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Abstract

Background: Estimation of forest biomass on the regional and global scale is of great importance. Many studies
have demonstrated that lidar is an accurate tool for estimating forest aboveground biomass. However, results vary
with forest types, terrain conditions and the quality of the lidar data.

Methods: In this study, we investigated the utility of low density lidar data (<2 points-m™) for estimating forest
aboveground biomass in the mountainous forests of northern Italy. As a study site we selected a 4 km? area in the
Valsassina mountains in Lombardy Region. The site is characterized by mixed and broad-leaved forests with variable
stand densities and tree species compositions, being representative for the entire Pre-Alps region in terms of type
of forest and geomorphology. We measured and determined tree height, DBH and tree species for 27 randomly
located circular plots (radius =10 m) in May 2008. We used allometric equations to calculate total aboveground
tree biomass and subsequently plot-level aboveground biomass (mg-ha™"). Lidar data were collected in June 2004.

Results: Our results indicate that low density lidar data can be used to estimate forest aboveground biomass with
acceptable accuracies. The best height results show a R* = 0.87 from final model and the root mean square error
(RMSE) 1.02 m (8.3% of the mean). The best biomass model explained 59% of the variance in the field biomass.
Leave-one-out cross validation yielded an RMSE of 30.6 mg'ha_1 (20.9% of the mean).

Conclusions: Low-density lidar data can be used to develop a forest aboveground biomass model from plot-level
lidar height measurements with acceptable accuracies. In order to monitoring the National Forest Inventory, and
respond to Kyoto protocol requirements, this analysis might be applied to a larger area.
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Background

