
Theory Comput Syst (2012) 50:313–328
DOI 10.1007/s00224-010-9301-8

On the Expressiveness of Single-Pass Instruction
Sequences

J.A. Bergstra · C.A. Middelburg

Published online: 11 November 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract We perceive programs as single-pass instruction sequences. A single-pass
instruction sequence under execution is considered to produce a behaviour to be con-
trolled by some execution environment. Threads as considered in basic thread algebra
model such behaviours. We show that all regular threads, i.e. threads that can only
be in a finite number of states, can be produced by single-pass instruction sequences
without jump instructions if use can be made of Boolean registers. We also show that,
in the case where goto instructions are used instead of jump instructions, a bound to
the number of labels restricts the expressiveness.

Keywords Single-pass instruction sequence · Regular thread · Expressiveness ·
Jump-free instruction sequence

1 Introduction

The work presented in this paper is part of a research program which is concerned
with different subjects from the theory of computation and the area of computer ar-
chitectures where we come across the relevancy of the notion of instruction sequence.
The working hypothesis of this research program is that this notion is a central notion
of computer science. It is clear that instruction sequence is a key concept in practice,
but strangely enough it has as yet not come prominently into the picture in theoretical
circles.

J.A. Bergstra (�) · C.A. Middelburg
Informatics Institute, Faculty of Science, University of Amsterdam, Science Park 904,
1098 XH Amsterdam, The Netherlands
e-mail: J.A.Bergstra@uva.nl

C.A. Middelburg
e-mail: C.A.Middelburg@uva.nl

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81200339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:J.A.Bergstra@uva.nl
mailto:C.A.Middelburg@uva.nl

314 Theory Comput Syst (2012) 50:313–328

Program algebra [3], which is intended as a setting suited for developing theory
from the above-mentioned working hypothesis, is taken for the basis of the devel-
opment of theory under the research program. The starting-point of program algebra
is the perception of a program as a single-pass instruction sequence, i.e. a finite or
infinite sequence of instructions of which each instruction is executed at most once
and can be dropped after it has been executed or jumped over. This perception is sim-
ple, appealing, and links up with practice. A single-pass instruction sequence under
execution is considered to produce a behaviour to be controlled by some execution
environment. Threads as considered in basic thread algebra [3] model such behav-
iours: upon each action performed by a thread, a reply from the execution environ-
ment determines how the thread proceeds.1 A thread may make use of services, i.e.
components of the execution environment.

Each Turing machine can be simulated by means of a thread that makes use of
a service. The thread and service correspond to the finite control and tape of the
Turing machine. The threads that correspond to the finite controls of Turing machines
are examples of regular threads, i.e. threads that can only be in a finite number of
states. The behaviours of all single-pass instruction sequences considered in program
algebra are regular threads and each regular thread is produced by some single-pass
instruction sequence. In this paper, we show that each regular thread can be produced
by some single-pass instruction sequence without jump instructions if use can be
made of services that make up Boolean registers.

The primitive instructions of program algebra include jump instructions. An in-
teresting variant of program algebra is obtained by leaving out jump instructions and
adding labels and goto instructions. It is easy to see that each regular thread can
also be produced by some single-pass instruction sequence with labels and goto in-
structions. In this paper, we show that a bound to the number of labels restricts the
expressiveness of this variant.

As part of the research program of which the work presented in this paper is part,
issues concerning the following subjects from the theory of computation have been
investigated from the viewpoint that a program is an instruction sequence: seman-
tics of programming languages [4, 12], expressiveness of programming languages [9,
23], computability [10, 13], and computational complexity [7]. Performance related
matters of instruction sequences have also been investigated in the spirit of the the-
ory of computation [11, 12]. In the area of computer architectures, basic techniques
aimed at increasing processor performance have been studied as part of this research
program (see e.g. [5, 8]).

The work referred to above provides evidence for our hypothesis that the notion
of instruction sequence is a central notion of computer science. To say the least, it
shows that instruction sequences are relevant to diverse subjects. In addition, it is
to be expected that the emerging developments with respect to techniques for high-
performance program execution on classical or non-classical computers require that
programs are considered at the level of instruction sequences. All this has motivated
us to continue the above-mentioned research program with the work on expressive-
ness presented in this paper.

1In [3], basic thread algebra is introduced under the name basic polarized process algebra.

Theory Comput Syst (2012) 50:313–328 315

This paper is organized as follows. First, we review basic thread algebra and pro-
gram algebra (Sects. 2 and 3). Next, we present a mechanism for interaction of threads
with services and give a description of Boolean register services (Sects. 4 and 5).
After that, we show that each regular thread can be produced by some single-pass
instruction sequence without jump instructions if use can be made of Boolean regis-
ter services (Sect. 6). Then, we introduce the variant of program algebra obtained by
leaving out jump instructions and adding labels and goto instructions (Sect. 7). Fol-
lowing this, we show that a bound to the number of labels restricts the expressiveness
of this variant (Sect. 8). Finally, we make some concluding remarks (Sect. 9).

