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Abstract

Massive multiple-input multiple-output (MIMO) is becoming a key technology for future 5G cellular networks.
Channel feedback for massive MIMO is challenging due to the substantially increased dimension of the channel matrix.
This motivates us to explore a novel feedback reduction scheme based on the theory of principal component analysis
(PCA). The proposed PCA-based feedback scheme exploits the spatial correlation characteristics of the massive MIMO
channel models, since the transmit antennas are deployed compactly at the base station (BS). In the proposed scheme,
the mobile station (MS) generates a compression matrix by operating PCA on the channel state information (CSI) over
a long-term period, and utilizes the compression matrix to compress the spatially correlated high-dimensional CSI into
a low-dimensional representation. Then, the compressed low-dimensional CSI is fed back to the BS in a short-term
period. In order to recover the high-dimensional CSI at the BS, the compression matrix is refreshed and fed back from
MS to BS at every long-term period. The information distortion of the proposed scheme is also investigated and a
closed-form expression for an upper bound to the normalized information distortion is derived. The overhead analysis
and numerical results show that the proposed scheme can offer a worthwhile tradeoff between the system capacity
performance and implementation complexity including the feedback overhead and codebook search complexity.
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1 Introduction
Themassive multiple-input multiple-output (MIMO) sys-
tem which deploys large numbers of transmit antennas
at the base station (BS) has been listed as one of the key
techniques for fifth generation (5G) cellular networks [1].
The deployment of numerous antennas enables massive
MIMO systems to achieve not only higher system capac-
ity, but also higher spectrum and energy efficiency than
conventional MIMO systems [2, 3].
The superior performance of the massive MIMO sys-

tems relies on the spatial multiplexing and the minor
multi-user interference. As is the case for conventional
MIMO systems, this in turn requires the BS to have per-
fect knowledge of the downlink channel state information
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(CSI) [4]. In a time division duplexing (TDD) system, the
channel reciprocity can be exploited to acquire the down-
link CSI at the BS [5]. However, things become more chal-
lenging when the system operates in a frequency division
duplexing (FDD) mode, where the channel reciprocity no
longer holds. Therefore, a mobile station (MS) needs to
feedback the downlink CSI through a rate-limited uplink
channel. The authors in [6] drew the conclusion that the
required feedback rate per user should be increased in
proportion to the number of the transmit antennas for
the sake of obtaining the full multiplexing gain. There-
fore, feedback overhead turns into a key challenge in the
massive MIMO systems.
The foundation of the works on feedback overhead

reduction for MIMO systems is the correlation feature of
MIMO channels. Limited feedback techniques for corre-
lated MIMO channels were designed in [7–9]. A modified
Grassmannian line packing codebook was proposed in [7],
and the authors in [8, 9] rotated the codebook for i.i.d.
channels with a unitary matrix to obtain the codebook for
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correlated MIMO channels. A systematic codebook was
designed for quantized beamforming in [10], which was
implemented by maps that can rotate and scale spherical
caps on the Grassmannian manifold.
Furthermore, a codebook for uniform rectangular arrays

(URA) for massive MIMO antennas was designed in
[11, 12]. It was derived by the Kronecker product of two
ULA codebooks. The authors in [13] proposed a feedback
framework for FDD massive MIMO systems that divides
the coverage area into sub-sectors, where each sub-sector
is formed by a set of narrow beams that covers a pre-
assigned area in azimuth and elevation. Non-coherent
trellis-coded quantization and trellis-extended codebooks
for massive MIMO systems were proposed in [14, 15],
which exploited a Viterbi decoder for CSI quantization
and a convolutional encoder for CSI reconstruction. A
projection based feedback compression was utilized to
project the high-dimensional channel space into a lower
dimensional subspace [16]. However, [16] did not explain
how to feedback the projection matrix.
The compressive sensing (CS)-based limited feedback

schemes for massive MIMO were proposed to reduce
the feedback overhead by exploiting the spatial correla-
tion of CSI [17–20]. The authors in [17] introduced CS
to massive MIMO for limited feedback. A unique insight
was provided that strong spatial correlations are exhib-
ited in massive closely-packed antenna arrays, so channel
vectors can be represented in sparse form in the spatial-
frequency domain. Subsequently, a compressed analog
feedback strategy for spatially correlated massive MIMO
channels was proposed in [18]. In contrast to the strat-
egy in [18], the low-dimensional CSI was quantized with
a codebook and the preferred index was fed back in [19]
and [20].
The choice of orthogonal basis, which is intended for

the sparse representation of the original signal, plays
an important role in the recovery of the original high-
dimensional signal at the BS. Two such kinds of orthog-
onal basis construction, the discrete cosine transform
(DCT) and the Karhunen-Loeve transform (KLT), are
usually employed [21]. If the channel correlation matrix
is neither known at the MS nor the BS, the signal-
independent DCT basis is a better option. On the one
hand, because of its signal-independent nature, the uti-
lization of the DCT basis does not require the MS to
inform the BS of the channel correlation matrix. On the
other hand, this makes the DCT basis incapable of track-
ing the real-time change of channel state, which has a
negative effect on system capacity. In contrast to the DCT
basis, the KLT basis can excellently adapt to CSI change.
Therefore, when MS and BS both know the instantaneous
channel correlation matrix, the KLT basis can provide the
optimal sparse representation, which promises accurate
recovery even if only a small number of measurements

