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Abstract

The supremum of reduction numbers of ideals having principal reductions is expressed in terms of the
integral degree, a new invariant of the ring, which is finite provided the ring has finite integral closure. As a
consequence, one obtains bounds for the Castelnuovo–Mumford regularity of the Rees algebra and for the
Artin–Rees numbers.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let A be a commutative noetherian ring with identity, let I be an ideal of A and let M be a
finitely generated A-module. An ideal J ⊂ I is said to be a reduction of I with respect to M if
In+1M = JInM for some integer n � 0. The least such integer n � 0 is called the J -reduction
number of I with respect to M and is denoted by rnJ (I ;M). If M = A, the phrase “with respect
to M” is omitted and one writes rnJ (I ). Clearly, if J is a reduction of I , then J is a reduction of
I with respect to M and rnJ (I ;M) � rnJ (I ). If I is regular (i.e. I contains a nonzero divisor)
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and J is a principal reduction, then rnJ (I ) is independent of the given principal reduction and is
denoted by rn(I ) (more details are given at the beginning of Section 7).

In the last decade there has been a great deal of attention to finding bounds on the reduction
number (see e.g. [1,7,11,12,17,30,35–37], by no means a complete list of references). If the
regular ideals have principal reductions and the integral closure is finite, d’Anna, Guerrieri and
Heinzer gave an absolute bound for the reduction number in terms of the minimal number of
generators of the integral closure as a module over the base ring [11, Corollary 5.2]. In this paper
we express the supremum of reduction numbers of regular ideals having principal reductions in
terms of the following new invariant associated to the ring A, provided A contains the field of
rational numbers Q. If A ⊂ B is a ring extension and b ∈ B is integral over A, let the integral
degree of b over A be

idA(b) = min{n � 1 | b satisfies an integral equation of degree n}.

If A ⊂ B is an integral extension, the integral degree of B over A is defined as

dA(B) = sup
{
idA(b)

∣∣ b ∈ B
}
.

When B is taken to be A, the integral closure of A in its total quotient ring, dA(A) is just called
the integral degree of A. We will prove that if A has finite integral closure then it has also finite
integral degree and that the converse is not true in general. Our main result (see Theorem 7.1) is:

Theorem 1.1. Let A be a noetherian ring, A ⊃ Q. Then

dA(A) = sup
{
rn(I )

∣∣ I a regular ideal having a principal reduction
} + 1.

In Theorem 1.1 it is possible to replace rn(I ) + 1 by either reg(R(I )) + 1 or rt(I ), reg(R(I ))

and rt(I ) being the Castelnuovo–Mumford regularity of the Rees algebra of I and the relation
type of I , respectively.

It is known that Artin–Rees numbers are bounded by the relation type and that, in some
particular cases, the relation type can be bounded by reduction numbers. Having in mind this
idea and as a consequence of Theorem 1.1, we get the following results in the context of uniform
Artin–Rees properties (see Theorem 8.1).

Theorem 1.2. Let A be a noetherian ring with finite integral degree dA(A) = d . Suppose that
A ⊃ Q. Let N ⊂ M be two finitely generated A-modules. Let I be a regular ideal of A having
a principal reduction that is generated by a d-sequence with respect to M/N . Then, for every
integer n � d ,

InM ∩ N = In−d
(
I dM ∩ N

)
.

In other words, dA(A) is a uniform Artin–Rees number for the pair N ⊂ M and the whole set
of regular ideals having principal reductions generated by a d-sequence with respect to M/N .
Our ideal-theoretic version is the following (see Theorem 8.3).
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Theorem 1.3. Let A be a noetherian ring, A ⊃ Q. Let a be an ideal of A such that A/a has
finite integral degree dA/a(A/a) = d . Let I be an ideal of A such that IA/a has an A/a-regular
principal reduction. Then, for every integer n � d ,

In ∩ a = In−d
(
I d ∩ a

)
.

If the integral degree of A/a is not finite or if IA/a has no principal reduction, then there
may not exist such a uniform Artin–Rees number (Example 8.5 and Example 8.7) even in the
presence of regularity. This will be seen by using an example of Eisenbud and Hochster in [14],
the work where they raised the uniform Artin–Rees conjecture, and an example of Wang in [38]
(see also [13,21,26–28] for more information). On the other hand, it is well known that there
exists a uniform Artin–Rees number for the set of principal ideals of a noetherian ring and that,
in general, there does not exist a uniform Artin–Rees number for the set of three generated ideals
(see the work of O’Carroll in [27] and the aforementioned example of Wang in [38]). Therefore, it
remained to study if there exists a uniform Artin–Rees number for the whole set of two-generated
ideals (without any other assumption on the ideals). We obtain a slightly weaker uniform Artin–
Rees property for the set of two-generated regular ideals (which is not true anymore for the set of
three-generated ideals, see Example 8.7). Specifically, we have the following (see Theorem 8.6).

Theorem 1.4. Let (A,m) be a noetherian local ring with infinite residue field. Let a be an ideal
of A such that A/a has finite integral degree dA/a(A/a) = d . Let I be a two-generated ideal of
A such that IA/a is A/a-regular. Then, for every n � d ,

In ∩ a = In−d
(
I d ∩ a

) + mIn ∩ a.

The paper is organized as follows. Sections 2–5 are devoted to the following four invariants
and the relationship among them: Artin–Rees numbers modulo an ideal, relation type of a stan-
dard module, Castelnuovo–Mumford regularity and reduction number with respect to a module.
Concretely, in Section 2 we introduce the Artin–Rees number sJ (N,M; I ) of an ideal I and two
finitely generated A-modules N ⊂ M , modulo another ideal J . This number is the minimum
integer s � 0 such that

InM ∩ N = In−s
(
I sM ∩ N

) + JInM ∩ N

for all n � s + 1, and thus it controls the weaker Artin–Rees property of Theorem 1.4. Follow-
ing the ideas in [28], in Section 3 we bound above the Artin–Rees number sJ (N,M; I ) by the
relation type of the Rees module

RJ (I ;M/N) =
(⊕

n�0

InM/N

)
⊗ A/J.

Section 4 is dedicated to recalling some definitions concerning Castelnuovo–Mumford regularity
and formulating an extension to modules of some results of Trung in [33] and [34]. In Section 5,
we prove that the relation type of an ideal I with respect to a module M , rt(I ;M), is bounded
above by rnJ (I ;M) + rt(J ; I rM), where J is a reduction of I with respect to M and r :=
rnJ (I ;M) is the J -reduction number of I with respect to M . If J is generated by a complete
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d-sequence with respect to I and M (the terminology is explained in Section 5), then the relation
type of J with respect to I rM satisfies rt(J ; I rM) = 1 and reg(R(I ;M)) = rnJ (I ;M). Thus
one has the inequality rt(I ;M) � rnJ (I ;M) + 1, which is well known for the case M = A and
J a principal reduction of a regular ideal I (see the work of d’Anna, Guerrieri and Heinzer [10],
Huckaba [19,20], Schenzel [32] and Trung [33,34]). In Section 6, we introduce and study dA(A),
the integral degree of A, a new invariant associated to the ring A. We prove that if A has finite
integral closure then it also has finite integral degree. The ingenious example of Akizuki ([2],
see also [29]) provides us with an example of a one-dimensional noetherian local domain A

with finite integral degree but infinite integral closure. In Section 7 we prove the main result of
the paper, namely that dA(A) is equal to the supremum of the reduction numbers plus one (or
else the Castelnuovo–Mumford regularity of the Rees algebra plus one or the relation type: see
Remark 7.2) of regular ideals having principal reductions. Finally, in Section 8 we prove all the
results concerning Artin–Rees numbers.