Forest biomass is a key biophysical property that describes
the carbon content of vegetation. Quantification at various
scales, from root system (Montagnoli et al. 2012a, 2014)
to above-ground organs, is critical for understanding the
stocks and fluxes associated with forest clearance, degrad-
ation, and regeneration, particularly given current con-
cerns regarding global climate change (Barrett et al. 2001;
Palombo et al. 2014). Knowledge of carbon dynamics
(Montagnoli et al. 2012b) is crucial when addressing issues
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relating to carbon accounting, including quantifying
carbon for credit schemes (Patenaude et al. 2004; Kim
et al. 2009). National reporting of carbon sources and
sinks is also required to fulfill obligations to international
agreements such as the United Nations Framework
Convention on Climate Change (Rosenqvist et al. 2003).
Despite these requirements, there is still much uncertainty
in biomass estimation at a range of scales and in particular
on how much carbon is cycled through the Earth’s forests.
Scenario development to assess whether this cycling might
change as a result of forest alteration (e.g. degradation in-
duced by climate change) is also needed and is becoming
increasingly important as a research field (Brack et al
2006; Lucas et al. 2008). A better knowledge of forest
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ecosystems is critical to greenhouse gas control and bio-
diversity conservation. In fact, the Kyoto Protocol accounts
for sinks of carbon emissions associated to vegetation
growth and expansion (UNFCCC 1997; Rosengqvist et al.
2003). This is the reason why sustainable forest manage-
ment is assuming an increasing importance and represents
the second line of action of every governmental institution
to be added to their commitment to reduce CO, emission.
In this context biomass is important to monitor, whether
associated with land use change, afforestation, reforestation
or deforestation (Schulze et al. 2002). It is not surprising
that assessment of vegetated land characteristics by remote
sensing is highlighted as a recommended tool in a
number of political charters and treaties of different na-
tions (Almeida et al. 2014). A detailed knowledge cov-
ering the large areas of variability, which characterize
forest biomass and biophysical structure, the properties
and the state of evolution of vegetation, is frequently
critical given that it requires significant campaign oper-
ations in terms of time/operator and cost (Chen et al.
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2007; Popescu 2007; Wallerman and Holmgren 2007).
Remote sensing in general is an excellent tool for moni-
toring the environmental state of a vegetation canopy
over space and time. It provides spatially continuous
and temporally frequent information products over
extended areas (Coops et al. 2007; Ota et al. 2014). To
date many methods have been used to study the vegeta-
tion with remote sensing and different spectral indices
have been proposed (e.g. NDVI and EVI) (Glenn et al.
2008; Kouadio et al. 2014; White et al. 2014). Despite
recent steady advancements in remote sensing tech-
niques, there still remains an inability to reliably quan-
tify plant diversity and totally eliminate environmental
interferences (Wang et al. 2010; Pettorelli et al. 2014).
Remote sensing is basically the measurement and inter-
pretation of spatially distributed radiation fluxes reflected
or emitted from the Earth surface. The measured radi-
ation fluxes are driven by radiative transfer processes, such
as scattering, absorption and emission, intrinsically related
to the properties of the observed surface (Campbell 1996;
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Figure 1 Map of the Lombardia region (larger area, left) and study area location (small black polygon, left). Grid area (right) indicates the LIDAR
data survey. Aerial photos from free access Geoportale Lombardia. Gray cell (right) indicate location of field plots.
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Jensen 2006). However, the variables controlling the radia-
tive transfer and thus also remotely sensed data are not
necessarily directly related to the surface properties of
ultimate interest, like vegetation cover or bare soil
(Verstraete et al. 1996). Due to the indirect and in the case
of vegetation, mostly underdetermined character of this
relationship, interpretation of remote sensing data should
thus rely on as many independent observations as
possible. In addition, the knowledge of the physical and
biological processes involved needs to be considered in
the interpretation of remote sensing data. Considering the
limited amount of measurements generally provided by
remote sensing and the high number of open variables,
the problem of estimating vegetation properties based on
remote sensing data is underdetermined (Wang and
Sassen 2001; Combal et al. 2003; Kimes et al. 2006). A reli-
able retrieval is thus only possible if additional assump-
tions, constraints or further independent observations
(e.g. field data, other sensors) are introduced (Verstraete
et al. 1996). Assumptions and constraints are often used
to simplify the problem, but are also limiting the retrieval
in its transferability since they are generally only applic-
able for a specific problem (Duggin and Robinove 1990;
Kotz et al. 2004). In this context, the aerial territorial sur-
vey technique, using laser scanning instruments (lidar) is
particularly promising and, in some aspects, represents an
alternative to satellite or aerial remote sensing because it
makes it possible to directly survey the three-dimensional
structure of the vegetation (Lindberg et al. 2012; Korpela
and Hovi 2013). Lidar systems are an active remote sens-
ing device that measure the time of travel needed for a
pulse of laser energy sent from the airborne system to
reach the ground and reflect back to the sensor. The time
measured is converted into a distance measurement that is
used to derive a precise three-dimensional characterization
of the reflecting ground surface (Lim et al. 2003). In fact,
the active optical remote sensing system, light detection
and ranging (lidar), provides direct measurements on the
vertical distribution of canopy elements within a vegetation
canopy (Neesset and Bjerknes 2001; Lefsky et al. 2002). The
measurement principle of lidar relies on laser pulses propa-
gating vertically through the canopy, while scattering
events are recorded as function of time. The remote sens-
ing technique lidar is thus particularly suited to derive
vegetation properties such as tree elevation, the vertical
profile of foliage and terrain height (Harding et al. 2001).
Usually the high resolution of small footprint lidar even al-
lows for the three dimensional geometric reconstruction of
single trees within a forest (Hyyppéd et al. 2001; Morsdorf
et al. 2004; Wang et al. 2008). Furthermore, lidar has also
been shown to be an innovative tool for the study of vege-
tation at large scale, in particular for canopy structure,
plant height and biomass (Andersen et al. 2005; Lefsky
et al. 2002, 2005, 2010; Hansen et al. 2014). In this study,
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we investigated the utility of low-density lidar data
(<2 points-m ) whether this type of data are useful for
measuring forest attributes, such as height and above
ground biomass (AGB) in the mountainous forests of
northern Italy. The literature (Bortolot and Wynne 2005;
Pilli et al. 2006) shows high correlations between forest
AGB and tree height. The objectives of this work were: (i)
to develop models of forest AGB from plot-level lidar
height metrics and (ii) to understand if low density lidar is
accurate enough in such conditions to produce a map of
forest AGB for the region.

Methods
Study area
The low density lidar data cover a total area of approxi-
mately 80 km? located in northern Italy in the Lombardy
Pre-Alps (Valsassina; small black box in the larger are,

Table 1 Forest tree density and characteristics for each
forest plot of the study area

