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Abstract 

In this paper, we introduce a sol-gel process for preparing Y2Si2O7: Eu
3+

 nanocrystals. The rare earth 

compounds were dispersed in the SiO2 colloids and the monodisperse nano-scale composite materials 

were prepared. The reactant mass fraction and heat treatment temperatures could affect the structures and 

emission spectrum properties of as-synthesized samples. The samples emit the strong red light upon 

excitation under the ultraviolet. The main peaks originate from 
5
D0-

7
F2 electric dipole transition of Eu

3+
. 

With regard to the samples treated at different temperatures, the emission spectra obtained under 266 nm 

excitation show different shapes of spectra lines and relative intensities, indicating that the Eu
3+

 ions have 

been located in different local environments. 
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1. Introduction 

Because of the potential application in high-resolution display and fluorescence labelling, the researches 

on rare-earth doped nanomaterials have been intensively concerned in the preparation methods and 

luminescence properties [1-2]. Compared to the traditional preparation methods, the sol - gel method is 

simple but has some advantages, such as good optics transparency and homogeneous doping and so on. 

Some researchers have used the sol-gel method to prepare the rare-earth doped silicate materials with 

excellent luminescence properties, for example, Tb-doped Y2SiO5 is a good green cathode ray 

luminescence material [3-4], Eu
3+

 doped Y2SiO5 has an important potential application in the high density 

time domain and frequency domain light memory[5]; W.P. Zhang et al observed a meaningful 

phenomenon that the quenching concentration and luminescence intensity are higher in the nanoscale 

Y2SiO5:Eu
3+

 sample than those in the corresponding bulk sample [6]. In recent years, some researchers 

have begun paying attention to RE2Si2O7 nanomaterials but the research work mainly focused on the 

synthesis of materials rather than on luminescence properties [7]. In this article, Y2Si2O7:Eu
3+

 samples 

were prepared through adjusting the reactant proportion and the annealing temperature. The samples have 

better luminescence properties and can produce strong red light excited by the ultraviolet light.  
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2. Experiment  

Eu2O3 (99.99%), Y2O3 (99.99%) and analysis pure ethyl tetrathoxysilanc (TEOS) were used as the 

starting materials. First Eu2O3 (0.1% mol) and Y2O3 (4.9% mol) were dissolved in HNO3, then deionized 

water was added. The mixed nitrate solution was obtained. Excessive amount TEOS was dissolved in 

ethanol. The above two solutions were mixed and vigorously stirred to form a uniform solution. The pH 

of the mixed solution was adjusted to 1-2 by HNO3. After aging process the mixed solution became the 

gel. The gel was heated to 80 ºC and the temperature was maintained for 8 hours to form a dry gel. The 

samples with various precursor fractions and heat treatment temperatures were prepared. The samples that 

contains 40 wt% Y2O3 and were annealed at 1000 , 1200 , and 1300 , are labelled as  a, b, c 

respectively. It is the same that samples that contained 5 wt% Y2O3 are labelled as A, B, C. For 

comparison,  we have also prepared a sample (d) that contained 40 wt% Y2O3  and were annealed at 800 

. X-ray powder diffraction (XRD) data were collected on a Rigaku / Max 2550V/PC diffractometer 

with Cu- morphology of the samples were observed by the 

Hitachl S-4800 field emission scanning electron microscope (FE-SEM). The samples were excited with 

266 nm light generated by a fourth-harmonic-generator pumped by the pulsed YAG: Nd laser with 10ns 

pulse width and the emission spectra were measured with a TRIAX-550 spectrometer, a R955 

photomultiplier, a 162 boxcar averager and processed by a computer.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Results and discussion 

Figure 1 shows the XRD patterns of the samples. A wide diffraction peak was observed for sample A. 

This represents that the sample A is mainly amorphous. The samples B and C are mixed phase structures 

that consists of Y2Si2O7 crystals belonging to - phase No.21-1457 and - phase  (No.42-0168) and 

also several unidentified peaks. The samples a and b consist of -Y2Si2O7 crystals (No.38-0223), and no 

impurities were observed. As a matter of fact, -Y2Si2O7 crystals could be formed starting at 1000 . 

The pattern of sample c was given in literature [8]. It showed that -Y2Si2O7 crystal structure was 

dominating and a few -Y2Si2O7 diffraction peaks appeared. The result indicates that -Y2Si2O7 crystals 

is dominating in the sample c annealed at 1300 .  Some reports related to silicate materials indicated that 

the heat treatment temperature was a primary factor to determine the crystal structure. Because the crystal 

phase changes easily with the heat treatment temperature [9-10], it is very difficult to prepare a pure 

 
 
Fig.1 XRD patterns of sample A, B, C and sample a, b 

 
 
Fig.2  SEM images of Y2Si2O7: Eu

3+
 sample a,b,c and d 800  

Inset in part c: enlarged image of a single composite particle  
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phase Y2Si2O7 sample. But Figure 1 reveals more abundant information that even the crystal structures of 

products might be different even though the heat treatment temperature is the same but the Y2O3 mass is 

different. The sample A shows an amorphous structure, but the sample a is a pure phase Y2Si2O7:Eu
3+ 

crystal structure; the sample B is a multiphase structure but the sample b is a pure phase material. The 