All rings will be commutative and with identity. As usual, an element being M-regular will
mean that the element is not contained in the set of zero divisors of M , and μ will stand for
minimal number of generators.

2. Artin–Rees modulo an ideal

Let us introduce a slight variant of the Artin–Rees lemma which will be very useful. Let A be
a noetherian ring, I an ideal of A and N ⊆ M two finitely generated A-modules. The Artin–Rees
lemma assures us that there exists an integer s � 0, depending on N , M and I , such that for all
n � s,

InM ∩ N = In−s
(
I sM ∩ N

)
.

In particular, for any ideal J of A, one obtains what we will call the Artin–Rees modulo J :

InM ∩ N = In−s
(
I sM ∩ N

) + JInM ∩ N.

For every integer n � 1, let

EJ (N,M; I )n = InM ∩ N

I (In−1M ∩ N) + JInM ∩ N
.

For easy reference, and without proof, we state the Artin–Rees lemma modulo J .

Lemma 2.1. Let A be a ring, I, J ideals of A and N ⊆ M two A-modules. Set

sJ (N,M; I ) = min
{
s � 0

∣∣ EJ (N,M; I )n = 0 for all n � s + 1
}
.

Then, the following conditions are equivalent:

(i) InM ∩ N = In−s(I sM ∩ N) + JInM ∩ N for all n � s + 1.
(ii) sJ (N,M; I ) � s.
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If A is a noetherian ring and N ⊆ M are finitely-generated A-modules, then sJ (N,M; I ) is
finite.

If J = 0, we recover the standard notion of Artin–Rees and simply write s(N,M; I ). Re-
mark that if J1 ⊂ J2 are two ideals, for n � 1 there is a natural epimorphism EJ1(N,M; I )n →
EJ2(N,M; I )n and thus sJ2(N,M; I ) � sJ1(N,M; I ) � s(N,M; I ).

Remark 2.2. If A is noetherian, J ⊂ I are two ideals of A contained in the Jacobson radical
of A, and N ⊂ M are two finitely generated A-modules, then sJ (N,M; I ) = s(N,M; I ).

Proof. Since 0 ⊂ J ⊂ I , then sI (N,M; I ) � sJ (N,M; I ) � s(N,M; I ). It is enough to see that
s(N,M; I ) � sI (N,M; I ). Set s = sI (N,M; I ), so InM ∩ N = In−s(I sM ∩ N) + In+1M ∩ N

for all n � s + 1. Then In+1M ∩ N = In+1−s(I sM ∩ N) + In+2M ∩ N and substituting the
second equality in the first, InM ∩ N = In−s(I sM ∩ N) + In+1−s(I sM ∩ N) + In+2M ∩ N =
In−s(I sM ∩N)+In+2M ∩N . Inductively, InM ∩N = ⋂

k�1(I
n−s(I sM ∩N)+In+kM ∩N) ⊂⋂

k�1(P + In+kM), where P = In−s(I sM ∩ N) ⊂ InM ∩ N ⊂ M . But,

⋂
k�1(P + In+kM)

P
=

⋂
k�1

(
P + In+kM

P

)
=

⋂
k�1

In+k(M/P ),

which is zero by Krull’s intersection theorem. Therefore,
⋂

k�1(P + In+kM) = P and InM ∩
N = In−s(I sM ∩ N). �
3. Relation type modulo an ideal

A standard A-algebra is a commutative graded algebra U = ⊕
n�0 Un, with U0 = A and U

generated as an A-algebra by the elements of degree 1. The Rees algebra of I is the standard
A-algebra R(I ) = ⊕

n�0 In. For any ideal J of A, the Rees algebra of I modulo J will be the
standard A/J -algebra RJ (I ) = R(I ) ⊗ A/J = ⊕

n�0 In/J In. Taking J = I , we recover the

associated graded ring of I , RI (I ) = G(I ) = ⊕
n�0 In/In+1, and taking J = m a maximal ideal

of A, we recover the corresponding fiber cone of I , Rm(I ) = Fm(I ) = ⊕
n�0 In/mIn.

A standard U -module will be a graded U -module F = ⊕
n�0 Fn such that Fn = UnF0 for

all n � 0. The Rees module of I with respect to M is the standard R(I )-module R(I ;M) =⊕
n�0 InM . For any ideal J of A, the Rees module of I with respect to M and modulo J

will be the standard RJ (I )-module RJ (I ;M) = R(I ;M)⊗A/J = ⊕
n�0 InM/JInM . Taking

J = I , we recover the associated graded module of I with respect to M , RI (I ;M) = G(I ;M) =⊕
n�0 InM/In+1M and taking J = m a maximal ideal of A, we recover the corresponding fiber

cone of I with respect to M , Rm(I ;M) = Fm(I ;M) = ⊕
n�0 InM/mInM .

Given two standard U -modules F , G and ϕ :G → F , a surjective graded morphism of U -

modules, put E(ϕ)n = kerϕn/U1 kerϕn−1 for n � 2. Consider γ : S(U1) ⊗ F0
α⊗1→ U ⊗ F0 → F ,

where α : S(U1) → U is the canonical symmetric presentation of U and U ⊗ F0 → F is the
structural morphism. For n � 2, the module of effective n-relations of F is E(F)n = E(γ )n =
kerγn/U1 kerγn−1. The relation type of F is rt(F ) = min{r � 1 | E(F)n = 0 for all n � r + 1},
which is finite if A is noetherian, U is a finitely generated algebra and F is a finitely generated
U -module. It can be shown that the module of effective n-relations, n � 2, and the relation type
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do not depend on the chosen symmetric presentation ([28, Definition 2.4]; see also [10,37,38]).
In particular, in order to find the effective relations of F and its relation type, one can always
take a presentation of F as a quotient of a polynomial module with coefficients in F0.

The module of effective n-relations of I with respect to M is E(I ;M)n = E(R(I ;M))n and
the relation type of I with respect to M is rt(I ;M) = rt(R(I ;M)). For any ideal J of A, the
module of effective n-relations of I with respect to M and modulo J will be EJ (I ;M)n =
E(RJ (I ;M))n and the relation type of I with respect to M and modulo J will be rtJ (I ;M) =
rt(RJ (I ;M)). If M = A, then we omit the phrase “with respect to M” and simply write E(I)n,
rt(I ), EJ (I)n and rtJ (I ).

Remark 3.1. Let A be a ring, J, I,a, ideals of A and M an A-module.

(1) Then rt(I ;A/a) = rt(IA/a) = rt(IA/a;A/a).
(2) rtJ (I ;M) � rt(I ;M).
(3) If A is noetherian, J ⊂ I and M is finitely generated, then rtJ (I ;M) = rt(I ;M).