are available. Unfortunately, the signal-dependent nature
of the KLT basis requests the MS to feedback channel cor-
relation matrix instantaneously [22]. This can hardly be
implemented in practical systems because of the heavy
feedback overhead.
In this case, principal component analysis (PCA) can

offer a tradeoff between system capacity and practical
implementation [23, 24]. Compared with a DCT basis,
PCA can be more adaptive to the change of the channel
state, since PCA is signal-dependent [23]. This guarantees
PCA better system capacity than a DCT basis. Com-
pared with a KLT basis, PCA only needs that the MS
and the BS have knowledge of the channel correlation
matrix in a long-term period. This makes PCA achieve
feedback overhead reduction much better than a KLT
basis. What is more, the most attractive characteristic of
PCA is that it is effective for dimensionality reduction
of high-dimensional data [24], whose elements are cor-
related. Inspired by this, PCA has great potential to be
applied to the compression of high-dimensional CSI with
strong spatial correlation to reduce feedback overhead in
massive MIMO systems. To the best of our knowledge,
there have not existed any works addressing a practical
feedback scheme based on PCA.
This paper proposes a PCA-based feedback scheme for

massive MIMO systems. In the proposed scheme, the
MS utilizes a compression matrix, which is obtained by
operating PCA on CSI observed over a long-term period,
to compress spatially correlated high-dimensional CSI
into low-dimensional representation. After quantizing the
low-dimensional CSI with a random vector quantization
(RVQ) codebook, the index of the preferred codeword is
fed back to the BS in each short-term period. In order to
track the channel changes and enable the BS to recover the
high-dimensional CSI, it is necessary for theMS to refresh
and feedback the compression matrix at every long-term
period. Through the dimensionality reduction processing
by PCA, feedback overhead and codebook search com-
plexity can be reduced. The contributions of the paper are
summarized as follows.

• A PCA-based feedback scheme for FDD massive
MIMO systems is proposed. The operation
procedures at the BS and the MS are divided into two
types, which are long-term period operations and
short-term period operations. In more detail, the
exact operation procedures both at the BS and the
MS, as well as the derivation of the compression
matrix at the MS, are presented. The distortion of the
proposed scheme is analyzed. An upper bound to the
normalized distortion is derived.

• System performance comparisons of the PCA-based
feedback scheme, the DCT-based CS scheme and the
KLT-based CS scheme are presented. The feedback
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overhead and the codebook search complexity are
analyzed and the system capacity performance is
simulated. Looking at the simulation results and the
feedback overhead analysis comprehensively, we
draw the conclusion that our proposed scheme can
achieve a compromise between system capacity and
implementation complexity (feedback overhead and
codebook search complexity).

The remainder of this paper is organized as follows.
In Section 2, the massive MIMO system model is
described. Section 2 first reviews the PCAmethod itself in
Subsection and then provides the details of the proposed
scheme in Subsection . Moreover, distortion of the pro-
posed scheme is analyzed in Subsection . The feedback
overhead as well as codebook search complexity compari-
son and numerical results follow in Section 4 and Section
5, respectively. Finally, the conclusion of this paper is
presented in Secton 6.
Notation: Throughout this paper, upper and lower case

boldfaces are used to describe matrix A and vector a,
respectively. We denote the transpose and the conjugate
transpose of matrix A or vector a by AT (aT ) and AH (aH ).
In addiction, A−1 denotes the inverse of a square matrix.

2 Systemmodel
We consider a downlink massive MIMO system, where
there is a single cell, in which the BS equipped with Nt
antennas serves K single-antenna MSs.

2.1 Spatially correlated massive MIMO channel
A massive MIMO broadcast channel is modeled in this
section. For simplicity, but without loss of generality,
a large-scale uniform linear array (ULA) with an enor-
mous number of antenna elements deployed compactly
is assumed. The spatial correlations are exhibited in the
massive MIMO channel model, because of the insuffi-
cient inter-element spacing. Additionally, a poor scat-
tering environment may also contribute to the spatial
correlation. Different from the previous works, which
only consider either insufficient inter-element spacing or
poor scattering environment, this paper combines the
well-known Kronecker correlation model [25] with the
geometrical one-ring model [26, 27], so as to describe the
properties of the spatial correlation of the massive MIMO
channel more precisely. Since the MS is equipped with a
single antenna, the channel between the kth MS and BS is
denoted by a 1 × Nt row vector hk (k = 1, 2, . . . ,K ). Based
on the Kronecker correlationmodel, hk can bemodeled as

hk = hone−ringR
1
2
Tx, (1)

where R
1
2
Tx is the square root of the correlation matrix

at the transmitter depicting the impact of insufficient

inter-element spacing and hone−ring is derived from the
one-ring model describing the spatial correlation caused
by a scattering environment. Note that the correlation of
the channel is time varying, due to the change of both the
relative positions of scatterers and the correlation matrix
at the transmitter.
In more detail, the uth row and the vth column entry

of RTx (the correlation coefficient between the uth and
the vth elements within the BS transmit antenna array)
obeys the zeroth-order Bessel function of the first kind
correlation model [18], that is

ruv = J0
(
2πduv

λ

)
, (2)

where duv is the distance between the two antenna ele-
ments and λ denotes the carrier wavelength.
As to the one-ring model, we assume that each MS

is surrounded by Q scatterers, which are uniformly dis-
tributed on a circle with the radius r, as shown in Fig. 1.
The hone−ring can be given as follows [27],

hone−ring
�= 1√

Q

Q∑
q=1

hkq. (3)

