖−‖F(xk)?�10−6‖F(xk)‖, which means that the iteration sequence of Algorithm INB cannot manage

to escape from a local minimizer of the function ‖F(x)‖, see [12,13].

3.2. Test problems and results

Our test problems are all typical systems of nonlinear equations in literature, with each of its own name and standard
initial guess, say xs . The problems and their standard initial guesses are listed as follows.

Problem 3.1 (Generalized function of Rosenbrock [16]).

⎧⎪⎨
⎪⎩

f1(x)=−4 c (x2 − x2
1 )x1 − 2 (1− x1),

fi(x)= 2 c (xi − x2
i−1)− 4 c (xi+1 − x2

i )xi − 2 (1− xi), i = 2, 3, . . . , n− 1,

fn(x)= 2 c (xn − x2
n−1), c = 2,

with xs = (1.2, 1.2, . . . , 1.2)T . We test the case of n= 5000.

Problem 3.2 (Tridiagonal system [15]).

⎧⎪⎨
⎪⎩

f1(x)= 4 (x1 − x2
2 ),

fi(x)= 8xi(x
2
i − xi−1)− 2 (1− xi)+ 4 (xi − x2

i+1), i = 2, 3, . . . , n− 1,

fn(x)= 8xn(x
2
n − xn−1)− 2 (1− xn),

with xs = (12, 12, . . . , 12)T, we test the case of n= 6000.

Problem 3.3 (Five-diagonal system [15]).
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x)= 4 (x1 − x2
2 )+ x2 − x2

3 ,

f2(x)= 8 x2(x
2
2 − x1)− 2 (1− x2)+ 4 (x2 − x2

3 )+ x3 − x2
4 ,

fi(x)= 8 xi(x
2
i − xi−1)− 2 (1− xi)+ 4 (xi − x2

i+1)+ x2
i−1 − xi−2 + xi+1 − x2

i+2, i = 3, 4, . . . , n− 2,

fn−1(x)= 8 xn−1(x
2
n−1 − xn−2)− 2 (1− xn−1)+ 4 (xn−1 − x2

n)+ x2
n−2 − xn−3,

fn(x)= 8 xn(x
2
n − xn−1)− 2 (1− xn)+ x2

n−1 − xn−2,

with xs = (−2,−2, . . . ,−2)T, we test the case of n= 5000.

Besides the standard initial guess xs , we also test other initial guesses such as x0 = 0, x0 = ±jxs , j = 1, 2, . . . , 5
and x0 = je, j = 2, 3, . . . , 5, where 0 denotes the zero vector and e represents the vector with all entries being 1. It is
easy to see that e is a solution to each of the above three problems. For each problem, certain representative results of
the initial guesses are listed in Tables 1–3.
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Table 1
Results for Generalized function of Rosenbrock

Choice x0 AN

xs 2xs 3xs 4xs 5xs 2e 3e 4e 5e 0

New NI 6 10 14 12 12 9 10 14 14 8 10.9
GI 33 64 69 79 71 57 58 72 60 40 60.3
FE 40 78 84 94 85 67 70 89 76 50 73.3

EW1 NI 7 15 26 22 20 14 20 28 21 10 18.3
GI 42 63 161 137 91 73 119 188 134 54 106.2
FE 50 81 219 184 122 93 156 254 177 66 140.2

EW2 NI 5 9 21 15 32 11 11 24 15 9 15.2
GI 37 52 95 66 144 53 46 96 65 52 70.6
FE 43 62 129 84 213 65 59 135 81 63 93.4

CGKT NI 4 7 8 9 10 6 8 8 9 7 7.6
GI 46 83 78 95 98 69 97 81 95 93 83.5
FE 51 91 87 105 109 76 106 90 105 102 92.2

DS NI 7 11 14 22 36 10 15 24 20 9 16.8
GI 36 63 76 149 310 52 91 161 125 48 111.1
FE 44 78 98 198 430 64 116 223 166 59 147.6

Table 2
Results for tridiagonal system

Choice x0 AN

xs 2xs 3xs 4xs 5xs 2e 3e 4e 5e 0

New NI 12 20 15 29 32 9 10 12 10 8 15.7
GI 60 184 83 225 239 55 58 78 51 40 107.3
FE 74 215 101 279 301 64 70 94 63 50 131.1

SW1 NI 37 127 * * * 14 17 28 22 10 36.4
GI 264 1694 * * * 69 95 188 121 52 354.7
FE 357 2430 * * * 87 126 254 160 64 496.9

SW2 NI 70 218 * * * 11 11 23 13 9 50.7
GI 349 1411 * * * 56 58 101 66 52 299.0
FE 616 2678 * * * 68 71 137 80 63 530.4

CGKT NI 11 42 43 37 30 6 8 9 9 8 20.3
GI 95 580 582 466 333 61 84 97 78 153 252.9
FE 107 692 695 546 378 68 93 107 88 175 294.9

DS NI 32 212 * * * 10 15 24 19 9 45.9
GI 240 2715 * * * 52 91 161 114 48 488.7
FE 324 4258 ∗ * * 64 116 223 150 59 742.0

For the convenience of reporting the results of different forcing terms, the following notations are used.