Proof. R(I ;A/a) = R(IA/a) = R(IA/a;A/a). Moreover, the relation type of the standard
R(I )-module R(I ;A/a), the relation type of the standard A/a-algebra R(IA/a) and the relation
type of the standard R(IA/a)-module R(IA/a;A/a) all coincide (see [28, Remark 2.5]). This
proves (1). The proof of (2) and (3) follow from [28, Remark 2.7] (and in contrast to Remark 2.2,
here we do not need I to be included in the Jacobson radical). �

Next we show the relation between E(I ;M)n and EJ (I ;M)n and describe these modules for
the two-generated regular case.

Proposition 3.2. Let A be a ring, I and J ideals of A and M an A-module. Then, for every
integer n � 2, there exists an exact sequence of A-modules:

E(I ;JM)n −→ E(I ;M)n −→ EJ (I ;M)n → 0.

In particular, if I = (x, y) is two-generated and x is M-regular, then, for every n � 2,

EJ (I ;M)n = (xIn−1M : yn)

(xIn−1JM : yn) ∩ JM + (xIn−2M : yn−1)
.

Proof. Let f :P → I be a presentation of I , with P a free A-module, and, for every n � 2,
consider the following commutative diagram:

Λ2(P ) ⊗ In−2JM
∂ ′

2,n

P ⊗ In−1JM

∂ ′
1,n

I nJM 0

Λ2(P ) ⊗ In−2M
∂2,n

P ⊗ In−1M
∂1,n

I nM 0

Λ2(P ) ⊗ (In−2M/In−2JM)
∂̄2,n

P ⊗ (In−1M/In−1JM)
∂̄1,n

I nM/InJM 0.
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The top, middle and bottom rows of these diagrams represent the last three nonzero terms
of the nth homogeneous part of the Koszul complexes induced by the S(P )-linear forms
P ⊗ R(I ;JM) → R(I ;JM), P ⊗ R(I ;M) → R(I ;M) and P ⊗ RJ (I ;M) → RJ (I ;M).
The differentials are defined as usual: ∂2,n((x ∧ y) ⊗ z) = y ⊗ xz − x ⊗ yz and ∂1,n(x ⊗ t) = xt ,
x, y ∈ P , z ∈ In−2M , t ∈ In−1M ; ∂ ′

i,n and ∂i,n are defined analogously (see e.g. [6, Def-
inition 1.6.1]). The vertical morphisms are induced by the obvious inclusions and quotients
and define morphisms of complexes. By a similar reasoning to that in [28, Proposition 2.6],
the first homology groups of these complexes are, respectively, ker ∂ ′

1,n/ im ∂ ′
2,n = E(I ;JM)n,

ker ∂1,n/ im ∂2,n = E(I ;M)n and ker ∂1,n/ im ∂2,n = EJ (I ;M)n. The exact sequence we seek is
nothing else but the short exact sequence induced in homology.

If I = (x, y) with x an M-regular element, take P = A2 and f :P → I with f (1,0) = x and
f (0,1) = y. Then, the middle row becomes isomorphic to the complex:

In−2M
∂2,n−→ In−1M ⊕ In−1M

∂1,n−→ InM → 0,

with differentials ∂2,n(u) = (−yu,xu) and ∂1,n(z, t) = xz + yt . Take (z, t) = (
∑

aiui,
∑

bivi),
(z, t) ∈ ker ∂1,n, with ai, bi ∈ In−1, ui, vi ∈ M and xz+ yt = 0. Write bi = ciy

n−1 + dix, ci ∈ A

and di ∈ In−2. Then

yn
∑

civi = y
∑

bivi − y
∑

dixvi = yt − x
∑

diyvi = −x
(
z −

∑
diyvi

)
.

Thus
∑

civi ∈ (xIn−1M : yn). Consider

ϕ : ker ∂1,n −→ (xIn−1M : yn)

(xIn−2M : yn−1)
,

defined by ϕ(z, t) = ∑
civi . It is not difficult to see that ϕ is well defined, surjective and im ∂2,n ⊂

kerϕ. Moreover, since x is M-regular, then kerϕ ⊂ im ∂2,n. Thus

E(I ;M)n = (xIn−1M : yn)

(xIn−2M : yn−1)
.

Using the former exact sequence of modules of effective relations, one deduces the expression
of EJ (I ;M)n. �

Next we compare the Artin–Rees number modulo J with the relation type modulo J .

Proposition 3.3. Let A be a ring, I and J two ideals of A and N ⊂ M two A-modules. Then

sJ (N,M; I ) � rtJ (I ;M/N) � max
(
rtJ (I ;M), sJ (N,M; I )

)
.

Proof. Take F = RJ (I ;M/N), G = RJ (I ;M) and H = S(I/J I) ⊗ M and ϕ :G → F and
γ :H → G induced by the natural surjective graded morphisms R(I ;M) → R(I ;M/N) and
S(I ) ⊗ M → R(I ;M). By [28, Lemma 2.3], for every integer n � 2, one has the short exact
sequence of A-modules:
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E(γ )n → E(ϕ ◦ γ )n → E(ϕ)n → 0.

But E(γ )n = EJ (I ;M)n and E(ϕ ◦ γ )n = EJ (I ;M/N)n and a short computation shows that
E(ϕ)n = EJ (N,M; I )n. From the exact sequence we obtain the desired inequalities. �
4. Castelnuovo–Mumford regularity

The purpose of this section is to recall some definitions and formulate, in order to use them
subsequently, a generalization to modules of some results of Trung in [33,34]. Being natural
extensions of his results, we omit or just sketch the proofs.

Let A be a noetherian ring and U = ⊕
n�0 Un a finitely generated standard A-algebra. Let

F = ⊕
n�0 Fn be a standard U -module. Define

a(F ) =
{

max{n � 0 | Fn �= 0} if F �= 0,

−∞ if F = 0.

Let U+ = ⊕
n>0 Un be the irrelevant ideal of U . If i � 0, denote by

ai(F ) = a
(
Hi

U+(F )
)
,

where Hi
U+(·) denotes the ith local cohomology functor with respect to the ideal U+. Then

ai(F ) < ∞ and the Castelnuovo–Mumford regularity of F is defined to be

reg (F ) = max
{
ai(F ) + i

∣∣ i � 0
}

(see e.g. [5, 15.2.9]; [32,34]). We shall mainly be concerned with the case U = R(I ), the Rees
algebra of an ideal I of A, and F = R(I ;M), the Rees module of I with respect to a finitely
generated A-module M . In particular, if M �= 0, then reg (F ) �= −∞ (see e.g. [5, 15.2.13]).

A sequence z = z1, . . . , zs of homogeneous elements of U is called n-regular with respect to
F if, for all i = 1, . . . , s,

(
(z1, . . . , zi−1)F : zi

)
n

= (
(z1, . . . , zi−1)F

)
n
.

The least integer m � 0 such that z is n-regular for all n � m + 1 is denoted by a(z) (see [33],
Section 2). In other words,

a(z) = max
{
a
(
(z1, . . . , zi−1)F : zi/(z1, . . . , zi−1)F

) ∣∣ i = 1, . . . , s
}
.

A sequence z = z1, . . . , zs of homogeneous elements of U is called a U+-filter-regular se-
quence with respect to F if zi /∈ p for any associated prime ideal p of F/(z1, . . . , zi−1)F , p �⊇ U+,
for all i = 1, . . . , s (see [33, Section 2]; [34, Section 2]).