2 Basic Thread Algebra

In this section, we review BTA (Basic Thread Algebra), which is concerned with
the behaviours that sequential programs exhibit on execution. These behaviours are
called threads.

In BTA, it is assumed that a fixed but arbitrary set A of basic actions has been
given. A thread performs actions in a sequential fashion. Upon each action performed,
a reply from the execution environment of the thread determines how it proceeds. To
simplify matters, there are only two possible replies: T and F.

BTA has one sort: the sort T of threads. To build terms of sort T, it has the follow-
ing constants and operators:

– the deadlock constant D : T;
– the termination constant S : T;
– for each a ∈ A, the binary postconditional composition operator _ �a � _ : T ×

T → T.

We assume that there are infinitely many variables of sort T, including x, y, z. We
introduce action prefixing as an abbreviation: a ◦ p abbreviates p �a � p.

The thread denoted by a closed term of the form p �a � q will first perform a,
and then proceed as the thread denoted by p if the reply from the execution envi-
ronment is T and proceed as the thread denoted by q if the reply from the execution
environment is F. The threads denoted by D and S will become inactive and termi-
nate, respectively. This implies that each closed BTA term denotes a thread that will
become inactive or terminate after it has performed finitely many actions. Infinite
threads can be described by guarded recursion.

A guarded recursive specification over BTA is a set of recursion equations E =
{X = tX | X ∈ V }, where V is a set of variables of sort T and each tX is a BTA term of
the form D, S or t �a � t ′ with t and t ′ that contain only variables from V . We write
V(E) for the set of all variables that occur in E. We are only interested in models
of BTA in which guarded recursive specifications have unique solutions, such as the
projective limit model of BTA presented in [2].

For each guarded recursive specification E and each X ∈ V(E), we introduce a
constant 〈X|E〉 of sort T standing for the unique solution of E for X. The axioms for
these constants are given in Table 1. In this table, we write 〈tX|E〉 for tX with, for all
Y ∈ V(E), all occurrences of Y in tX replaced by 〈Y |E〉. X, tX and E stand for an

316 Theory Comput Syst (2012) 50:313–328

Table 1 Axioms for guarded
recursion 〈X|E〉 = 〈tX |E〉 if X = tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

Table 2 Approximation
induction principle

∧
n≥0 πn(x) = πn(y) ⇒ x = y AIP

π0(x) = D P0

πn+1(S) = S P1

πn+1(D) = D P2

πn+1(x �a � y) = πn(x) �a � πn(y) P3

arbitrary variable of sort T, an arbitrary BTA term of sort T and an arbitrary guarded
recursive specification over BTA, respectively. Side conditions are added to restrict
what X, tX and E stand for.

Closed terms that denote the same infinite thread cannot always be proved equal by
means of the axioms given in Table 1. We introduce AIP (Approximation Induction
Principle) to remedy this. AIP is based on the view that two threads are identical if
their approximations up to any finite depth are identical. The approximation up to
depth n of a thread is obtained by cutting it off after it has performed n actions. In
AIP, the approximation up to depth n is phrased in terms of the unary projection
operator πn : T → T. AIP and the axioms for the projection operators are given in
Table 2.

3 Program Algebra

In this section, we review PGA (ProGram Algebra). The perception of a program as
a single-pass instruction sequence is the starting-point of PGA.

In PGA, it is assumed that a fixed but arbitrary set A of basic instructions has been
given. PGA has the following primitive instructions:

– for each a ∈ A, a plain basic instruction a;
– for each a ∈ A, a positive test instruction +a;
– for each a ∈ A, a negative test instruction −a;
– for each l ∈ N, a forward jump instruction #l;
– a termination instruction !.
We write I for the set of all primitive instructions.

The intuition is that the execution of a basic instruction a produces either T or
F at its completion. In the case of a positive test instruction +a, a is executed and
execution proceeds with the next primitive instruction if T is produced. Otherwise,
the next primitive instruction is skipped and execution proceeds with the primitive
instruction following the skipped one. If there is no next instruction to be executed,
deadlock occurs. In the case of a negative test instruction −a, the role of the value
produced is reversed. In the case of a plain basic instruction a, execution always pro-
ceeds as if T is produced. The effect of a forward jump instruction #l is that execution
proceeds with the l-th next instruction. If l equals 0 or the l-th next instruction does

Theory Comput Syst (2012) 50:313–328 317

Table 3 Axioms of PGA
(X ; Y) ; Z = X ; (Y ; Z) PGA1

(Xn)ω = Xω PGA2

Xω ; Y = Xω PGA3

(X ; Y)ω = X ; (Y ; X)ω PGA4

Table 4 Defining equations for
thread extraction operation |a| = a ◦ D |#l| = D

|a ; X| = a ◦ |X| |#0 ; X| = D

|+a| = a ◦ D |#1 ; X| = |X|
|+a ; X| = |X| �a � |#2 ; X| |#l + 2 ; u| = D

|−a| = a ◦ D |#l + 2 ; u ; X| = |#l + 1 ; X|
|−a ; X| = |#2 ; X| �a � |X| |!| = S

|! ; X| = S

not exist, deadlock occurs. The effect of the termination instruction ! is that execution
terminates.