• New: new strategy;
• EW1: the first strategy given by Eisenstat and Walker [11];
• EW2: the second strategy given by Eisenstat and Walker [11];
• CGKT: the strategy used by Cai et al. [5];
• DS: the strategy of Dembo and Steihaug [8].
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Table 3
Results for five-diagonal system

Choice x0 AN

−xs −2xs −3xs −4xs −5xs 2e 3e 4e 5e 0

New NI 8 11 11 17 12 8 10 11 14 9 11.1
GI 40 65 55 80 58 40 56 65 57 46 56.2
FE 49 77 68 103 72 49 68 77 73 57 69.3

SW1 NI 10 15 21 27 73 10 18 15 22 11 22.2
GI 50 57 97 177 759 50 94 57 131 54 152.6
FE 61 75 132 241 1061 61 126 75 175 67 207.4

SW2 NI 11 21 27 38 55 11 11 21 15 9 21.9
GI 42 90 109 158 210 42 45 90 53 41 88.0
FE 54 123 156 249 390 54 58 123 71 52 133.0

CGKT NI 7 13 14 10 11 7 8 13 10 7 10.0
GI 83 176 169 94 98 83 83 176 106 104 117.2
FE 91 198 188 105 110 91 92 198 117 113 130.3

DS NI 11 21 20 26 67 11 16 21 20 9 22.2
GI 58 123 112 168 620 58 89 123 117 43 151.1
FE 73 172 153 229 926 73 119 172 157 54 212.8

In our implementing of Algorithm INB, the parameters � = 0.5, 	min = 0.1 and 	max = 0.5 are used. In addition,
�max = 0.9 is used for EW1 and EW2 forcing terms and the initial forcing term �̄0 = 0.5 is used for New, EW1 and
EW2 strategies. We always use �̄k given by (5) for EW1 since this expression is more convenient to be used; for EW2,
we use �= 0.9 and �= 2; for the new strategy, p1 = 0.1, p2 = 0.4 and p3 = 0.7 are used.

In the reporting tables, the following notations are used.

• NI: represents total number of nonlinear iterations;
• GI: represents total number of GMRES iterations;
• FE: denotes the total function evaluation number;
• AN: denotes the average number for NI, GI and FE;
• BT: represents the backtracking number along the inexact Newton direction; and
• ∗: denotes a failure occurred in either situations F1–F3.

For each of Problems 3.1–3.3, the results of ten initial guesses are separately given in Tables 1–3, where the numbers
of NI, GI and FE are listed and their averages for ten cases are given in the last columns.

Table 1 is the result of Problem 3.1 for ten initial guesses. From the table, one sees that the average nonlinear iteration
number of Algorithm INB with New forcing term is 10.9, which is a little more than 7.6, the average nonlinear iteration
number of Algorithm INB with CGKT forcing term; while the least average number of NI for EW1, EW2 and DS
forcing terms is 15.4. If comparing the average numbers of GMRES iteration and function evaluation, we see clearly
that New forcing term is the winner. In particular, Algorithm INB with New forcing term needs averagely 73.3 function
evaluations while the algorithm with other forcing terms needs at least 92.2 function evaluations. This shows that New
forcing term is the most efficient one for this problem.

In Table 2, we give the result about ten initial guesses for Problem 3.2. First we see that when x0=3xs, 4xx and 5xs ,
Algorithm INB with EW1, EW2 and DS forcing terms cannot solve Problem 3.2 successfully, that is, for each case, one
failed situation among F1–F3 occurs. Note that the last column of average numbers for NI, GI and FE only include
the successful cases. From this table, one sees that the average numbers of NI, GI and FE for New forcing terms are
the least. Furthermore, it is easy to see that the numbers of FE for New forcing term are the least for all ten cases. The
average function evaluation number of New forcing term is 131.1, while the minimal average function evaluations of
all the other four forcing terms is 294.9, at least twice over the former number, and the maximum is 742.0, about five
times over it. Therefore, New forcing term is the most effective strategy for Problem 3.2.
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Fig. 1. The curves of rk for different forcing terms in Problem 3.2 with x0 = xs .