Lemma 4.1. (See [5, 18.3.8]; [33, 2.1].) Let z = z1, . . . , zs be a sequence of homogeneous ele-
ments of U . Then z is a U+-filter regular sequence with respect to F if and only if a(z) < ∞.
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Lemma 4.2. (See [33, 2.3].) Let z ∈ U1 be a homogeneous U+-filter-regular element with respect
to F . Then, for all i � 0,

ai+1(F ) + 1 � ai(F/zF ) � max
{
ai(F ), ai+1(F ) + 1

}
.

Lemma 4.3. (See [34, 2.2].) Let z = z1, . . . , zs be a U+-filter-regular sequence with respect to F ,
zi ∈ U1 for all i = 1, . . . , s. Then

a(z) = max
{
ai(F ) + i

∣∣ i = 0, . . . , s − 1
}

and, for all 0 � t � s,

max
{
ai(F ) + i

∣∣ i = 0, . . . , t
}

= max
{
a
(
(z1, . . . , zi)F : U+/(z1, . . . , zi)F

) ∣∣ i = 0, . . . , t
}
.

Proposition 4.4. (See [34, 2.4].) Let z = z1, . . . , zs be a U+-filter-regular sequence with respect
to F , zi ∈ U1, i = 1, . . . , s, which generates a reduction Q of U+ with respect to F . Then

reg(F ) = max
{
a(z), rnQ(U+;F)

}
.

Proof. By Lemma 4.3,

a(z) = max
{
a
(
(z1, . . . , zi)F : U+/(z1, . . . , zi)F

) ∣∣ i = 0, . . . , s − 1
}
.

Further,

rnQ(U+;F) = a(F/QF) = a
(
(z1, . . . , zs)F : U+/(z1, . . . , zs)F

)
.

Therefore,

max
{
a(z), rnQ(U+;F)

}
= max

{
a
(
(z1, . . . , zi)F : U+/(z1, . . . , zi)F

) ∣∣ i = 0, . . . , s
}

= max
{
ai(F ) + i

∣∣ i = 0, . . . , s
}
.

Since reg(F ) = max{ai(F ) + i | i � 0}, it is enough to show that Hi
U+(F ) = 0 for all i > s.

If s = 0, then 0 is a reduction of U+ with respect to F and Fn for all large n. So F is a
U+-torsion module and Hi

U+(F ) = 0 for all i > 0 (see e.g. [5, 2.1.7]). If s � 1, by induction,

Hi
U+(F/z1F) = 0 for all i > s − 1. So ai(F/z1F) = −∞ for all i > s − 1. By Lemma 4.2,

ai+1(F ) = −∞ and Hi+1
U+ (F ) = 0 for all i > s. �

Now take A a noetherian ring, I an ideal of A and M a finitely generated A-module. Consider
R(I ) = ⊕

Intn ⊂ A[t] as a subring of A[t].
n�0
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Lemma 4.5. (See [34, 4.1].) Let A be a noetherian ring, let I be an ideal of A and let M be a
finitely generated A-module. Let x1, . . . , xs be a sequence of elements in I . Then x1t, . . . , xs t is
a R(I )+-filter-regular sequence with respect to R(I ;M) if and only if for all large n � 1,

[
(x1, . . . , xi−1)I

nM : xi

] ∩ InM = (x1, . . . , xi−1)I
n−1M, i = 1, . . . , s. (∗)

If that is the case, a(z) is the least integer r such that (∗) holds for all n � r + 1.

Proof. z = x1t, . . . , xs t is a R(I )+-filter-regular sequence with respect to R(I ;M) if and only
if [(x1t, . . . , xi−1t)R(I ;M) : xit]n is equal to

[
(x1t, . . . , xi−1t)R(I ;M)

]
n

for all large n � 1. But the first module is equal to

[
(x1, . . . , xi−1)I

nM : xi

] ∩ InM

and the second is equal to (x1, . . . , xi−1)I
n−1M . �

Proposition 4.6. (See [34, 4.2].) Let A be a noetherian ring, let I be an ideal of A and let M

be a finitely generated A-module. Let J = (x1, . . . , xs) be a reduction of I with respect to M .
Suppose that z = x1t, . . . , xs t is a R(I )+-filter-regular sequence with respect to R(I ;M). Then

reg
(
R(I ;M)

) = min
{
r � 0

∣∣ r � rnJ (I ;M) and (∗) holds for n � r + 1
}
.

Proof. Let Q = (z) denote the ideal generated by z = x1t, . . . , xs t , U = R(I ) the Rees al-
gebra of I and F = R(I ;M) the Rees module of I with respect to M . Since J is a reduc-
tion of I with respect to M , then Q is a reduction of U+ with respect to F . Moreover, if
I r+1M = JI rM , then Ur+1+ F = QUr+F and rnQ(U+;F) = rnJ (I ;M). By Proposition 4.4,
reg(F ) = max{a(z), rnJ (I ;M)}. The conclusion follows from Lemma 4.5. �
5. Relation type and reduction number

The first result of the section suggests the relationship subsisting between the relation type
and the reduction number (see [37, p. 63]).

Proposition 5.1. Let A be a ring, I an ideal of A and M an A-module. Let J ⊂ I be a reduction
of I with respect to M and with reduction number rnJ (I ;M) = r . Then

rt(I ;M) � rnJ (I ;M) + rt
(
J ; I rM

)
.

Proof. Let us prove that E(I ;M)n = 0 for all n � r + rt(J ; I rM) + 1. Write n = r + k, where
k � rt(J ; I rM) + 1(� 2). In particular, InM = J kI rM = JIn−1M , In−1M = J k−1I rM =
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JIn−2M and In−2M = J k−2I rM = JIn−3M (where In−3 = A if n = 2 and r = 0). Consider
the following diagram:

Λ2(J ) ⊗ J k−2I rM

g

∂ ′
2,k

J ⊗ J k−1I rM

f

∂ ′
1,k

J kI rM 0

Λ2(I ) ⊗ In−2M
∂2,n

I ⊗ In−1M
∂1,n

I nM 0.

The top row represents the last three nonzero terms of the kth homogeneous part of the Koszul
complex induced by the R(J )-linear form J ⊗ R(J ; I rM) → R(J ; I rM) and the bottom row
represents the last three nonzero terms of the nth homogeneous part of the Koszul complex in-
duced by the R(I )-linear form I ⊗ R(I ;M) → R(I ;M). The Koszul differentials are defined
as usual (e.g. [6, Definition 1.6.1]; see also the proof of Proposition 3.2). The vertical morphisms
are induced by the inclusion J ⊂ I and define a morphism of complexes. By [28, Proposi-
tion 2.6], the first homology groups of these complexes are ker ∂ ′

1,k/ im ∂ ′
2,k = E(J ; I rM)k and

ker ∂1,n/ im ∂2,n = E(I ;M)n. Thus we want to prove ker ∂1,n ⊂ im ∂2,n. Take u = ∑
i xi ⊗ mi ∈

I ⊗ In−1M such that ∂1,n(u) = ∑
i ximi = 0. Write each mi = ∑

j yi,jmi,j , yi,j ∈ J , mi,j ∈
In−2M . Take v = ∑

i,j yi,j ∧ xi ⊗ mi,j ∈ Λ2(I ) ⊗ In−2M . Then ∂2,n(v) = u − w, where w =∑
i,j yi,j ⊗ ximi,j ∈ I ⊗ In−1M . Consider w′ = ∑

i,j yi,j ⊗ ximi,j ∈ J ⊗ J k−1I rM . Remark
that ∂ ′

1,k(w
′) = ∂1,n(f (w′)) = ∂1,n(w) = 0. Since k � rt(J ; I rM) + 1, then E(J ; I rM)k = 0

and w′ ∈ im ∂ ′
2,k . Take t ′ ∈ Λ2(J ) ⊗ J k−2I rM such that ∂2,k(t

′) = w′. Then ∂2,n(v + g(t ′)) =
u − w + f (∂ ′

2,k(t
′)) = u − w + f (w′) = u and u ∈ im ∂2,n. �

The purpose now is to control the relation type of the reduction J with respect to I rM . We
will use the filter-regular conditions (∗) of Lemma 4.5, which first appeared, to our knowledge,
in a paper by Costa for M = A and J = I [9, p. 258].