In (3), hkq is the channel vector of the MS k over the qth
scattering path, as given by

hkq
�=
[√

βkq1e−j2π
dkq1+r

λ , . . . ,
√

βkqNte
−j2π

dkqNt+r
λ

]
ejϕkq ,

(4)

where dkqm is the distance between the qth scatterer of the
kth MS and the mth (m = 1, 2 . . . ,Nt) BS antenna, while
dkqm + r denotes the path length from the kth MS to the
mth antenna via the qth path. Also, ejϕkq represents the
random common phase resulting from either the random
perturbations of the MS location or the phase shift due to

r

scatterers

MS1

MS2r

BS

Fig. 1 Illustration of the one-ring model with Q scatterers uniformly
distributed on a circle of radius r



Zhang et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:64 Page 4 of 12

the reflection of the scatterer, and βkqm denotes the path
loss of the qth scattering path, which is modeled by

βkqm = α(
dkqm + r

)γ , (5)

where α is a constant and γ is the path loss exponent.

2.2 Downlink signal model
In the downlink transmission, sk ∈ C and wk ∈ C

Nt×1

denote the transmit signal with power constraint
E|sk|2 = 1 and the column precoding vector intended for
the kth MS, respectively. In this paper, zero-forcing pre-
coding is adopted to eliminate multiuser interference [28].
Also, let nk be additive Gaussian noise with zeromean and
unit variance at the MS k. Then the received signal of the
kth MS can be expressed as

yk =
√
Pt
K
hkwksk︸ ︷︷ ︸

desired signal

+
∑
k′ �=k

√
Pt
K
hkwk′sk′ + nk

︸ ︷︷ ︸
interfering signal and noise

, (6)

where Pt is the total transmit power of the BS. Equal
power allocation is assumed with Pt

K being the power
distributed to each MS.
As seen in (6), yk contains two main terms. The first

term is the desired signal, while the other is the interfer-
ing signal and noise. From (6), we can derive the system
capacity as

C =
K∑

k=1
log2

⎛
⎜⎝1 +

Pt
K |hkwk|2

Pt
K
∑
k′ �=k

|hkwk′ |2 + 1

⎞
⎟⎠. (7)

3 Feedback scheme for massive MIMO
3.1 Review of principal component analysis
We suppose that there are a data samples, each of which
contains b characteristics. The b characteristics have com-
plicated correlation relationships with each other, which
makes it possible for dimensionality reduction with PCA.
For convenience of description, let the a × b matrix X
denote the original data containing the a data samples.
The key point of PCA is how to derive a b × l (l < b)
compression matrix �̄ , which is utilized to compress the
high-dimensional data a × b X into a low-dimensional
a × l X̄ as follows,

X̄ = X�̄ , (8)

in which, �̄ is composed of l-dominating eigenvectors, the
so-called principal components, which are selected from
all b eigenvectors of X.
For the sake of determining which components are to

be selected, the concept of contribution rate is intro-
duced. Consider a descending ordering of the b eigenval-
ues λ1, λ2 . . . , λb. Then, the contribution rate of the gth

eigenvalue λg is defined as λg∑b
g=1 λg

, while the cumulative

contribution rate of the top l eigenvalues can be expressed

by
∑l

g=1 λg∑b
g=1 λg

. Generally, when the cumulative contribution

rate of the chosen l principal components exceeds a cer-
tain level, the information loss is acceptable.
Finally, the original X can be recovered from X̄ by

X̂ = X̄�̄
H . (9)

3.2 Proposed PCA-based feedback scheme
A PCA-based feedback scheme for massive MIMO is
proposed in this subsection. In the proposed scheme,
different operations at the MS and the BS have differ-
ent time periods, long-term period Tl and short-term
period Ts. Every long-term period Tl contains several
short-term periods Ts. In every Ts, the MS utilizes the
compression matrix to compress high-dimensional CSI
into low-dimensional representation. Then, the com-
pressed low-dimensional CSI is quantized by the RVQ
codebook and the index of the preferred codeword is fed
back to the BS. Because of the signal-dependent nature of
PCA, the compressionmatrix is derived by executing PCA
on the CSI which is obtained through continuous channel
estimation during a whole long-term period.

3.2.1 Compressionmatrix derivation
First of all, the detailed procedure for deriving the
compression matrix in the nth long-term period Tl

(n)

with the PCA method is given in Table 1. We assume
MS k can obtain S high-dimensional channel vectors(
h(n,1)
k ,h(n,2)

k . . . ,h(n,S)
k

)
through ideal channel estimation

in Tl
(n). Here, the S channel vectors can be viewed as S

data samples, each of which containsNt characteristics. In
order to compress the high-dimensional CSI (channel vec-
tors), we chooseM (M � Nt) dominating eigenvectors to
compose the compression matrix Ū(n) ∈ C

Nt×M.
The compression matrix obtained in the long-term

period Tl
(n) will be used by the MS to compress 1 × Nt

channel vectors into 1 × M vectors, as well as by the BS to
perform recovery in the period Tl

(n+1).

3.2.2 MS operation
The main operations at the MS can be classified into two
types: long-term period operations and short-term period
operations.
In the long-term period T (n)

l , the MS performs the con-
tinuous channel estimation to obtain S high-dimensional
channel vectors, and derives the compression matrix Ū(n).
Then, each column of the compression matrix is quan-
tized by another RVQ codebook. After quantization, the
compression matrix Ū(n) is fed back to the BS at the end
of T (n)

l .
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Table 1 Procedure of deriving the compression matrix in each
long-term period with the PCA method at the MS

Initialization

S: Number of the short-term period Ts in every

long-term period Tl .