Table 3 is the result of Problem 3.3. From this table, one sees that averagely, the number of NI for New is 11.1, which
is a little more than 10.0, the average number of NI for CGKT; while the rest three forcing terms need at least 21.9
nonlinear iterations on average. If comparing the average GMRES iteration numbers and function evaluation numbers,
then we can obtain the conclusion that New forcing term gives the best performance. The average function evaluation
number of New forcing term is 69.3, while those of all others exceed 100. Thus, Algorithm INB with New forcing term
performs most effectively to solve Problem 3.3.

By the above observation and analysis for Tables 1–3, we see that the average numbers of function evaluation of
Algorithm INB with New forcing terms are the least, thus the new strategy is the most effective one to choose forcing
terms in inexact Newton method. Besides, it is easy to see that DS forcing terms need the most function evaluations on
average. Thus, this strategy is the worst in our tests. In the following, we do not concern this strategy any more.

Since the principle of inexact Newton or Newton method is to use the local linear model to replace the nonlinear
model, we expect that the local linear model and nonlinear model can agree as well as possible. To compare this aspect
of different forcing terms, we depict three figures about Problem 3.2 when x0 = xs, 2xs and 3xs . In these figures, we
do not consider the DS forcing terms because, as discussed above, their efficiency is the worst.

In Fig. 1, when x0 = xs in Problem 3.2, the curves of rk under four forcing terms are plotted, where k denotes the
iteration index. This figure shows that rk of New and CGKT are always larger than 0.5, and their curves are relatively
stable with iteration index; while the curves of SW1 and SW2 are unstable, with the curve of SW2 is the worst. As is
discussed in Section 2, the more rk nears 1, the better the local linear model agrees the nonlinear model. Therefore,
Fig. 1 shows that the local linear model and nonlinear model under New or CGKT forcing terms can agree relatively
well. Consequently, numerical results of New and CGKT forcing terms are better than those of EW1 and EW2. For the
curve of EW2, we see that rk is almost zero when k = 21. This shows that F(xk)+ F ′(xk)sk and F(xk + sk) disagree
significantly for k = 21. At the same time, ‖F(xk + sk)‖ is only little reduced when compared to ‖F(xk)‖ for k = 21.
This kind of case is the worst.

Fig. 2 is of the curves of rk for different forcing terms when x0 = 2xs in Problem 3.2. From this figure, we see that
except k = 14 and 16, the values of rk for New forcing term are always larger than 0.5, and the curve of rk for New
forcing term is relatively stable compared to those of others. This shows that under New forcing terms, local linear
model can represent nonlinear model for almost all k, thus it is the best one. The better one is CGKT since its curve is
a little worse than New forcing term’s and better than others’. The curves of EW1 and EW2 are the worst because they
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Fig. 2. The curves of rk for different forcing terms in Problem 3.2 with x0 = 2xs .
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Fig. 3. The curves of rk for different forcing terms in Problem 3.2 with x0 = 3xs .

are very unstable and relatively low. This shows that the local linear model disagrees nonlinear model in most cases
under SW1 and SW2 forcing terms, thus ‖F(xk)‖ cannot be decreased effectively. We see that there is a big jump that
reaches 3 on the curve of SW2, this shows that the local linear model and nonlinear model disagree considerably for
some k, but fortunately, ‖F(xk+1)‖ is significantly smaller than ‖F(xk)‖.
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Table 4
Iteration comparison between CGKT and New forcing terms on tridiagonal system with x0 = xs

k CGKT New ‖xCGKT
k − xNew

k ‖
GI ‖F(xk)‖ rk BT GI ‖F(xk)‖ rk BT �̄k

1 5 2.792e+5 0.704 0 1 2.792e+5 0.704 0 0.2500 1.303e+2
2 3 8.269e+4 0.704 0 1 8.270e+4 0.704 0 0.1250 1.302e+2
3 3 2.448e+4 0.704 0 1 2.448e+4 0.704 0 0.0625 1.301e+2
4 4 7.233e+3 0.707 0 1 7.234e+3 0.705 0 0.0313 1.301e+2
5 11 4.615e+3 0.724 1 1 2.123e+3 0.707 0 0.0156 8.441e+1
6 8 1.219e+3 0.736 0 1 6.097e+2 0.714 0 0.0078 1.907e+1
7 10 3.435e+2 0.718 0 2 1.625e+2 0.735 0 0.0039 1.695e+1
8 10 8.456e+1 0.754 0 10 1.050e+2 0.708 1 0.0020 8.198e+0
9 12 1.410e+1 0.833 0 8 1.520e+1 0.857 0 0.0010 2.507e−1

10 14 6.907e−1 0.951 0 10 8.152e−1 0.947 0 0.0005 4.697e−2
11 13 3.204e−3 0.995 0 11 2.840e−3 0.997 0 0.0002 2.287e−4

When x0 = 3xs for Problem 3.2, the curves of rk for different forcing terms are plotted in Fig. 3. From this figure,
we see that the curve of New forcing terms is obviously the best one, because only it lies above 0.5 for all k and stably
approximates 1 with the increase of k. This shows that under New forcing terms, the local linear model and nonlinear
model agree well, thus the nonlinear model can be decreased significantly for each k. The curve of CGKT can be
considered the better one. The worst are the curves of SW1 and SW2. These two curves are unstable and most part lie
under 0.5. This shows that the local linear model and nonlinear model disagree considerably and ‖F(xk)‖ can only be
decreased very little in each iteration. As a result, after 300 nonlinear iterations, xk is still dissatisfied. See Table 2.