PGA has the following constants and operators:

– for each u ∈ I, an instruction constant u;
– the binary concatenation operator _ ; _;
– the unary repetition operator _ω .

We assume that there are infinitely many variables, including X,Y,Z.
A closed PGA term is considered to denote a non-empty, finite or eventually pe-

riodic infinite sequence of primitive instructions.2 Closed PGA terms are considered
equal if they denote the same instruction sequence. The axioms for instruction se-
quence equivalence are given in Table 3. In this table, n stands for an arbitrary natural
number greater than 0. For each PGA term P , the term P n is defined by induction on
n as follows: P 1 = P and P n+1 = P ; P n. The equation Xω = X ; Xω is derivable.
Each closed PGA term is derivably equal to one of the form P or P ; Qω , where P

and Q are closed PGA terms in which the repetition operator does not occur.
The repetition operator renders backward jump instructions superfluous. In [3],

it is shown how programs in a program notation that is close to existing assembly
languages with forward and backward jump instructions can be translated into closed
PGA terms.

The behaviours of the instruction sequences denoted by closed PGA terms are
considered threads, with basic instructions taken for basic actions. The thread ex-
traction operation |_ | determines, for each closed PGA term P , a closed term of
BTA with guarded recursion that denotes the behaviour of the instruction sequence
denoted by P . The thread extraction operation is defined by the equations given in
Table 4 (for a ∈ A, l ∈ N and u ∈ I) and the rule that |#l ;X| = D if #l is the beginning
of an infinite jump chain. This rule is formalized in e.g. [9].

2An eventually periodic infinite sequence is an infinite sequence with only finitely many distinct suffixes.

318 Theory Comput Syst (2012) 50:313–328

4 Interaction of Threads with Services

A thread may make use of services. That is, a thread may perform an action for
the purpose of interacting with a service that takes the action as a command to be
processed. The processing of an action may involve a change of state of the service
and at completion of the processing of the action the service returns a reply value to
the thread. In this section, we introduce the use operators, which are concerned with
this kind of interaction between threads and services.

It is assumed that a fixed but arbitrary set F of foci and a fixed but arbitrary set
M of methods have been given. Each focus plays the role of a name of some service
provided by an execution environment that can be requested to process a command.
Each method plays the role of a command proper. For the set A of actions, we take
the set {f.m | f ∈ F ,m ∈ M}. Performing an action f.m is taken as making a request
to the service named f to process command m.

A service H consists of

– a set S of states;
– an effect function eff : M × S → S;
– a yield function yld : M × S → {T,F,B};
– an initial state s0 ∈ S;

satisfying the following condition:

∀m ∈ M, s ∈ S • (yld(m, s) = B ⇒ ∀m′ ∈ M • yld(m′, eff (m, s)) = B).

The set S contains the states in which the service may be, and the functions eff and
yld give, for each method m and state s, the state and reply, respectively, that result
from processing m in state s.

Let H = (S, eff , yld, s0) be a service and let m ∈ M. Then the derived service of
H after processing m, written ∂

∂m
H , is the service (S, eff , yld, eff (m, s0)); and the

reply of H after processing m, written H(m), is yld(m, s0).
When a thread makes a request to service H to process m:

– if H(m) �= B, then the request is accepted, the reply is H(m), and the service
proceeds as ∂

∂m
H ;

– if H(m) = B, then the request is rejected.

We introduce the sort S of services and, for each f ∈ F , the binary use operator
_ /f _ : T × S → T. The axioms for these operators are given in Table 5.

Intuitively, p /f H is the thread that results from processing all actions performed
by thread p that are of the form f.m by service H . When an action of the form f.m

performed by thread p is processed by service H , the postconditional composition
concerned is eliminated on the basis of the reply value produced. No internal action
is left as a trace of the processed action, like with the use operators found in papers
on thread interleaving (see e.g. [6]).

Combining TSU2 and TSU7, we obtain
∧

n≥0 πn(x) /f H = D ⇒ x /f H = D.

Theory Comput Syst (2012) 50:313–328 319

Table 5 Axioms for use operators

S /f H = S TSU1

D /f H = D TSU2

(x �g.m� y) /f H = (x /f H) �g.m� (y /f H) if f �= g TSU3

(x �f.m� y) /f H = x /f
∂

∂m
H if H(m) = T TSU4

(x �f.m� y) /f H = y /f
∂

∂m
H if H(m) = F TSU5

(x �f.m� y) /f H = D if H(m) = B TSU6
∧

n≥0 πn(x) /f H = πn(y) /f H ⇒ x /f H = y /f H TSU7

5 Instruction Sequences Acting on Boolean Registers

Our study of jump-free instruction sequences in Sect. 6 is concerned with instruction
sequences that act on Boolean registers. In this section, we describe services that
make up Boolean registers.