Plot number Number of stem Height (m) DBH* (cm)
1 405 9.3 (0.5) 143 (14)
2 20 194 (0.7) 325 (24)
3 32 13.5 (0.9 204 (1.8)
4 27 138 (1.1) 27.0 (2.7)
5 53 11.6 (0.7) 133 (0.7)
6 64 11.9 (04) 11.0 (0.5)
7 22 184 (1.3) 28.7 (3.1)
8 40 11.0 (0.5) 16.6 (1.1)
9 59 94 (0.5) 11.6 (0.9)
10 46 133 (06) 146 (0.9)
11 31 138 (0.3) 20.0 (1)
12 80 10.5 (04) 12.1 (0.8)
13 56 96 (0.5) 13.0 (0.8)
14 36 15.5(0.9) 19.1 (1.4)
15 47 12.1 (0.6) 143 (1.3)
16 32 14.8 (0.8) 190 (1.3)
17 38 15.9 (0.6) 257 (2)
18 42 11.7 (0.8) 158 (1.2)
19 59 12.7 (0.4) 12.0 (0.5)
20 25 112 (06) 188 (14)
21 55 15.6 (0.6) 15.3 (0.9)
22 92 94 (0.2) 109 (0.5)
23 93 106 (0.3) 11.0 (06)
24 90 9.0 (0.2) 104 (0.5)
25 119 89 (0.2) 104 (0.3)
26 41 9.5 (04) 144 (1.2)
27 79 10.0 (0.2) 10.2 (0.3)

*DBH (diameter at breast height), height and DBH values are mean of the
number of stem (+SE).
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Figure 1, left) (46°00°N, 9°23'E centre area coordinates).
In the present study, to test if these lidar data are reli-
able for forest AGB estimation, a sample area of 8 km?
was analysed (gray cell, Figure 1, right). The study area
topography is characterised by a mean elevation of
890 m with minimum elevation of 590 m and maximum
of 1293 m. The study area includes mixed and broad-
leaved forest with variable stand densities and tree species
compositions. The site is representative for the entire Pre-
Alps region in terms of type of forest and geomorphology.
The main forest types are coppice management with plan-
tations of chestnut (Castanea sativa) together with beech
(Fagus sylvatica), birch (Betula pendula), linden (Tilia cor-
data), ash (Fraxinus excelsior), poplar (Populus tremula),
field maple (Acer campestre), hazel (Corylus avellana),
European Hop Hornbeam (Ostrya carpinifolia), wild cherry
(Prunus avium) and natural stands of oak (Quercus spp.).

Lidar data

Large-footprint discrete first and last returns lidar data
were acquired in October 2003 when the canopy first
started to change colour in the fall. Acquisition was made
by Compagnia Generale Riprese aree SpA, Parma — CGR
and property of Regione Lombardia, using an Optech
ALTM 3033 scanner Airborne, at flying height of 2000 m
with a swath width of 1450 m. Scan angle was 20° with an
approximate footprint of 50 cm, and an average pulse spa-
cing of 1.75 m and pulse rate of 33 MHz.

Field measurements

In a selected 2 km x 2 km area (Figure 1, right) 27 circu-
lar plots (radius = 10 m) were randomly located. During
May 2008 tree number, height and diameter at breast
height (DBH) were measured for all tree species within

Table 2 Biomass equations by tree species
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each plot (Table 1). Possible lidar data underestimation of
tree height due the 5 years growth discrepancy between
lidar data collection (2003) and field measurements was
considered minimal. Analysed forests were at the mature
stage (20—30 years old) therefore minimal growth was as-
sumed (Brassard et al. 2009; Franceschini and Schneider
2014). Trees with diameters smaller than 5 c¢cm were
excluded. A total of 1417 trees were measured on these
plots. On each plot the tree heights were measured using
a Vertex Laser VL-400 - telemeter/hypsometer (Haglof),
and DBH with a Forestry Suppliers Metric Fabric Diameter
Tape. Although it can be difficult to clearly distinguish the
treetop in dense forests, the measured forests were not
dense enough to completely block the treetops. Moreover,
effort was taken in the field to move around in the forest
until a spot was found that did not obscure the treetop.
Geographic coordinates were recorded at the centre of each
plot with a Trimble® GeoXM™ GPS with 1-3 meter accur-
acy. Specific allometric equations (Leonardi et al. 1996;
Hamburg et al. 1997; Gasparini et al. 1998; Zianis et al.
2005; Alberti et al. 2006; Tabacchi et al., 2011) were used
to calculate total aboveground tree biomass and subse-
quently plot-level biomass (mg-ha’l) (see Table 2).