M: Number of the dominating eigenvectors chosen

to form the compression matrix.

Procedures

1) Channel estimation: perform channel

estimation continuously in Tl(
n) to obtain

S high-dimensional channel vectors

h(n,1)
k ,h(n,2)

k . . . ,h(n,S)
k .

2) Computation of covariance matrix: H̃(n) =[(
h(n,1)
k

)H
,
(
h(n,2)
k

)H
. . . ,

(
h(n,S)
k

)H]H
∈ C

S×Nt and compute its covariance matrix.

3) Eigen-decomposition: perform eigen-

decomposition on the above covariance matrix

Cov
(
H̃(n) , H̃(n)

)
= U(n)D(n)

(
U(n)

)H
.

4) Formation of compression matrix: chooseM

dominating eigenvectors to form compression

matrix Ū(n) ∈ C
Nt×M .

Operation in the sth (s = 1, 2 . . . , S) short-term period of
the nth long-term period, T (n,s)

s , is described as follows:
Step 1. Channel estimation is performed to obtain a

1 × Nt channel vector h(n,s)
k .

Step 2. Multiply h(n,s)
k by the compression matrix

derived in the previous long-term period

h̄(n,s)
k = h(n,s)

k Ū(n−1). (10)

By this step, the original high-dimensional CSI (1 × Nt)
is compressed into a low-dimensional representation
(1 × M). The compression ratio is M

Nt
.

Step 3.Quantize the low-dimensional CSI h̄(n,s)
k by RVQ

codebook and obtain the index number of the codeword
that best fits h̄(n,s)

k , that is

j(n,s) = argmax
j

∣∣∣h̄(n, s)
k cj

∣∣∣ , (11)

where cj is the jth codeword of the codebook. Compared
with the quantizing high-dimensional CSI directly, the
RVQ codebook used above can be designed to be much
smaller. This not only reduces the feedback overhead, but
also decreases the codebook search complexity.
Step 4. The index of the preferred codeword is fed back

to the BS.

3.2.3 BS operation
Similarly, the main operation at the BS can also be clas-
sified into long-term period operation and short-term
period operation. At the end of T (n)

l , the BS receives the
compression matrix Ū(n) to perform high-dimensional
CSI recovery in the next long-term period T (n+1)

l . Mean-
while, the short-term period operation follows the steps
below:
Step 1. The codeword index j(n,s) is received in each

short-term period;
Step 2. As the BS and the MS share the same codebook,

it is easy for the BS to find the quantized low-dimensional
CSI ĥ(n,s)

k by letting ĥ(n,s)
k = cj(n,s) ;

Step 3. The high-dimensional CSI
	

h
(n,s)
k can be recov-

ered by

	

h
(n, s)
k = ĥ(n, s)

k

(
Ū(n−1)

)H
, (12)

where Ū(n−1) is derived from the period T (n−1)
l .

3.3 Distortion analysis of proposed scheme
The distortion of our proposed scheme consists of three
components, the distortion resulting from the PCA pro-
cessing, the low-dimensional CSI h̄ quantization and the
compression matrix Ū quantization. To facilitate the dis-
tortion analysis below, different representations of CSI in
different stages are enumerated in Table 2.

3.3.1 Distortion analysis of PCA
First, we consider the distortion caused by the PCA
method itself, with no quantization errors resulting from
low-dimensional CSI or the compression matrix taken
into account. That is, we measure the mean square error
between h and h̃, where h̃ = hŪŪH . In this paper, h is
a Nt dimensional row vector, which can be viewed as a
point in the Nt dimensional space. Therefore, h can be

Table 2 Different representations of CSI in different stages

Representations Implications

h Original high-dimensional CSI estimated by MS

Low-dimensional CSI after normalization

h̄ and compression, that is h̄ = hŪ
‖hŪ‖

ĥ Quantized low-dimensional CSI

	

h High-dimensional CSI recovered from ĥ

High-dimensional CSI recovered from h̄

h̃ (with no quantization error of low-dimensional CSI)
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expressed by the linear combination of a set of orthogonal
basis vectors, ui

h =
Nt∑
i=1

αiui, (13)

where ui denotes the ith basis vector.
In the PCA method, the high-dimensional CSI h is

compressed into low-dimensional (M-dimensional) h̄, the
components of which are derived by projecting h onto the
M dominating bais vectors. Given this, the reconstructed
high-dimensional CSI h̃ can be modeled as the combina-
tion of M dominating basis vectors and the other Nt − M
less dominating vectors,

h̃ =
M∑
i=1

ziui +
Nt∑

i=M+1
biui. (14)

Therefore, the information distortion caused by the
PCA itself, which is defined as the mean square error
between h and h̃, can be expressed by

J = 1
S

S∑
n=1

∥∥∥hn − h̃n
∥∥∥2, (15)

where S denotes the number of short-term periods in a
long-term period.

Proposition. The PCA-caused information distortion J
can be expressed by a linear sum of Nt − M less dominat-
ing eigenvalues of the channel covariance matrix.

J =
Nt∑

i=M+1
λi.

Proof. See Appendix A.