A Boolean register service accepts the following methods:

– a set to true method set:T;
– a set to false method set:F;
– a get method get.

We write MBR for the set {set:T, set:F,get}. It is assumed that MBR ⊆ M.
The methods accepted by Boolean register services can be explained as follows:

– set:T: the contents of the Boolean register becomes T and the reply is T;
– set:F: the contents of the Boolean register becomes F and the reply is F;
– get: nothing changes and the reply is the contents of the Boolean register.

Let s ∈ {T,F,B}. Then the Boolean register service with initial state s, written
BRs , is the service ({T,F,B} , eff , eff , s), where the function eff is defined as follows
(b ∈ {T,F}):

eff (set:T, b) = T, eff (m,b) = B if m �∈ MBR,

eff (set:F, b) = F, eff (m,B) = B.

eff (get, b) = b,

Notice that the effect and yield functions of a Boolean register service are the same.

6 Jump-Free Instruction Sequences

In this section, we show that each thread that can only be in a finite number of states
can be produced by some single-pass instruction sequence without jump instructions
if use can be made of Boolean register services.

First, we make precise what it means that a thread can only be in a finite number of
states. We assume that a fixed but arbitrary model M of BTA extended with guarded
recursion and the use mechanism has been given, we use the term thread only for the

320 Theory Comput Syst (2012) 50:313–328

elements from the domain of M, and we denote the interpretations of constants and
operators in M by the constants and operators themselves.

Let p be a thread. Then the set of states or residual threads of p, written Res(p),
is inductively defined as follows:

– p ∈ Res(p);
– if q �a � r ∈ Res(p), then q ∈ Res(p) and r ∈ Res(p).

We say that p is a regular thread if Res(p) is finite.
We will make use of the fact that being a regular thread coincides with being the

solution of a finite guarded recursive specification of a restricted form.
A linear recursive specification over BTA is a guarded recursive specification

E = {X = tX | X ∈ V }, where each tX is a term of the form D, S or Y �a � Z with
Y,Z ∈ V .

Proposition 1 Let p be a thread. Then p is a regular thread iff there exists a finite
linear recursive specification E and a variable X ∈ V(E) such that p is the solution
of E for X.

Proof This proposition generalizes Theorem 1 from [23] from the projective limit
model to an arbitrary model. However, the proof of that theorem is applicable to any
model. �

In the proof of the next theorem, we associate a closed PGA term P in which jump
instructions do not occur with a finite linear recursive specification

E = {
Xi = Xl(i) �ai � Xr(i) | i ∈ [1, n]} ∪ {Xn+1 = S,Xn+2 = D} .

In P , a number of Boolean register services is used for specific purposes. The purpose
of each individual Boolean register is reflected in the focus that serves as its name:

– for each i ∈ [1, n + 2], s:i serves as the name of a Boolean register that is used to
indicate whether the current state of 〈X1|E〉 is 〈Xi |E〉;

– rt serves as the name of a Boolean register that is used to indicate whether the reply
upon the action performed by 〈X1|E〉 in its current state is T;

– rf serves as the name of a Boolean register that is used to indicate whether the reply
upon the action performed by 〈X1|E〉 in its current state is F;

– e serves as the name of a Boolean register that is used to achieve that instructions
not related to the current state of 〈X1|E〉 are passed correctly;

– f serves as the name of a Boolean register that is used to achieve with the instruction
+f.set:F that the following instruction is skipped.

Now we turn to the theorem announced above. It states rigorously that the solution of
every finite linear recursive specification can be produced by an instruction sequence
without jump instructions if use can be made of Boolean register services.

Theorem 1 Let a finite linear recursive specification

E = {
Xi = Xl(i) �ai � Xr(i) | i ∈ [1, n]} ∪ {Xn+1 = S,Xn+2 = D}

Theory Comput Syst (2012) 50:313–328 321

be given. Then there exists a closed PGA term P in which jump instructions do not
occur such that

〈X1|E〉 = ((((. . . (|P | /s:1 BRF) . . . /s:n+2 BRF) /rt BRF) /rf BRF) /e BRF) /f BRF.

Proof We associate a closed PGA term P in which jump instructions do not occur
with E as follows:

P = s:1.set:T ; (Q1 ; . . . ; Qn+1)
ω,

where, for each i ∈ [1, n]:

Qi = +s:i.get ; e.set:T ;
+s:i.get ; s:i.set:F ;
+e.get ; −ai ; +f.set:F ; rt.set:T ;
+e.get ; +rt.get ; +f.set:F ; rf.set:T ;
+rt.get ; s:l(i).set:T ;
+rf.get ; s:r(i).set:T ;
rt.set:F ; rf.set:F ; e.set:F,

and

Qn+1 = +s:n+1.get ; !.
We use the following abbreviations (for i ∈ [1, n + 1] and j ∈ [1, n + 2]):
P ′

i for Qi ; . . . ; Qn+1 ; (Q1 ; . . . ; Qn+1)
ω;

|P ′
i |br

j for ((((. . . (|P ′
i | /s:1 BRb1) . . . /s:n+2 BRbn+2) /rt BRF) /rf BRF) /e BRF) /f BRF,

where bj = T and, for each j ′ ∈ [1, n + 2] such that j ′ �= j , bj ′ = F.