Proposition 5.2. Let A be a ring, let I be an ideal of A and let M be an A-module. Let J =
(x1, . . . , xs) ⊂ I be a reduction of I with respect to M and with reduction number rnJ (I ;M) = r .
Suppose that there exists k � 1 such that for all n � r + k and all i = 1, . . . , s,

[
(x1, . . . , xi−1)I

nM : xi

] ∩ InM = (x1, . . . , xi−1)I
n−1M.

Then rt(J ; I rM) � k. Moreover, if A is noetherian and M is finitely generated, then rnJ (I ;M) �
reg(R(I ;M)) � rnJ (I ;M) + k − 1.

Proof. Write J0 = 0 and Ji = (x1, . . . , xi) for i = 1, . . . , s. Let m � k + 1 and consider the
last three nonzero terms of the mth homogeneous part of the Koszul complex induced by the
R(Ji)-linear form Ji ⊗R(J ; I rM) → R(J ; I rM):

Λ2(Ji) ⊗ Jm−2I rM
∂2,m−2−→ Ji ⊗ Jm−1I rM

∂1,m−1−→ JmI rM → 0.

If i = s, then Js = J and one has the Koszul complex
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Λ2(J ) ⊗ Jm−2I rM
∂2,m−2−→ J ⊗ Jm−1I rM

∂1,m−1−→ JmI rM → 0,

whose first homology group ker ∂1,m−1/ im ∂2,m−2 is, by [28, Proposition 2.6], equal to the
module of m-effective relations E(J ; I rM)m. Thus, it is enough to prove by induction on
i = 1, . . . , s, that ker ∂1,m−1 ⊂ im ∂2,m−2 for all m � k + 1 (remark that, in this case, r +
m − 1 � r + k). If i = 1, let z = x1 ⊗ c ∈ J1 ⊗ Jm−1I rM such that 0 = ∂1,m−1(z) = x1c.
Then c ∈ (0 : x1) ∩ Jm−1I rM = (0 : x1) ∩ I r+m−1M = J0I

r+m−2M = 0. Thus z = 0. If
i = s, let z = ∑s

i=1 xi ⊗ ci ∈ J ⊗ Jm−1I rM such that 0 = ∂1,m−1(z) = ∑s
i=1 xici . Then

xscs = −∑s−1
i=1 xici . Thus cs ∈ (Js−1J

m−1I rM : xs) ∩ Jm−1I rM = (Js−1I
r+m−1M : xs) ∩

I r+m−1M = Js−1I
r+m−2M . Thus cs = ∑s−1

i=1 xiλi , λi ∈ I r+m−2M = Jm−2I rM . Take u =∑s−1
i=1 xi ⊗ (ci + xsλi) ∈ Js−1 ⊗ Jm−1I rM . Then ∂1,m−1(u) = 0. By induction hypothesis, there

exists v ∈ Λ2(Js−1) ⊗ Jm−2I rM such that ∂2,m−2(v) = u. Take w = v + ∑s−1
i=1(xj ∧ xs) ⊗ λi

and one has ∂2,m−2(w) = z. This proves rt(J ; I rM) � k. The second assertion follows from
Proposition 4.6. �

Let A be a noetherian ring, J ⊂ I two ideals of A and M a finitely generated A-module. Let
x1, . . . , xs be a system of generators of J . Write, as before, J0 = 0 and Ji = (x1, . . . , xi) for
i = 1, . . . , s. The sequence x1, . . . , xs is said to be a d-sequence with respect to M if any xj is
not contained in the ideal generated by the other xi and for all k � i + 1 and all i � 0, (JiM :
xi+1xk) = (JiM : xk). It is known that this last condition is equivalent to (JiM : xi+1) ∩ JM =
JiM for all i = 0, . . . , s − 1 (see e.g. [16, pp. 112, 113]). Let G(I ;M) be the associated graded
module of I with respect to M and denote by x∗

1 , . . . , x∗
s the images of x1, . . . , xs in I/I 2 ⊂ G(I ).

The sequence x1, . . . , xs is said to be a complete d-sequence with respect to I and M if x1, . . . , xs

is a d-sequence with respect to M and x∗
1 , . . . , x∗

s−1 is a G(I ;M)-regular sequence (see [20] and
[34]). If A is local, it can be shown that x∗

1 , . . . , x∗
s−1 is a G(I ;M)-regular sequence if and only

if x1, . . . , xs−1 is an M-regular sequence and, for all n � 0 and all i = 1, . . . , s − 1, the nth
Valabrega–Valla module V VJi

(I ;M)n = JiM ∩ In+1M/JiI
nM is equal to zero (see e.g. [19,

Lemma 2.2]; [8, Proposition 2.3]).
Huckaba proved that if A is noetherian local, if I is an ideal with analytic spread l(I ) equal

to the height of the ideal ht(I ) or ht(I ) + 1 and with a minimal reduction J generated by a
complete d-sequence with respect to I , then rt(I ) � rnJ (I ) + 1 (see [19, Theorem 2.3] and [20,
Theorem 1.4]). Later, Trung proved that, in general, rt(I ) � reg(R(I )) + 1 and that if I has a
reduction J generated by a complete d-sequence with respect to I , then reg(R(I )) = rnJ (I ) (see
[34, Proposition 2.6 and Theorem 6.4]; for more related results on this topic see also [32,33]).
From our Propositions 5.1 and 5.2, we obtain a generalization of these results. Our proof closely
follows ideas of Trung in [34].

Theorem 5.3. Let A be a noetherian ring, let I be an ideal of A and let M be a finitely generated
A-module. Let J = (x1, . . . , xs) ⊂ I be a reduction of I with respect to M and with reduction
number rnJ (I ;M) = r . Suppose that

(i) x1, . . . , xs is a d-sequence with respect to M .
(ii) x1, . . . , xs−1 is an M-regular sequence.

(iii) (x1, . . . , xi)M ∩ I r+1M = (x1, . . . , xi)I
rM for all i = 1, . . . , s − 1.

Then rt(J ; I rM) = 1, rt(I ;M) � rnJ (I ;M) + 1 and rnJ (I ;M) = reg(R(I ;M)).



3410 J.M. Giral, F. Planas-Vilanova / Journal of Algebra 319 (2008) 3398–3418
Proof. Write J0 = 0 and Ji = (x1, . . . , xi) for i = 1, . . . , s. Using (ii) and (iii), we ob-
tain (Ji−1M : xi) ∩ I r+1M = Ji−1M ∩ I r+1M = Ji−1I

rM for i = 1, . . . , s − 1. By (i),
(Js−1M : xs) ∩ JM = Js−1M . Since I r+1M = JI rM , then (Js−1M : xs) ∩ I r+1M = Js−1M ∩
I r+1M which, by (iii), is equal to Js−1I

rM . Thus, for all i = 1, . . . , s,

(Ji−1M : xi) ∩ I r+1M = Ji−1I
rM.