3.3.2 Distortion analysis of quantization
According to [6], to measure the quantization error, h̄ can
be modeled as

h̄ =
√
1 − d2ĥ + de, (16)

where ĥ is the quantization of h̄ and e is a unit norm vector
isotropically distributed in the nullspace of ĥ. Parameter
d denotes the quantization error independent of e, which
satisfies E

[
d2
] ≤ 2− B1

M−1 . Here, M represents the number
of principal components and B1 is the number of feedback
bits of h̄. Similarly, Ū can be modeled as

Ū =
√
1 − D2Û + DE, (17)

where Û is the quantization of Ū and E is composed
of M unit norm vectors isotropically distributed in the

nullspace of Û. Moreover, quantization error D is inde-
pendent of Û satisfying

E
[
D2] ≤ 2− B2/M

Nt−1 , (18)

where B2 denotes the number of feedback bits of the
compression matrix.
Before analyzing the distortion between the original

high-dimensional CSI h and the reconstructed
	

h , we first
focus on how to express

	

h in terms of h.

Proposition. The reconstructed high-dimensional CSI
	

h
can be expressed in terms of h as

	

h = hŪŪH − D2 · hIM − ∥∥hŪ∥∥ · d√
1 − D2 · eÛH

√
1 − d2 · √

1 − D2
,

(19)

where IM =
[

IM×M 0M×(Nt−M)

0(Nt−M)×M 0(Nt−M)×(Nt−M)

]
.

Proof. See Appendix B.

Having derived an expression for
	

h in terms of h,
our purpose is to analyze the distortion of the proposed
scheme. We derive an upper bound to the normalized
distortion (denoted by δ) between

	

h and h. Instead of
calculating δ directly, we first calculate the normalized
similarity (denoted by ρ) between

	

h and h. Then, δ can be
conveniently obtained by δ = 1 − ρ.
Before calculating the normalized similarity ρ between

	

h and h, it is insightful to look at the non-normalized

similarity E
[∣∣∣∣h	

h
H ∣∣∣∣
]
.

Proposition. A lower bound to the non-normalized sim-
ilarity between

	

h and h is given by

E

[∣∣∣∣h	

h
H ∣∣∣∣
]

≥ A − M · 2− B2/M
Nt−1 − A · 2− B1

M−1 , (20)

where A =
(
Nt −

Nt∑
i=M+1

λi

)
.
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Proof. Since we have derived an expression for
	

h in
terms of h, as given in Proposition 2, then the non-
normalized similarity can be expressed by

E

[∣∣∣∣h	

h
H ∣∣∣∣
]

= E

[∣∣∣∣∣h
(

hŪŪH−D2·hIM−∥∥hŪ∥∥·d√
1−D2·eÛH

√
1−d2·√1−D2

)H
∣∣∣∣∣
]

= E

[∣∣∣∣ ∥∥hŪ∥∥2−D2·hIMHhH−∥∥hŪ∥∥·d·h(Ū−DE
)
eH√

1−d2·√1−D2

∣∣∣∣
]
.

(21)

Now, because d2 < 1 and D2 < 1,
√
1 − d2 and√

1 − D2 are also smaller than 1. Additionally, since the
quantization of low-dimensional CSI and the compression
matrix are independent, E

[
EeH

] = 0. Therefore, the non-
normalized similarity can be bounded by (22), shown at
the top of the next page.

E

[∣∣∣∣h	

h
H ∣∣∣∣
]

≥ E

[∣∣∣∥∥hŪ∥∥2 − D2 · hIMHhH − ∥∥hŪ∥∥ · d · h (Ū − DE
)
eH
∣∣∣]

≥ E

[∥∥hŪ∥∥2 − D2 · hIMHhH − ∥∥hŪ∥∥ · d · h (Ū − DE
)
eH
]

= E

[∥∥hŪ∥∥2 − D2 · hIMHhH − ∥∥hŪ∥∥ · d · hŪeH
]

= E

[∥∥hŪ∥∥2 − D2 · hIMHhH − ∥∥hŪ∥∥2d2]
= E

[∥∥hŪ∥∥2]− E
[
D2] · E [hIMHhH

]− E

[∥∥hŪ∥∥2] · E [d2]
(22)

Further, we take advantage of the equations

E

[∥∥hŪ∥∥2] = Nt − J , (23)

E
[
hIMHhH

] = M, (24)
which are proved in Appendix C. Moreover, the upper
boundary of E

[
D2] and E

[
d2
]
are 2− B2/M

Nt−1 and 2− B1
M−1 ,

respectively. Consequently, we obtain (20).

From (23), we can observe that when there is no dis-
tortion caused by PCA (J = 0), as well as no quantization
error from low-dimensional CSI (2− B1

M−1 → 0) or com-
pression matrix (2− B2/M

Nt−1 → 0), the maximum value of the
lower bound reaches Nt . So the normalized similarity can
be expressed as

ρ ≥ A − M · 2− B2/M
Nt−1 − A · 2− B1

M−1

Nt
. (25)

Finally, the upper bound of the normalized distortion of
our proposed scheme can be obtained,

δ = 1 − ρ ≤ 1 − A − M · 2− B2/M
Nt−1 − A · 2− B1

M−1

Nt
. (26)

According to the expression (26), we give the theo-
retical upper bound of the distortion and the simulated
distortion in Fig. 2.
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Fig. 2 Upper bound of distortion versus the number of principal
components