From the definition of thread extraction, the definition of Boolean register services,
and axiom TSU4, it follows that

((((. . . (|P | /s:1 BRF) . . . /s:n+2 BRF) /rt BRF) /rf BRF) /e BRF) /f BRF = |P ′
1|br

1 .

This leaves us to show that 〈X1|E〉 = |P ′
1|br

1 .
Using the definition of thread extraction, the definition of Boolean register ser-

vices, and axioms P0, P2, TSU1, TSU2, TSU4, TSU5 and TSU7, we easily prove the
following:

|P ′
i |br

j = |P ′
i+1|br

j if 1 ≤ i ≤ n ∧ 1 ≤ j ≤ n + 1 ∧ i �= j (1)

|P ′
i |br

j = |P ′
1|br

j if i = n + 1 ∧ 1 ≤ j ≤ n + 1 ∧ i �= j (2)

|P ′
i |br

i = |P ′
i+1|br

l(i) �ai � |P ′
i+1|br

r(i) if 1 ≤ i ≤ n (3)

|P ′
i |br

i = S if i = n + 1 (4)

|P ′
i |br

j = D if 1 ≤ i ≤ n + 1 ∧ j = n + 2 (5)

322 Theory Comput Syst (2012) 50:313–328

From Properties 1 and 2, it follows that

|P ′
i |br

j = |P ′
j |br

j if 1 ≤ i ≤ n + 1 ∧ 1 ≤ j ≤ n + 1 ∧ i �= j.

From this and Property 3, it follows that

|P ′
i |br

i = |P ′
l(i)|br

l(i) �ai � |P ′
r(i)|br

r(i) if 1 ≤ i ≤ n.

From this and Properties 4 and 5, it follows that |P ′
1|br

1 is a solution of E for X1. Be-
cause linear recursive specifications have unique solutions, it follows that 〈X1|E〉 =
|P ′

1|br
1 . �

Theorem 1 goes through in the case where E = {X1 = D}: a witnessing P is
(f.get)ω. It follows from the proof of Proposition 1 given in [23] that, for each regular
thread p, either p is the solution of {X1 = D} for X1 or there exists a finite linear
recursive specification E of the form considered in Theorem 1 such that p is the
solution of E for X1. Hence, we have the following corollary of Proposition 1 and
Theorem 1:

Corollary 1 For each regular thread p, there exists a closed PGA term P in which
jump instructions do not occur such that p is the thread denoted by

((((. . . (|P | /s:1 BRF) . . . /s:n+2 BRF) /rt BRF) /rf BRF) /e BRF) /f BRF.

In other words, each regular thread can be produced by an instruction sequence with-
out jump instructions if use can be made of Boolean register services.

The construction of such instructions sequences given in the proof of Theorem 1 is
weakly reminiscent of the construction of structured programs from flow charts found
in [14]. However, our construction is more extreme: it yields programs that contain
neither unstructured jumps nor a rendering of the conditional and loop constructs
used in structured programming.

7 Program Algebra with Labels and Goto’s

In this section, we introduce PGAg, a variant of PGA obtained by leaving out jump
instructions and adding labels and goto instructions.

In PGAg, like in PGA, it is assumed that a fixed but arbitrary set A of basic in-
structions has been given. PGAg has the following primitive instructions:

– for each a ∈ A, a plain basic instruction a;
– for each a ∈ A, a positive test instruction +a;
– for each a ∈ A, a negative test instruction −a;
– for each l ∈ N, a label instruction [l];

Theory Comput Syst (2012) 50:313–328 323

– for each l ∈ N, a goto instruction #[l];
– a termination instruction !.
We write Ig for the set of all primitive instructions of PGAg.

The plain basic instructions, the positive test instructions, the negative test instruc-
tions, and the termination instruction are as in PGA. Upon execution, a label instruc-
tion [l] is simply skipped. If there is no next instruction to be executed, deadlock
occurs. The effect of a goto instruction #[l] is that execution proceeds with the occur-
rence of the label instruction [l] next following if it exists. If there is no occurrence
of the label instruction [l], deadlock occurs.

PGAg has a constant u for each u ∈ Ig. The operators of PGAg are the same as
the operators as PGA. Likewise, the axioms of PGAg are the same as the axioms as
PGA.