Data analysis

The result of a laser scan is a cloud composed by geo-
graphically located points (raw data) corresponding to all
the elements composing the scanned surface. The first step
in data processing was to identify and exclude (filtering) all
outliers due to their distance from the mean surface. The
TerraScan™ of Terrasolid software was used for this
automated process (Axelsson 1999). Afterwards analysis
parameters were manually corrected according to the
different geo-morphology characteristics and an additional

Species name Equation Parameters Reference

a b c
Acer campestre (L.) a- (DBH)® 0.05 267 Alberti et al. 2006
Betula pendula (Roth) a-[(DBH)?- H 0.5443 0.65270 Hamburg et al. 1997
Castanea sativa (Miller) a- (DBH)? 0137 2247 Leonardi et al. 1996
Corylus avellana (L.) a-(HP 0.0768 1.8329 Hamburg et al. 1997
Fagus sylvatica (L.) a+b-(DBH)?-H 1.6409 0.030775 Tabacchi et al. 2011
Fraxinus excelsior (L.) a- (DBH)? 011 249 Alberti et al. 2006
Populus tremula (L.) a-(DBH)® 0.0519 2.545 Zianis et al. 2005
Prunus avium (L) a- (DBH)? 0.12 233 Alberti et al. 2006
Quercus petraea (Matt.) Liebl. a- (DBH)? 02176 20513 Alberti et al. 2006
Tilia cordata (Miller) IN(ABW) =a+ b - In(DBH) —2.6788 24542 Zianis et al. 2005
Ostrya carpinifolia (Scop.) a+b-DBH-H+c-DBH? —4.5877 52638-107° 409-107" Gasparini et al. 1998

DBH = Diameter at breast height; H = Plant height; In = natural logarithm; ABW = Total aboveground woody biomass.
The format of the biomass equation is given in the column labelled Equation, and a, b, and ¢ are parameter values. References to the original papers

according to authors.
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filtering was applied (Barilotti et al. 2007). Interpolating
lidar point elevation to a regular grid with a 5 m resolution
created a Digital Surface Model (DSM) and Digital Terrain
Model (DTM; 6-9 pulses per 5 m?). The characterization
of the top canopy surface (DSM) included only the highest
laser reflection points, while lowest laser reflection points
were used to estimate the ground level (DTM) (Lefsky
et al. 1999; Holmgren and Persson 2004; Popescu et al.
2004; Popescu 2007).

The low density point clouds may miss the tree tops,
because naturally tree tops have fewer hits compared to
the tree crowns. The same problem exists in identifying
the ground (Sudrez et al. 2005), especially in a steep ter-
rain (Estornell et al. 2011) like the Alps. Therefore, the
elevation recorded with GPS units was compared with
those identified in the lidar point cloud. Lidar returns
were extracted for each plot using the geographic coor-
dinates taken in the field. Returns above a threshold of
2 m were considered vegetation returns, and returns
below that threshold were considered ground returns.
Height threshold was chosen according to plot analysis
where all trees below the 2 m cut off were smaller than
3 cm diameter and not considered for measurement.
Then data were normalized to height-above-ground
using the DTM (spatial resolution 5 meter; Figure 2b)
supplied by the lidar vendor. Furthermore, points below
two meters were eliminated in the plot to omit returns
from understory or falsely classified ground returns
(Figure 2c). The software used for these analyses was
the free FUSION/LDV developed by Robert J. McGaughey
(U.S. Forest Service Pacific Northwest Research Station,
Oregon).

Regression analysis

To investigate the relationship of low density returns and
AGB, regression models were used to develop equations
relating lidar-derived tree height with field inventory tree
height and field-based estimates of aboveground biomass
for individual plots. In particular, the first relationship ana-
lysed was between lidar height metrics and field-measured
height. Secondly the relationships between lidar height
metrics and AGB from field data was considered at the
plot scale (Pflugmacher et al. 2012). Analysis of variances
for linear regression was carried out on results of each
relationship to test for significance of the slopes at 95%
significance level.

Results and discussion

Plant height

We report the best regression model developed to explain
the relationship between lidar height metrics and field-
measured height at the plot level. Linear regression indi-
cated a multiple R of 0.87 (Figure 3a; slope test p < 0.001)
and a root mean square error (RMSE) of 1.02 m (BIAS
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Plant height (m)

2150

Figure 2 Examples of vertical plot LIDAR return distributions:
(a) Raw LiDAR data plot; (b) data normalized by digital terrain

model; (c) data points above 2 m from soil surface.
J

of 0; Figure 3b), which is approximately 8.3% of the aver-
age plant height of all measured trees. Cross validation
showed a RMSE of 2.02 m (16.4% of the mean) and a
BIAS of 0.02. The final model derived from height distri-
bution data was based on the following multiple percentile
of tree height distribution: Height 25%; Height 20%;
Height 30%; Height 10%; Height 80%. Our results are in
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Measured plot biomass (mg-ha™ )

(d) plant biomass BIAS against fitted height data LIDAR derived.
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Figure 3 The best regression model developed to explain: (a) Relationship between LIDAR data and mean plant height measured in the field;
(b) plant height BIAS against fitted height data LiDAR derived; (c) relationship between LIDAR data and mean biomass measured in the field;

Fit data

line with previous studies (Coops et al. 2007; Popescu
2007; Stepper et al. 2014) in which a good correlation
between tree height lidar-estimated and field-measured
for both needle and broad leaved trees has been reported.