A straightforward generalization to modules of Theorem 4.8(i) in [34], allows us to assert that
for all integers n � r + 1 and for all i = 1, . . . , s,

(Ji−1M : xi) ∩ InM = Ji−1I
n−1M,

which clearly implies for all integers n � r + 1 and for all i = 1, . . . , s,

(
Ji−1I

nM : xi

) ∩ InM = Ji−1I
n−1M.

By Proposition 5.1, rt(I ;M) � rnJ (I ;M) + rt(J ; I rM) and, by Proposition 5.2, rt(I ;J rM) = 1
and rnJ (I ;M) = reg(R(I ;M)). �
6. Integral degree of a ring

In this section we introduce the integral degree, an invariant associated to the ring, which
later will be used to bound the reduction number. Let A ⊂ B be a ring extension. Recall that an
element b ∈ B is said to be integral over A if there exist ai ∈ A and an integral equation of degree
n � 1:

bn + a1b
n−1 + a2b

n−2 + · · · + an−1b + an = 0.

If b ∈ B is integral over A, we will call the integer

idA(b) = min{n � 1 | b satisfies an integral equation of degree n}

the integral degree of b over A.
Let A ⊂ C ⊂ B , C an A-submodule of B . Suppose the elements of C are integral over A.

Then the integral degree of C over A is defined as the integer (possibly infinite):

dA(C) = sup
{
idA(c)

∣∣ c ∈ C
}
.

Remark that dA(C) = 1 if and only if A = C.
As usual, μA(·) stands for the minimal number of generators as an A-module.

Proposition 6.1. Let A ⊂ B be a ring extension, b ∈ B and n � 1. Then the following conditions
are equivalent:

(i) b is integral over A and idA(b) � n.
(ii) A[b] is a finitely generated A-module and μA(A[b]) � n.



J.M. Giral, F. Planas-Vilanova / Journal of Algebra 319 (2008) 3398–3418 3411
(iii) There exists a ring C, A ⊂ A[b] ⊂ C ⊂ B , such that C is a finitely generated A-module and
μA(C) � n.

(iv) There exists a faithful A[b]-module M such that M is a finitely generated A-module and
μA(M) � n.

Proof. This follows from [3, Proposition 5.1], just taking into account the definition of
idA(b). �

Next we prove that the integral degree of the sum or product of two integral elements is, in
fact, bounded above by the product of their integral degrees.

Corollary 6.2. Let A ⊂ B be a ring extension and b1, . . . , bn ∈ B integral over A. Then
A[b1, . . . , bn] is a finitely generated A-module, A ⊂ A[b1, . . . , bn] is an integral extension and:

max
{
idA(bi)

}
� dA

(
A[b1, . . . , bn]

)
� μA

(
A[b1, . . . , bn]

)
�

n∏
i=1

idA(bi).

In particular, if b ∈ B is integral over A, then idA(b) = dA(A[b]) = μA(A[b]).

Proof. Let C = A[b1, . . . , bn] and m = ∏n
i=1 idA(bi). Then it is clear that μA(C) � m. Now

take any b ∈ C ⊂ B . So we have A ⊂ A[b] ⊂ C ⊂ B with μA(C) = r � m. By Proposition 6.1,
(iii) ⇒ (i), b is integral over A and idA(b) � r and taking the supremum over all b ∈ C, then
dA(C) � r = μA(C). As for the second assertion, just take n = 1. �
Corollary 6.3. Let A ⊂ B be a ring extension. If B is a finitely generated A-module, then A ⊂ B

is integral and

dA(B) � μA(B).

Proof. If b ∈ B , take A ⊂ A[b] ⊂ B , with B a finitely generated A-module. By Proposition 6.1,
(iii) ⇒ (i), b is integral over A and idA(b) � μA(B). Taking the supremum, dA(B) � μA(B). �

Let A be noetherian domain and let A be the integral closure of A in its quotient field. If
dimA � 2, then A is noetherian (see e.g. [23, 11.7] and [24, 33.12]). Nevertheless, A may be
a nonfinitely generated A-module, as an example of Akizuki shows ([2] or [29, 9.5]). Next, we
want to prove that the ring A in the example of Akizuki has at least finite integral degree dA(A).
Before that, and for easy reference, we state the following lemma.

Lemma 6.4. Let A be a ring and x, y ∈ A, with x regular. The following are equivalent.

(i) y/x is integral over A and idA(y/x) � n.
(ii) (x) is a reduction of (x, y) and rn(x)(x, y) � n − 1.

(iii) x(x, y)n−1 : yn = A.

In particular, if y/x is integral over A, then idA(y/x) = rt(x, y) = rn(x)(x, y) + 1.
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Proof. Take y/x ∈ A with idA(y/x) � n. Then, there exist ai ∈ A such that (y/x)n +
a1(y/x)n−1 +· · ·+an = 0. Multiplying by xn, one has yn ∈ xIn−1, where I = (x, y). Thus In =
xIn−1, J = (x) is a reduction of I and rnJ (I ) � n − 1. If J = (x) is a reduction of I = (x, y)

with rnJ (I ) � n−1, then In = xIn−1 and yn ∈ xIn−1. Thus 1 ∈ xIn−1 : yn and xIn−1 : yn = A.
Finally, if xIn−1 : yn = A, where I = (x, y), then yn ∈ xIn−1 and yn = b1xyn−1 + · · · + bnx

n,
for some bi ∈ A. Dividing by xn one obtains an integral equation of y/x over A of degree n. In
particular, if y/x ∈ A with idA(y/x) = n � 2, then xIn−2 : yn−1 � A = xIn−1 : yn, where I =
(x, y). By Proposition 3.2, E(I)n �= 0 and E(I)n+s = 0 for all s � 1. Thus rt(I ) = n = idA(y/x).
Moreover, (i) ⇔ (ii) says that J = (x) is a reduction of I = (x, y) and that rnJ (I ) = n − 1. �

Now, let us prove that the example of Akizuki has finite integral degree. Denote by e(A) the
multiplicity of A.

Proposition 6.5. Let A be a one-dimensional noetherian local ring. Then

dA(A) � e
(
A/H 0

m(A)
) + length

(
H 0

m(A)
)
.

In particular, if A is a domain (as Akizuki’s example is), then dA(A) � e(A).

Proof. Take y/x ∈ A with x, y ∈ A, x regular, and I = (x, y) the ideal of A generated by x, y.
By Lemma 6.4, idA(y/x) = rt(I ). By [28, Lemma 6.1], rt(I ) � rt(IA/J ) + length(J ), where
J = H 0

m(A). By [28, Lemma 6.3], then rt(IA/J ) � e(A/J ). �
We next see that there exist one-dimensional noetherian domains with infinite integral degree.

Remark that the ring in this example must be not local nor excellent so that one cannot apply
the existence of a uniform bound for the relation type of all ideals (see [28, Proposition 6.5 and
Theorem 3]). The next example is due to Sally and Vasconcelos (see [31, Example 1.4] and also
[28, Remark 7.3]).