Just like in the case of PGA, the behaviours of the instruction sequences denoted
by closed PGAg terms are considered threads. The behaviours of the instruction se-
quences denoted by closed PGAg terms are indirectly given by the behaviour pre-
serving function pgag2pga from the set of all closed PGAg terms to the set of all
closed PGA terms defined by

pgag2pga(u1 ; . . . ; un) = pgag2pga(u1 ; . . . ; un ; (#[1])ω),

pgag2pga(u1 ; . . . ; un ; (un+1 ; . . . ; um)ω)

= φ1(u1) ; . . . ; φn(un) ; (φn+1(un+1) ; . . . ; φm(um))ω,

where the auxiliary functions φj : Ig → I are defined as follows (1 ≤ j ≤ m):

φj ([l]) = #1,

φj (#[l]) = #tgtj (l),

φj (u) = u if u is not a label or goto instruction,

where

– tgtj (l) = i if the leftmost occurrence of [l] in uj ; . . . ; um ; un+1 ; . . . ; um is the
i-th instruction;

– tgtj (l) = 0 if there are no occurrences of [l] in uj ; . . . ; um ; un+1 ; . . . ; um.

Let P be a closed PGAg term. Then the behaviour of P is |pgag2pga(P)|. The ap-
proach to semantics followed here is introduced under the name projection semantics
in [3]. The function pgag2pga is called a projection.

8 A Bounded Number of Labels

In this section, we show that a bound to the number of labels restricts the expressive-
ness of PGAg. We will refer to PGAg terms that do not contain label instructions [l]
with l > k as PGAk

g terms. Moreover, we will write Ik
g for the set Ig \ {[l] | l > k}.

324 Theory Comput Syst (2012) 50:313–328

We define an alternative projection for closed PGAk
g terms, which takes into ac-

count that these terms contain only label instructions [l] with 1 ≤ l ≤ k. The alterna-
tive projection pgag2pgak from the set of all closed PGAk

g terms to the set of all
closed PGA terms is defined by

pgag2pgak(u1 ; . . . ; un) = pgag2pgak(u1 ; . . . ; un ; (#[1])ω),

pgag2pgak(u1 ; . . . ; un ; (un+1 ; . . . ; um)ω)

= ψ(u1, u2) ; . . . ; ψ(un,un+1) ; (ψ(un+1, un+2) ; . . .

;ψ(um−1, um) ; ψ(um,un+1))
ω,

where the auxiliary function ψ : Ik
g × Ik

g → I is defined as follows:

ψ(u′, u′′) = ψ ′(u′) ; #k+2 ; #k+2 ; ψ ′′(u′′),

where the auxiliary functions ψ ′,ψ ′′ : Ik
g → I are defined as follows:

ψ ′([l]) = #1,

ψ ′(#[l]) = #l+2 if l ≤ k,

ψ ′(#[l]) = #0 if l > k,

ψ ′(u) = u if u is not a label or goto instruction,

ψ ′′([l]) = (#k+3)l−1 ; #k−l+1 ; (#k+3)k−l ,

ψ ′′(u) = (#k+3)k if u is not a label instruction.

In order to clarify the alternative projection, we explain how the intended effect
of a goto instruction is obtained. If uj is #[l], then ψ ′(uj) is #l+2. The effect of
#l+2 is a jump to the l-th instruction in ψ ′′(uj+1) if j < m and a jump to the l-th
instruction in ψ ′′(un+1) if j = m. If this instruction is #k−l+1, then its effect is a
jump to the occurrence of #1 that replaces [l]. However, if this instruction is #k+3,
then its effect is a jump to the l-th instruction in ψ ′′(uj+2) if j < m − 1, a jump to
the l-th instruction in ψ ′′(un+1) if j = m − 1, and a jump to the l-th instruction in
ψ ′′(un+2) if j = m.

In the proof of Theorem 2 below, chains of forward jumps are removed in favour
of single jumps. The following proposition justifies these removals.

Proposition 2 For each PGA context C[]:
|C[#n + 1 ; u1 ; . . . ; un ; #m]| = |C[#m + n + 1 ; u1 ; . . . ; un ; #m]|.

Proof Contexts of the forms C[]ω ;Q and P ;C[]ω ;Q do not need to be considered
because of axiom PGA3. For eight of the remaining twelve forms, the equation to
be proved follows immediately from the equations to be proved for the other forms,
to wit _ ; Q, P ; _ ; Q, P ; _ω and P ; (Q ; _)ω, the axioms of PGA, the defining
equations for thread extraction, and the easy to prove fact that |P ; #0| = |P |.

Theory Comput Syst (2012) 50:313–328 325

In the case of the form _ ;Q, the equation concerned is easily proved by induction
on n. In the case of the form P ; _ ; Q, only P in which the repetition operator does
not occur need to be considered because of axiom PGA3. For such P , the equation
concerned is easily proved by induction on the length of P , using the equation proved
for the form _ ; Q. In the case of the form P ; _ω, only P in which the repetition
operator does not occur need to be considered because of axiom PGA3. For such P ,
the equations for the approximating forms P ;_k are easily proved by induction on k,
using the equation proved for the form P ; _ ; Q. From these equations, the equation
for the form P ; _ω follows using AIP. In the case of the form P ; (Q ; _)ω , the
equation concerned is proved like in the case of the form P ; _ω. �

The following theorem states rigorously that the projections pgag2pga and
pgag2pgak give rise to instruction sequences with the same behaviour.