4 Implementation complexity analysis
This section analyzes the feedback overhead and the code-
book search complexity of the proposed scheme. For com-
parison, the existing CS-based schemes utilizing the KLT
basis and the DCT basis are also taken into account.
The number of feedback bits per user increases linearly

with the number of transmit antennas, as modeled by [6]

B = (Nt − 1) log2ρ ≈ Nt − 1
3

ρ, (27)

where ρ denotes the received signal-to-noise ratio (SNR)
in decibels at the MS.
Consider a long-term period containing S short-term

periods. When the proposed scheme is adopted, the num-
ber of feedback bits can be represented by

Bpro = S
(M − 1) ρ

3
+ M

(Nt − 1) ρ

3
, (28)

where M is the number of the principal components, the
first term denotes the number of feedback bits for quan-
tizing low-dimensional CSI, and the second term is caused
by the quantization of the compression matrix.
For the DCT-based CS scheme, there is no need for the

MS to inform the BS of the channel correlation matrix,
due to the signal-independent nature of the DCT basis. So
the number of feedback bits for DCT-based CS is given by
BDCT = S · (M−1)ρ

3 .
In the case of the KLT-based CS scheme, the number

of feedback bits dramatically increases. In order to feed-
back the complete correlation matrix in every short-term
period, the second term of Eq. (28) needs to be modified
to express the number of feedback bits of the KLT-based
CS scheme, which is given by
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BKLT = S · (M − 1) ρ

3
+ S · Nt · (Nt − 1) ρ

3
. (29)

As for the codebook search complexity, it is propor-
tional to the number of conjugate multiplications when
searching for the best codeword. So the search complex-
ity of the proposed scheme, DCT-based CS and KLT-
based scheme in a long-term period can be expressed
as S · M · 2 (M−1)ρ

3 + M · Nt · 2 (Nt−1)ρ
3 , S · M · 2 (M−1)ρ

3 and
S · M · 2 (M−1)ρ

3 + S · Nt2 · 2 (Nt−1)ρ
3 , respectively.

Table 3 illustrates the comparison in detail. Based on
the analysis above, we can observe that the number of
feedback bits and the codebook search complexity of the
proposed scheme falls in between the DCT-based and
KLT-based CS schemes.

5 Simulation results
In this section, we present simulation results. A single
cell scenario is considered, where the BS deploys a uni-
form linear array with Nt = 128 antennas serving K = 6
single-antenna MSs. Table 4 lists the detailed simulation
parameters.

5.1 Feasibility validation
We verify whether PCA can be utilized to com-
press spatially correlated high-dimensional CSI into low-
dimensional representation. To achieve this purpose, we
simulate the eigenvalue distribution of the spatially cor-
related channels defined in (1). As shown in Fig. 3, the
eigenvalue distribution of the spatially correlated chan-
nel is far from uniform. The eigenvalues are sorted by
their contribution rate in descending order. The contri-
bution rate of the biggest eigenvalue exceeds 50%, while
the fourth biggest eigenvalue only contributes 5.9%. The
cumulative contribution rate of the top four eigenvalues
exceeds 95%. We can conclude that the spatially corre-
lated channel vectors can be expressed by several principal
components with low information distortion.

Table 3 Comparison of feedback overhead and codebook
search complexity

Table 4 Simulation parameters

Parameters Assumption

Antenna configuration of BS ULA 0.5λ spaced

Feedback channel Lossless & without delay

Carrier frequency 2.6 GHz

Bandwidth 10 MHz

Cell radius 200 m

Short-term period 1 ms

Long-term period 10 ms

Radius of scatterer ring r 10 m

Number of scatterers Q 10

Path loss exponent γ 2.5

Constant α in channel model 107

5.2 Evaluations of the proposed scheme
We show the simulation results of channel compression of
the proposed scheme in Figs. 4 and 5. It is assumed that
the SNR is 20 dB and there is no quantization error of the
low-dimensional CSI.
Figure 4 shows the effect of the compression ratio(
η = M

Nt

)
on the system capacity. The comparison is

among the proposed scheme, DCT-based CS and KLT-
based CS. We can observe that whether in low or high
compression ratio regimes, the KLT-based CS has the
best performance, while the DCT-based CS performs the
worst. To be emphasized, the best performance of the
KLT-based CS is at a sacrifice of increased feedback over-
head, as shown in Table 3. In this sense, the proposed
scheme can offer a useful tradeoff. Additionally, as Fig. 4
shows, the proposed scheme performs much better than
DCT-based CS in low compression ratio regimes.
Figure 5 illustrates the recovery performance of the

high-dimensional CSI at the BS under the circumstances
that the BS has perfect knowledge of the low-dimensional
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Fig. 3 Eigenvalue distribution of the spatially correlated channel
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CSI without quantization. We take the proposed scheme
and DCT-based CS for comparison. The 1 × Nt original
CSI is compressed into 1 × MCS low-dimensional infor-
mation, where MCS = 20 and the compression ratio is
ηCS = MCS

Nt
≈ 0.16, while in the proposed scheme, the

number of principal components is MPCA = 4 with the
compression ratio being ηPCA = MPCA

Nt
≈ 0.03.