Example 6.6. There exist one-dimensional noetherian domains A with dA(A) infinite.

Proof. Let t1, t2, t3, . . . be infinitely many indeterminates over a field k. Let R be defined as
R = k[t2

1 , t3
1 , t3

2 , t4
2 , t5

2 , . . . , tn+1
n , tn+2

n , . . . , t2n+1
n , . . .]. Take pn = (tn+1

n , tn+2
n , . . . , t2n+1

n ), which
is a prime ideal of height 1. Let S be the multiplicative closed set R − ⋃

pn and A = S−1R. One
can prove that A is a one-dimensional noetherian domain and that tn+2

n /tn+1
n is in A and has

integral degree n. Therefore dA(A) = ∞. �
We now give two more properties of the integral degree.

Proposition 6.7. Let A ⊂ B and B ⊂ C be integral extensions. Then A ⊂ C is an integral exten-
sion and

dA(C) � dA(B)dB(C) · dB(C).

Proof. If c ∈ C, there exists an equation cn + b1c
n−1 + · · · + bn−1c + bn = 0, with bi ∈ B

and n � dB(C). Take D = A[b1, . . . , bn]. Since A ⊂ B is an integral extension, all bi are
integral over A and, by Corollary 6.2, D is a finitely generated A-module and μA(D) �
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∏n
i=1 idA(bi) � dA(B)dB(C). On the other hand, c is clearly integral over D and D[c] is a

finitely generated D-module with μD(D[c]) � n � dB(C). Since D is a finitely generated
A-module and D[c] is a finitely generated D-module, then D[c] is a finitely generated A-
module. So we have A ⊂ A[c] ⊂ D[c] ⊂ C with D[c] a finitely generated A-module with
μA(D[c]) � μA(D)μD(D[c]) � dA(B)dB(C) · dB(C). Applying Proposition 6.1, (iii) ⇒ (i), we
deduce that c is integral over A and idA(c) � dA(B)dB(C) · dB(C). �
Proposition 6.8. Let A ⊂ B be an integral extension and S a multiplicatively closed subset of A.
Then S−1A ⊂ S−1B is an integral extension and

dS−1A

(
S−1B

)
� dA(B).

In particular, if A is reduced, p is a prime ideal of A and A and Ap are the integral closures of
A and Ap in their total quotient rings, then

dAp
(Ap) � dA(A).

Proof. Let b/s ∈ S−1B , b ∈ B , s ∈ S. Then b/s is integral over S−1A and idS−1A(b/s) �
idA(b) � dA(B). If A is reduced, then S−1A = S−1A (see e.g. [15, Lemma 2.1]). Therefore,
if S = A − p, (Ap) = S−1A = S−1A and dAp

(Ap) = dS−1A(S−1A) � dA(A). �
If A is not reduced, Proposition 6.8 may fail. The next example is taken from [15].

Example 6.9. Let k be a field and A = k�x, y, z�/(x3 − y2)(x, y, z). Since the maximal ideal
annihilates the nonzero element x3 − y2, A is its own classical ring of quotients and so
is integrally closed and dA(A) = 1. Set S the multiplicatively closed set {zn,n � 0}. Then
S−1A = K�x, y�/(x3 − y2), where K is the quotient field of k�z�, and one can prove that
dS−1A(S−1A) = 2.

7. Integral degree and reduction number

We now prove the main result of the paper. Recall that if I is a regular ideal having princi-
pal reductions J1 and J2 with rnJ1(I ) = n and rnJ2(I ) = m, then Huckaba proved that n = m

(see [18], where the local assumption is not needed; it could also be deduced from Theorem 5.3).
We will denote rn(I ) to the J -reduction number of I for any principal reduction J of I .

Theorem 7.1. Let A be a noetherian ring, A ⊃ Q. Then

dA(A) = sup
{
rn(I )

∣∣ I a regular ideal having a principal reduction
} + 1.

Proof. Set σ = sup{rn(I ) | I a regular ideal having a principal reduction} + 1 and d = dA(A).
Take I any regular ideal of A having a principal reduction J = (x), which is also regular.
Then In+1 = xIn for some n � 0. Set H = x−1I . Then H is a fractional ideal of A with
Hn+1 = Hn. If y ∈ I , (y/x)Hn ⊂ Hn+1 = Hn. Thus Hn is a faithful A[y/x]-module. By Propo-
sition 6.1, y/x is integral over A. Thus idA(y/x) � d . By Lemma 6.4, x(x, y)d−1 : yd = A and
yd ∈ x(x, y)d−1 ⊆ xId−1. Therefore I [d] ⊂ xId−1, where I [d] stands for the ideal generated by
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the d th powers of all elements of I . If A ⊃ Q, then I [d] = I d (see e.g. [4, A1, §8, n◦2, p. 95]).
Thus rn(I ) � d − 1 and σ � d . Now take x, y ∈ A, with x regular, such that y/x is integral
over A. By Lemma 6.4, idA(y/x) = rn(x, y) + 1 � σ . Therefore d � σ . �
Remark 7.2. Let A be a noetherian ring, A ⊃ Q. If I is a regular ideal of A having a principal
reduction, by Theorem 5.3, rt(I ) � rn(I ) + 1 and reg(R(I )) = rn(I ). Moreover, by Lemma 6.4,
idA(y/x) = rt(x, y) for any x, y ∈ A, with x regular and such that y/x is integral over A. In other
words, dA(A) is less than or equal to the supremum of the relation type of two-generated regular
ideals of A having principal reductions. Therefore, in Theorem 7.1, one can replace rn(I )+ 1 by
either reg(R(I )) + 1 or else rt(I ). In addition, one can take the supremum just over the set of
two-generated regular ideals having principal reductions.

We state a particular version of Theorem 7.1 which will be used later. Note that here we do
not need the hypothesis A ⊃ Q.

Proposition 7.3. Let (A,m) be a noetherian local ring with infinite residue field. Then

dA(A) = sup
{
rtm(I )

∣∣ I a two-generated regular ideal of A
}
.

Proof. Set σ = sup{rtm(I ) | I a two-generated regular ideal of A} and d = dA(A). Take I a two-
generated regular ideal of A. Since A is noetherian local with infinite residue field, I has a
minimal reduction J generated by as many elements as the analytic spread l(I ) of I (see [25]
or [22]). If l(I ) = 1, by Remark 3.1 and Theorems 5.3 and 7.1, rtm(I ) � rt(I ) � rn(I ) + 1 � d .
If l(I ) = 2, then I is generated by two analytically independent elements x, y and the fiber
cone of I , Rm(I ) = Fm(I ) = ⊕

n�0 In/mIn is isomorphic to a polynomial ring (A/m)[X,Y ].
Thus rtm(I ) = rt(Fm(I )) = 1 � d and σ � d . Now take x, y ∈ A, with x regular, such that
y/x is integral over A. Set idA(y/x) = n. By Lemma 6.4, xIn−2 : yn−1 � xIn−1 : yn = A. By
Proposition 3.2, Em(I )n = A/m and Em(I )n+s = 0 for all s � 1. Thus rtm(I ) = n. Therefore
idA(y/x) = n = rtm(I ) � σ . Thus d � σ . �
Remark 7.4. Clearly, Theorem 7.1 is no longer true for ideals having reductions generated by
regular sequences of length l � 2. For instance, in the power series ring A = k�x, y� over a
field k, the ideals In = (xn, yn, xn−1y) have reductions (xn, yn) with reduction number n − 1
(see [21, Remark 5.8]). However, (xn, yn) does not verify condition (iii) of Theorem 5.3.