From Figs. 1–3, we see that, for all convergent cases of each forcing terms, rk is almost 1 in the last several iteration
steps. This means that the local linear model and nonlinear model under different forcing terms agree very well when
xk nears the solution of the nonlinear equations.

The above comparison about rk for different forcing terms shows that New forcing term is the most effective one.
Under this forcing term, the local linear model and nonlinear model can agree well, so the nonlinear residual can be
decreased effectively by solving the Newton equations to proper degree.

One sees from Fig. 1 that the curves of rk for New and CGKT differ obscurely when x0 = xs in Problem 3.2, but
Table 2 shows that the GMRES iterations and function evaluations under these two forcing terms differ significantly.
To see the variation of some values in the iteration process, see Table 4.

In Table 4, xCGKT
k and xNew

k represent the iteration points of Algorithm INB with CGKT and New forcing terms,
respectively. From Table 4, we see that, in each nonlinear iteration step, the GMRES iterations under CGKT forcing
term are more than those under New forcing term. In particular, for each of the first 6 nonlinear iterations, there is
only 1 GMRES iteration under New forcing terms while it needs at least 3 GMRES iterations under CGKT forcing
terms. However, if comparing ‖F(xk)‖ for the first 4 nonlinear steps, we see that the values of ‖F(xk)‖ for the two
forcing terms are almost the same or differ unclearly. In addition, comparing ‖F(xk)‖ for k = 5 and 6, we see that the
values of New forcing term are smaller than those of CGKT. This shows that CGKT forcing term causes “oversolving”
phenomenon. That is, more computational cost is used, but less obtained because the forcing term is too small. In
particular, when k=5, we see that 11 GMRES iterations are needed under the CGKT forcing terms, and 1 backtracking
is implemented. For the last several nonlinear iterations, the GMRES iterations are all relatively large under both of
the forcing terms. Since rk > 0.7 for all k under New forcing term, so, by the new strategy, �̄k is decreased by half in
each iteration. The last column of the table clearly shows that the sequence generated under the two forcing terms are
very near and converge to the same solution.

4. Conclusion

Forcing terms play a very important role in inexact Newton method. They have a strong influence on the efficiency
and robustness of the method. To improve the efficiency as well as robustness of inexact Newton method, we propose
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a new strategy to choose forcing terms. The new forcing terms are determined by rk , the ratio of actual reduction
to predicted reduction. They can reflect both the agreement between the local linear model and nonlinear model at
the previous step and the reduction of ‖F(x)‖ in some degree. With the new forcing terms, inexact Newton method
is locally Q-superlinearly convergent. Numerical results show that the inexact Newton method with this new choice
of forcing terms is much more efficient than the method with some old choices, including those given by Eisenstat
and Walker [11]. In addition, numerical experiments also show that the local linear model and nonlinear model agree
relatively well under the new forcing terms.
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[16] Z. Lužanin, D. Herceg, N. Krejić, Parameter selection for inexact Newton method, Nonlinear Anal. Theory Appl. 30 (1997) 17–24.
[17] J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, SIAM, Philadelphia, PA, 2000.
[18] M. Pernice, H.F. Walker, NITSOL: a Newton iterative solver for nonlinear systems, SIAM J. Sci. Comput. 19 (1998) 302–318.
[19] W.C. Rheinboldt, Methods for Solving Systems of Nonlinear Equations, SIAM, Philadelphia, PA, 1998.
[20] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, PA, 2003.
[21] Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Comput. 7

(1986) 856–869.
[22] J.N. Shadid, R.S. Tuminaro, H.F. Walker, An inexact Newton method for fully coupled solution of the Navier–Stokes equations with heat and

mass transport, J. Comput. Phys. 137 (1997) 155–185.
[23] R.S. Tuminaro, H.F. Walker, J.N. Shadid, On backbracking failure in Newton-GMRES methods with a demonstration for the Navier–Stokes

equations, J. Comput. Phys. 180 (2002) 549–558.


	A choice of forcing terms in inexact Newton method62626262
	Introduction
	The new choice
	Numerical results
	The algorithm
	Test problems and results

	Conclusion
	References