As can be seen, the reconstructed high-dimensional CSI
is considerably close to the original data when the PCA
is utilized. But there still exists distortion because the
PCA itself inevitably introduces information loss. How-
ever, the recovery performance gets poorer in the case
of the DCT-based CS. The reason is that the proposed
scheme takes advantage of the signal-dependent nature of
PCA, which makes it possible for the compression matrix
to change adaptively in every long-term period according
to the variation of the original data.
Figure 6 shows a system capacity (defined as the sum

of all the users’ rates in the system) comparison. We
choose four principal components to form the compres-
sion matrix, so the compression ratio of PCA is 0.03.
For reference, we first consider the ideal situation, where
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Fig. 5 Recovery performance comparison between PCA and
DCT-based CS
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Fig. 6 System capacity comparison between PCA and other CS
schemes

the BS can acquire perfect CSI with neither recovery dis-
tortion nor quantization error. As illustrated in Fig. 6,
the best system capacity can be achieved only when
the BS acquires perfect CSI. Meanwhile, the proposed
scheme outperforms the existing DCT-based CS scheme
whether there is quantization error resulting from low-
dimensional CSI or not. But, it performs a little poorer
than the KLT-based CS scheme.
When we utilize the RVQ codebook to quantize low-

dimensional CSI, the system capacity decreases in both
cases because the quantization error must be taken into
account. Based on the results in Fig. 6 and the feedback
overhead analysis in Subsection 3.3, we can draw the con-
clusion that our proposed scheme can offer a worthwhile
design tradeoff between system capacity and feedback
overhead.

6 Conclusions
In this paper, a PCA-based feedback scheme for mas-
sive MIMO was proposed. In the proposed scheme,
two kinds of feedback information, the quantized low-
dimensional CSI index and the compression matrix uti-
lized to perform both compression and recovery, are fed
back hierarchically. Moreover, we obtained a closed-form
expression for an upper bound to the normalized infor-
mation distortion. We analyzed the feedback overhead
and codebook search complexity of the proposed scheme.
Simulation results showed that without considering the
low-dimensional CSI quantization, the proposed scheme
outperforms the existing DCT-based CS scheme in terms
of compression ratio. When a RVQ codebook is adopted
to quantize the low-dimensional CSI, worthwhile sys-
tem capacity and recovery performance can be achieved.
Finally, we draw the conclusion that the proposed scheme
can achieve a useful performance tradeoff between sys-
tem capacity and feedback overhead, which gives it high
potential to be implemented in practical massive MIMO
systems.
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Appendix
A Proof of Proposition 1
The PCA-caused information distortion J is

J = 1
S

S∑
n=1

∥∥∥hn − h̃n
∥∥∥2

= 1
S

S∑
n=1

∥∥∥∥∥
Nt∑
i=1

αniui −
M∑
i=1

zniui −
Nt∑

i=M+1
biui

∥∥∥∥∥
2

= 1
S

S∑
n=1

∥∥∥∥∥
M∑
i=1

(αni − zni)ui +
Nt∑

i=M+1
(αni − bi)ui

∥∥∥∥∥
2

= 1
S

S∑
n=1

[ M∑
i=1

(αni − zni)2 +
Nt∑

i=M+1
(αni − bi)2

]
.

(30)

In order to minimize J, we take partial derivatives with
respect to zni and bi separately, as given by

∂J
∂zni

= 1
S

S∑
n=1

M∑
i=1

[−2 (αni − zni)]; (31)

∂J
∂bi

= 1
S

S∑
n=1

Nt∑
i=M+1

[−2 (αni − bi)]

= −2
S

Nt∑
i=M+1

( S∑
n=1

αni − S · bi
)
.

(32)

Letting ∂J
∂zni = 0, we can obtain zni = αni, that is

zni = hnuiH (i = 1, 2 . . . ,M; n = 1, 2 . . . , S) . (33)

Similarly, when letting ∂J
∂bi = 0, we can also acquire

bi = 1
S

S∑
n=1

αni = �

huiH (i = M + 1,M + 2 . . . ,Nt) ,

(34)

where
�

h denotes the mean vector of all the S high-
dimensional channel vectors estimated in a long-term
period, as given by

�

h = 1
S

S∑
n=1

hn. (35)

Substitute (33) and (34) into (14), and then h̃ can be re-
written as

h̃n =
M∑
i=1

hnuiHui +
Nt∑

i=M+1

�

huiHui. (36)

Then,

hn − h̃n

=
Nt∑
i=1

hnuiHui −
(

M∑
i=1

hnuiHui +
Nt∑

i=M+1

�

huiHui

)

=
Nt∑

i=M+1
hnuiHui −

Nt∑
i=M+1

�

huiHui

=
Nt∑

i=M+1

[(
hn − �

h
)
uiH

]
ui.

(37)

Therefore, J can be re-expressed by

J = 1
S

S∑
n=1

∥∥∥hn − h̃n
∥∥∥2

= 1
S

S∑
n=1

Nt∑
i=M+1

(
hnuiH− �

h uiH
)2

=
Nt∑

i=M+1

1
S

S∑
n=1

(
hnuiH− �

h uiH
)2
.