Plant biomass
The best model for the relationship between field AGB
and lidar height explained 76% (multiple R?) of the vari-
ance in the field biomass (Figure 3c; slope test p < 0.001)
with a RMSE of 30.56 mg-ha’1 (20.9% of the mean) and
a BIAS of 0 (Figure 3d). Leave-one-out cross validation
yielded an RMSE of 53.7 mg'ha’1 (36.8% of the mean)
and a BIAS of 3.7. The final model selected was based
on the following multiple percentile of tree height distri-
bution: Height 0; Height 5%; Height 25%; Height 55%;
Height 70%; Height 80%; Height 95%; Height 100%.
Potential source of errors can include statistical error
associated with estimating coefficients and form of se-
lected equation. Moreover, errors may occur from both
field measurement and data processing as well as errors
associated with developing wide scale equation by com-
piling species- and site-specific equation that may be
biased in favour of species for which published equations
exist (Sileshi 2014). With the present approach, part of
the unexplained variance when estimating aboveground
biomass is associated with error of estimating biomass

with field measurements of DBH and height, error associ-
ated with lidar-measured height and GPS misregistration
errors. Selected variables for lidar height with measured
field AGB (Figure 4a) were applied to the entire sample
area of 8 km?® in order to obtain a biomass map
(Figure 4b). Previous studies have successfully estimated
AGB or tree volume from lidar-derived vegetation-height
statistical metrics in different boreal and temperate forests
(Neesset 1997; Magnussen and Boudewyn 1998; Means
et al. 2000; Popescu et al. 2004; Hall et al. 2005; Popescu
2007; Alberti et al. 2012). The average AGB and plant
height estimated by lidar data of our forests were
146 mgha' and 12.28 m respectively. As demonstrated
in previous works (Raber et al. 2002; Clark et al. 2004;
Estornell et al. 2011) for relatively dense and structural de-
ciduous forest on steep slope conditions, data characteris-
tics such as scan angle most often causes DTM inaccuracy
that effect derived trees canopy height (Raber et al. 2002;
Clark et al. 2004). In the present study, plant height
normalization performed with a low spatial resolution
DTM, might have been another cause of error in lidar
metrics calculation. Although these possible effects were
not analysed, our results were similar to values of above
ground biomass (123.7 mgha™*) found in a Pre-alpine
beech forest (Montagnoli et al. 2012b). Even though these
forests have different species composition, these values
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Figure 4 Example of application for plant biomass model by plant height measured by LIDAR data. (a) Digital orthophoto, in the lower part
showed plots for field plant measurements. (b) Example of biomass map of the same area. Plant biomass values, represented by a multiple
colours legend, increase from pink (lower value) to red (higher value). Pixel (1 m?).

are comparable, since our study sites are in the transition
zone of lowland and montane forests. Forest estimates (of
height, volume and biomass), using laser data, are often
based on linear regression models of forest canopy height
(Nilsson 1994, 1996) and statistical measures derived from
the distribution of laser point data (Lefsky et al. 1999;
Naesset and Gobakken 2005). Several studies have noted
that measures of canopy characteristics obtained from the
laser height distribution, together with selected laser
height percentiles, have proven useful for estimating tim-
ber volume (Means et al. 1999; Neasset & @kland 2002).

Our results also show that mean height was the most reli-
able estimator of AGB (RMSE = 53.7 mgha™", correspond-
ing to 36.8% of the mean) in single regression analysis.
Finally, in our case we also demonstrated a good fitting
model even with a difference in time between lidar data
collection and field measurements.

Conclusion

Our results, in mixed broad leaved forests growing on
patchy slope conditions, indicate that low-density lidar
data can be used to develop a forest AGB model from
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plot-level lidar height measurements in the study area
with acceptable accuracies. Moreover, these results high-
light the opportunity to apply this analysis to a larger area,
with the aim of monitoring the National Forest Inventory,
and create a database of the forest carbon content in order
to respond to requirements of the Kyoto protocol. The
biomass map derived from the selected regression model
and the potential for integrating lidar with co-registered
multi and hyperspectral digital imagery, make lidar a real-
istic alternative to traditional forest measurements.
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