Theorem 2 For each closed PGAk
g term P , |pgag2pga(P)| = |pgag2pgak(P)|.

Proof Because pgag2pga(u1 ; . . . ; un) = pgag2pga(u1 ; . . . ; un ; (#[1])ω) and
pgag2pgak(u1 ; . . . ; un) = pgag2pgak(u1 ; . . . ; un ; (#[1])ω), we only consider
the case where the repetition operator occurs in P .

We make use of an auxiliary function |_ ,_ |. This function determines, for each
natural number and closed PGA term in which the repetition operator occurs, a closed
term of BTA with guarded recursion. The function |_ ,_ | is defined as follows:

|i, u1 ; . . . ; un ; (un+1 ; . . . ; um)ω| = |ui ; . . . ; um ; (un+1 ; . . . ; um)ω| if 1 ≤ i ≤ m,

|i, u1 ; . . . ; un ; (un+1 ; . . . ; um)ω| = D if ¬ 1 ≤ i ≤ m.

Let P = u1 ; . . . ; un ; (un+1 ; . . . ; um)ω be a closed PGAk
g term, let P ′ =

pgag2pga(P), and let P ′′ = pgag2pgak(P). Moreover, let ρ : N → N be such
that f (i) = (k + 3) · (i − 1) + 1. Then it follows easily from the definitions of |_ ,_ |,
|_ |, pgag2pga and pgag2pgak , the axioms of PGA and Proposition 2 that for
1 ≤ i ≤ m:

|i,P ′| = a ◦ |i + 1,P ′| if ui = a,

|i,P ′| = |i + 1,P ′| �a � |i + 2,P ′| if ui = +a,

|i,P ′| = |i + 2,P ′| �a � |i + 1,P ′| if ui = −a,

|i,P ′| = |i + 1,P ′| if ui = [l],
|i,P ′| = |i + n,P ′| if ui = #[l] ∧ tgti (l) = n,

|i,P ′| = S if ui = !.

326 Theory Comput Syst (2012) 50:313–328

and

|ρ(i),P ′′| = a ◦ |ρ(i + 1),P ′′| if ui = a,

|ρ(i),P ′′| = |ρ(i + 1),P ′′| �a � |ρ(i + 2),P ′′| if ui = +a,

|ρ(i),P ′′| = |ρ(i + 2),P ′′| �a � |ρ(i + 1),P ′′| if ui = −a,

|ρ(i),P ′′| = |ρ(i + 1),P ′′| if ui = [l],
|ρ(i),P ′′| = |ρ(i + n),P ′′| if ui = #[l] ∧ tgti (l) = n,

|ρ(i),P ′′| = S if ui = !
(where tgti is as in the definition of pgag2pga). Because |pgag2pga(P)| =
|1,P ′| and |pgag2pgak(P)| = |ρ(1),P ′′|, this means that |pgag2pga(P)| and
|pgag2pgak(P)| are solutions of the same guarded recursive specification. Because
guarded recursive specifications have unique solutions, it follows that
|pgag2pga(P)| = |pgag2pgak(P)|. �

The projection pgag2pgak(P) yields only closed PGA terms that do not con-
tain jump instructions #l with l > k + 3. Hence, we have the following corollary of
Theorem 2:

Corollary 2 For each closed PGAk
g term P , there exists a closed PGA term P ′ not

containing jump instructions #l with l > k + 3 such that |pgag2pga(P)| = |P ′|.

It follows from Corollary 2 that, if a regular thread cannot be denoted by a closed
PGA term that does not contain jump instructions #l with l > k + 3, it cannot be
denoted by a closed PGAk

g term. Moreover, it is known that, for each k ∈ N, there
exists a closed PGA term for which there does not exist a closed PGA term not
containing jump instructions #l with l > k + 3 that denotes the same thread (see
e.g. [23], Proposition 3). Hence, we also have the following corollary:

Corollary 3 For each k ∈ N, there exists a closed PGA term P for which there does
not exist a closed PGAk

g term P ′ such that |P | = |pgag2pga(P ′)|.

9 Conclusions

Program algebra is a setting suited for investigating single-pass instruction sequences.
In this setting, we have shown that each behaviour that can be produced by a single-
pass instruction sequence under execution can be produced by a single-pass instruc-
tion sequence without jump instructions if use can be made of Boolean register ser-
vices. We consider this an interesting expressiveness result. An important variant of
program algebra is obtained by leaving out jump instructions and adding labels and
goto instructions. We have also shown that a bound to the number of labels restricts
the expressiveness of this variant. Earlier expressiveness results on single-pass in-
struction sequences as considered in program algebra are collected in [23].