(38)

In (38), the expression 1
S

S∑
n=1

(
hnuiH− �

h uiH
)2

can be

viewed as the covariance of hnuiH . If we assume Ch to be
the covariance matrix of hn, then J can be further given by

J =
Nt∑

i=M+1
uiChuiH . (39)

Our target is to minimize the PCA caused information
distortion J, which can be solved by the Lagrange Multi-
plier (LM)method. After applying the LM, we can observe
that the base vector must satisfy

ChuiH = λiuiH . (40)

Equation (40) indicates that base vector ui should be
chosen as the eigenvector of channel covariance matrix
Ch, and λi is the corresponding eigenvalue. As a result, the
PCA-caused information distortion J is

J =
Nt∑

i=M+1
uiChuiH =

Nt∑
i=M+1

uiλiuiH =
Nt∑

i=M+1
λi. (41)

B Proof of Proposition 2

As has been mentioned in Table 3,
	

h is the reconstructed
high-dimensional CSI recovered from ĥ, which is given by

	

h = ∥∥hŪ∥∥ · ĥÛH , (42)

where
∥∥hŪ∥∥ represents the modulus of low-dimensional

CSI, since we have performed normalization in the very
beginning, that is
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h̄ = hŪ∥∥hŪ∥∥ . (43)

Substituting (16), (17) and (43) into (42), we can rewrite
	

h as

	

h = ∥∥hŪ∥∥ · ĥÛH

= ∥∥hŪ∥∥ · h̄ − de√
1 − d2

·
(

Ū − DE√
1 − D2

)H

= ∥∥hŪ∥∥ ·
hŪ∥∥hŪ∥∥ − de
√
1 − d2

·
(

Ū − DE√
1 − D2

)H

= hŪŪH − hŪ(DE)H − ∥∥hŪ∥∥ · de(Ū − DE
)H

√
1 − d2 · √

1 − D2
.

(44)

Moreover, because of the independence between Û and
E, when multiplying Ū in (17) by EH , one obtains

ŪEH =
√
1 − D2ÛEH + DEEH = DEEH

= D
[

IM×M 0M×(Nt−M)

0(Nt−M)×M 0(Nt−M)×(Nt−M)

]
,

(45)

where IM×M represents the M × M identity
matrix; 0M×(Nt−M), 0(Nt−M)×M and 0(Nt−M)×(Nt−M)

denotes the M × (Nt − M), (Nt − M) × M and
(Nt − M) × (Nt − M) zero matrix respectively. When

assuming IM =
[

IM×M 0M×(Nt−M)

0(Nt−M)×M 0(Nt−M)×(Nt−M)

]
, the

following expression results,

ŪEH = D · IM. (46)

Substitute (46) into (44), then (44) can be rewritten as

	

h = hŪŪH − DhŪEH − ∥∥hŪ∥∥ · de(Ū − DE
)H

√
1 − d2 · √

1 − D2

= hŪŪH − D2 · hIM − ∥∥hŪ∥∥ · d√
1 − D2 · eÛH

√
1 − d2 · √

1 − D2
.

(47)

C Proof of Eqs. (23) and (24)

First, we focus on Eq. (23). Assume U =
[
Ū
...�U

]
, where

Ū is composed of the M dominating eigenvectors, while
�U is composed of the less dominating Nt − M eigenvec-
tors. In the proposed scheme, we only chooseM dominat-
ing eigenvectors to compose compressionmatrix Ū, which
is to be utilized to compress high-dimensional CSI into
low-dimensional representation. Particularly, if choosing

all of the Nt eigenvectors, that is Ū = U, the distortion
disappears, as given by

h = hUUH . (48)

Substituting U =
[
Ū
...�U

]
into (48), and we can obtain

h = h
[
Ū
...�U

] [
Ū
...�U

]H
= h

(
ŪŪH + �U�UH) . (49)

As mentioned above, the choice ofM dominating eigen-
vectors inevitably leads to information distortion. Accord-
ing to (49), the distortion caused by PCA can be expressed
by

J = E

[∥∥h − hŪŪH∥∥2] = E

[∥∥h�U�UH∥∥2] . (50)

Meanwhile,

E
[‖h‖2] = E

[∥∥h (ŪŪH + �U�UH)∥∥2]
= E

[(
hŪŪH + h�U�UH) (hŪŪH + h�U�UH)H]

= E
[
hŪŪHŪŪHhH + ∥∥h�U�UH∥∥2+

hŪŪH�U�UHhH + h�U�UHŪŪHhH
]
.

(51)

Because of the orthogonality between Ū and �U, one
has

ŪH�U = 0M×(Nt−M); (52)

�UHŪ = 0(Nt−M)×M. (53)
Therefore, Eq. (51) can be rewritten as

E
[‖h‖2] = E

[
hŪŪHŪŪHhH + ∥∥h�U�UH∥∥2+

hŪŪH�U�UHhH︸ ︷︷ ︸
0

+h�U�UHŪŪHhH︸ ︷︷ ︸
0

⎤
⎦

= E

[
hŪŪHŪŪHhH + ∥∥h�U�UH∥∥2]

= E

[∥∥hŪ∥∥2 + ∥∥h�U�UH∥∥2]
= E

[∥∥hŪ∥∥2]+ J .

(54)

Since each element of channel vector h obeys the Gaus-
sian distribution with unit variance, then E

[‖h‖2] = Nt .
So we can easily obtain that E

[∥∥hŪ∥∥2] = Nt − J .
As for Eq. (24), E

[
hIMHhH

]
can be expressed by

E
[
hIMHhH

] = E

[∣∣h(1)
∣∣2 + ∣∣h(2)

∣∣2 + . . . + ∣∣h(M)

∣∣2] ,
(55)



Zhang et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:64 Page 12 of 12

where h(m) (m = 1, 2, . . .M) denotes the mth element of
h. As mentioned above, each element of channel vec-
tor h obeys the Gaussian distribution with unit variance.
Therefore,

E
[
hIMHhH

] = M. (56)
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