8. Uniform Artin–Rees numbers

We now can prove all the results related to Artin–Rees properties.

Theorem 8.1. Let A be a noetherian ring with finite integral degree dA(A) = d . Suppose that
A ⊃ Q. Let N ⊂ M be two finitely generated A-modules. Let I be a regular ideal of A having
a principal reduction that is generated by a d-sequence with respect to M/N . Then, for every
integer n � d ,

InM ∩ N = In−d
(
I dM ∩ N

)
.
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Proof. Since I is regular and has a principal reduction, by Theorem 7.1, rn(I ) � d − 1. It is
enough to prove that s(N,M; I ) � rn(I ) + 1. Let J = (x) be a principal reduction of I , set
r = rn(I ) and take k � 1. Then I r+kM ∩ N = xkI rM ∩ N . Since x is a d-sequence with respect
to M/N , xkI rM ∩ N = xk−1(xI rM ∩ N) ⊆ I k−1(I r+1M ∩ N). Thus s(N,M; I ) � r + 1. �
Remark 8.2. By Proposition 3.3, s(N,M; I ) � rt(I ;M/N). If I has a principal reduction J

generated by a d-sequence with respect to M/N , then J is also a principal reduction of I with
respect to M/N and, by Theorem 5.3, rt(I ;M/N) � rnJ (I ;M/N) + 1 � rnJ (I ) + 1. Since
I is a regular ideal having a principal reduction, by Theorem 7.1, rn(I ) � d − 1. Therefore,
s(N,M; I ) � d , which also proves Theorem 8.1.

Our ideal-theoretic version of Theorem 8.1 is the following.

Theorem 8.3. Let A be a noetherian ring, A ⊃ Q. Let a be an ideal of A such that A/a has
finite integral degree dA/a(A/a) = d . Let I be an ideal of A such that IA/a has an A/a-regular
principal reduction. Then, for every integer n � d ,

In ∩ a = In−d
(
I d ∩ a

)
.

Proof. By Proposition 3.3, s(a,A; I ) � rt(I ;A/a). By Remark 3.1, rt(I ;A/a) = rt(IA/a) =
rt(IA/a;A/a). Since IA/a is A/a-regular and has principal reduction JA/a, by Theo-
rem 5.3, rt(IA/a;A/a) � rnJA/a(IA/a;A/a) + 1 = rnJA/a(IA/a) + 1. By Theorem 7.1,
rnJA/a(IA/a) � d − 1. So s(a,A; I ) � d . �

As a corollary of Theorem 8.3 we obtain a particular version of the main result in [28].

Corollary 8.4. Let (A,m) be a noetherian local ring, A ⊃ Q. Let a be an ideal of A such that A/a

has finite integral degree dA/a(A/a) = d . Suppose that dim(A/a) � 1. Then, for every integer
n � d and for every ideal I of A such that IA/a is A/a-regular,

In ∩ a = In−d
(
I d ∩ a

)
.

Proof. Since dim(A/a) � 1, every ideal I of A is such that IA/a has a principal reduction. Then
apply Theorem 8.3. �

Remark that by a result of Krull, if (R,n) is a noetherian local nonreduced ring such that n

contains a regular element, then the integral closure R is not a finite R-module (see e.g. [23,
§33]). In particular, in Theorem 8.3 and in Corollary 8.4 (as well as in Theorem 8.6), setting
R = A/a, if A/a has a finite integral closure and m/a has a regular element, one deduces that a

is forced to be a radical ideal.
The next example, taken from Eisenbud and Hochster in [14], shows that if the integral degree

is not finite, then the conclusion of Theorem 8.3 may be false.

Example 8.5. There exist A, a two-dimensional noetherian domain, a, a prime ideal of A, and
{In}n, a family of two-generated ideals of A such that InA/a has an A/a-regular principal reduc-
tion, but, for every integer n � 1,
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In
n ∩ a � In

(
In−1
n ∩ a

)
.

Proof. Let k be an algebraically closed field and {Xn}, {Yn} two countable families of inde-
terminates. Set fn = Xn

n − Yn+1
n and In the ideal in Tn = k[X1, Y1, . . . ,Xn,Yn] generated by

f2 − f1, . . . , fn − f1. Set Sn = Tn/In and Un = Sn − ⋃n
i=1(Xi, Yi)Sn. Un is a multiplicatively

closed subset of Sn. Set An = U−1
n Sn, A = lim−→ An and xn, yn and f the images of Xn,Yn and

fn in A. Then A is a two-dimensional noetherian regular factorial ring whose maximal ideals
In = (xn, yn) form a countable set. Their intersection

⋂
n In is a prime principal ideal a = (f )

whose generator f is in In
n . Then InA/a is A/a-regular and ynA/a is a principal reduction of

InA/a. Moreover,

In

(
In−1
n ∩ a

) = Ina � a = In
n ∩ a.

In particular, by Theorem 8.3, dA/a(A/a) = ∞. �
We now prove that there exists a uniform Artin–Rees modulo m number for the set of two-

generated regular ideals. Here, we do not need A ⊃ Q.

Theorem 8.6. Let (A,m) be a noetherian local ring with infinite residue field. Let a be an ideal
of A such that A/a has finite integral degree dA/a(A/a) = d . Let I be a two-generated ideal of
A such that IA/a is A/a-regular. Then, for every n � d ,

In ∩ a = In−d
(
I d ∩ a

) + mIn ∩ a.

Proof. Let I be a two-generated ideal of A such that IA/a is A/a-regular. By Proposition 3.3,
sm(a,A; I ) � rtm(I ;A/a). By Remark 3.1, rtm(I ;A/a) = rtm/a(IA/a), which is d or less by
Proposition 7.3. �

The next example, taken from Wang in [38], shows that even this weaker uniform Artin–Rees
property of Theorem 8.6 is not true anymore for the set of three-generated ideals. It also shows
that if in Theorem 8.3 one changes the set of ideals having principal reductions for the set of
ideals having reductions generated by regular sequences of length two, then there may not exist
a uniform Artin–Rees (modulo m) number.

Example 8.7. There exist (A,m), a three-dimensional noetherian local ring with infinite residue
field, a, a prime ideal of A such that A/a has finite integral closure A/a, and {In}n, a family of
three-generated ideals of A such that InA/a is A/a-regular, but, for every n � 1,

In
n ∩ a � In

(
In−1
n ∩ a

) + mIn
n ∩ a.

Proof. Take (A,m), a three-dimensional regular local ring with infinite residue field, m =
(x, y, z), the maximal ideal generated by a regular system of parameters x, y, z, and a = (z).
Let In = (xn, yn, xn−1y + zn). Since xn, yn, xn−1y + zn is a regular sequence of A, the relation
type of In is rt(In) = 1. It is not difficult to prove that the relation type of InA/a and that the re-
lation type of its fiber cone are given by rt(I ;A/a) = rtm(I ;A/a) = n. Then, by Proposition 3.3,
sm(a,A; In) = rtm(In;A/a) = n. Remark that (xn, yn)A/a is a reduction of InA/a generated by
a regular sequence of length two. �
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