XRD results show that the mass fraction of reactants is also a key factor in preparing Y2Si2O7:Eu
3+

 

materials. As SiO2, Eu2O3, and Y2O3 are high melting point substances, the reaction can not achieve a 

balanced state or obtain a pure phase Y2Si2O7:Eu
3+

 product if the heat treatment temperature is 

inappropriate. The increased proportion of Y2O3 in samples a and b can contribute to the contacting of the 

reactants with each other, provide a larger reaction area for the reactants, and speed the reaction. This 

might be the reason that the crystalline or even pure phase Y2Si2O7:Eu
3+

 samples could be prepared at a 

lower temperature.  

Figure 2 shows the scanning electronic microscope (SEM) photographs of the samples d, a b, and 

c, in which their mass fractions are the same. It could be observed in Figure 2-d that the amorphous 

particles were evenly dispersed in the SiO2 colloid and the particle size was smaller than 10nm. A 

significant change could be seen in Figure 2-a, in which the increasing temperature makes the chemical 

reaction speed up and the moisture reduces in the colloid, and the crystal structure Y2Si2O7:Eu
3+ 

begins to 

appear. In Figure 2-b, it could be clearly observed that the particles have an average size of about 15 nm 

and shows a trend of gathering. Figure 2-c shows that the particles have gathered into the monodisperse 

composite balls that have a uniform size distribution of about 60 nm. The inset demonstrates clearly that 

the nanoscale composite ball is composed of some smaller nanoparticles (Y2-xSi2O7:Eu
3+

x, x=0.02) 

embedded in the SiO2 framework. The SEM photographs could directly reflect the morphology and 

particle size distribution, and indirectly reflect the sample crystallization states. Figures 3 and 4 show the 

emission spectra of the samples excited with 266 nm at room temperature, in which all spectrum peaks 

have been normalized to their maximum value. The spectral changes of the samples with annealing 

temperature could clearly be seen in Figure 3.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Even if the reactant mass fractions are the same, the spectrum structures might not be the same. the sample A 

emission spectrum shows a broadband that is the amorphous material performance, which is consistent with the 

XRD results; in the sample B spectrum, the Eu
3+

 transition originated from 
5
D0 

7
F2 is stronger than from 

5
D0 

7
F1; the sample C spectral lines are obviously narrowed and split, which is caused by better crystallization as the 

heat treatment temperature increase. In addition, we also observed the changes of the relative intensity of the 

spectral lines, in which 
5
D0 

7
F1 transition increase is faster than 

5
D0 

7
F2 as temperature increase.  

Figure 4 shows that the emission spectra of samples a, b and c. When the samples were prepared at lower 

temperature the transition intensity of 
5
D0 

7
F2 could be increased and the colour purity could be improved. These 

might be attributed to that the smaller particle size could make the local environment of Eu3 + ion change, the 

 
Fig.4 Emission spectra of sample a, b and c  Fig.3 Emission spectra of sample A, B and C  
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symmetry reduce, and the Eu3 + ion occupy the non-inversion center of symmetry. When the samples were 

prepared at higher temperature, their particle size, the crystallization, and inversion symmetry centres were all 

increased. L D Sun group [11] reported that the colour purity of the YBO3: Eu
3+

 nanocrystals were better than the 

corresponding bulk material. The emission spectra of all samples were compared. The results indicate that the 

spectra structures in Figure 3 are affected less by the annealing temperature and the luminescence properties are 

better than Figure 4. We consider that Y2Si2O7:Eu
3+

 product with high phase purity could be obtained at the same 

heat treatment temperature if the reactant proportion is appropriate. Because Y2Si2O7: Eu
3+

 nanoparticles were 

embedded in SiO2 host framework balls, the doped Eu
3+

 ions might be stable and less affected by external factors. 

The one of main factors affecting the sample luminescence intensity is the Eu3
+
 ions local environment. The suitable 

reactant mass fraction could reduce environment defects that might affect the luminescence properties. For example, 

the Eu
3+

 ions in the sample b are less affected by the external environment than in the sample B.  

 

Conclusion  
In this article, we reported that the Y2Si2O7: Eu3 + nanocrystal samples were prepared with the sol-gel method at different 

annealing temperatures and in different reactant mass fractions. When Y2O3 mass fractionIn are too small the pure phase 

structure Y2Si2O7:Eu3 + could not be formed. Only when the reactant mass fraction is appropriate in chemical synthesis, the 

Y2Si2O7 Eu3 + structure with high phase purity might be obtained. When the samples were prepared at lower temperatures the 

color purity was improved and the particle size decreases, which is related to the local environment of Eu3 + ions. We thought 

that heat treatment temperature is one of the most important factors. The appropriate reactant proportion is the essential condition 

to prepare the higher phase purity and better luminescence property Y2Si2O7:Eu3+ nanoscale samples.   
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