Theory Comput Syst (2012) 50:313–328 327

Program algebra does not provide a notation for programs that is intended for ac-
tual programming. However, to demonstrate that single-pass instruction sequences as
considered in program algebra are suited for explaining programs in the form of as-
sembly programs as well as programs in the form of structured programs, a hierarchy
of program notations rooted in program algebra is introduced in [3]. One program
notation belonging to this hierarchy, called PGLDg, is a simple program notation,
close to existing assembly languages, with labels and goto instructions. We remark
that a projection from the set of all PGLDg programs to the set of all closed PGAg
terms can easily be devised.

The idea that programs are in essence single-pass instruction sequences underlies
the choice for the name program algebra. The name seems to imply that program
algebra is suited for investigating programs in general. We do not intend to claim this
generality, which in any case does not matter when investigating single-pass instruc-
tion sequences. The name program algebra might as well be used as a collective name
for algebras that are based on any viewpoint concerning programs. To our knowledge,
it is not common to use the name as such.

Most closely related to our work on instruction sequences is work on Kleene alge-
bras (see e.g. [15–18, 24]), but programs are considered at a higher level in that work.
For instance, programming features like jump instructions have never been studied.
In most work on computer architecture (see e.g. [1, 19–22]), instruction sequences
are under discussion. However, the notion of instruction sequence is not subjected to
systematic and precise analysis in the work concerned.

Acknowledgements This research was partly carried out in the framework of the Jacquard-project Sym-
biosis, which is funded by the Netherlands Organisation for Scientific Research (NWO). We thank Alban
Ponse, colleague at the University of Amsterdam, and Stephan Schroevers, graduate student at the Univer-
sity of Amsterdam, for carefully reading a preliminary version of this paper and pointing out some flaws
in it. Moreover, we thank an anonymous referee for suggesting improvements of the presentation of the
paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Baker, H.G.: Precise instruction scheduling without a precise machine model. SIGARCH Comput.
Archit. News 19(6), 4–8 (1991)

2. Bergstra, J.A., Bethke, I.: Polarized process algebra and program equivalence. In: Baeten, J.C.M.,
Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) Proceedings 30th ICALP. Lecture Notes in Computer
Science, vol. 2719, pp. 1–21. Springer, Berlin (2003)

3. Bergstra, J.A., Loots, M.E.: Program algebra for sequential code. J. Log. Algebr. Program. 51(2),
125–156 (2002)

4. Bergstra, J.A., Middelburg, C.A.: Instruction sequences with indirect jumps. Sci. Ann. Comput. Sci.
17, 19–46 (2007)

5. Bergstra, J.A., Middelburg, C.A.: Synchronous cooperation for explicit multi-threading. Acta Inf.
44(7–8), 525–569 (2007)

6. Bergstra, J.A., Middelburg, C.A.: Distributed strategic interleaving with load balancing. Future Gener.
Comput. Syst. 24(6), 530–548 (2008)

7. Bergstra, J.A., Middelburg, C.A.: Instruction sequences and non-uniform complexity theory.
arXiv:0809.0352v3 [cs.CC] (2008)

http://arxiv.org/abs/arXiv:0809.0352v3

328 Theory Comput Syst (2012) 50:313–328

8. Bergstra, J.A., Middelburg, C.A.: Maurer computers for pipelined instruction processing. Math.
Struct. Comput. Sci. 18(2), 373–409 (2008)

9. Bergstra, J.A., Middelburg, C.A.: Program algebra with a jump-shift instruction. J. Appl. Log. 6(4),
553–563 (2008)

10. Bergstra, J.A., Middelburg, C.A.: Autosolvability of halting problem instances for instruction se-
quences. arXiv:0911.5018v2 [cs.LO] (2009)

11. Bergstra, J.A., Middelburg, C.A.: Indirect jumps improve instruction sequence performance.
arXiv:0909.2089v1 [cs.PL] (2009)

12. Bergstra, J.A., Middelburg, C.A.: Instruction sequences with dynamically instantiated instructions.
Fundam. Inform. 96(1–2), 27–48 (2009)

13. Bergstra, J.A., Ponse, A.: Execution architectures for program algebra. J. Appl. Log. 5(1), 170–192
(2007)

14. Cooper, D.C.: Böhm and Jacopini’s reduction of flow charts. Commun. ACM 10(8), 463, 473 (1967)
15. Fernandes, T., Desharnais, J.: Describing data flow analysis techniques with Kleene algebra. Sci.

Comput. Program. 65, 173–194 (2007)
16. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inf. Com-

put. 110(2), 366–390 (1994)
17. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3), 427–443 (1997)
18. Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM Trans. Comput. Log. 1(1), 60–76

(2000)
19. Lunde, A.: Empirical evaluation of some features of instruction set processor architectures. Commun.

ACM 20(3), 143–153 (1977)
20. Nair, R., Hopkins, M.E.: Exploiting instruction level parallelism in processors by caching scheduled

groups. SIGARCH Comput. Archit. News 25(2), 13–25 (1997)
21. Ofelt, D., Hennessy, J.L.: Efficient performance prediction for modern microprocessors. In: SIGMET-

RICS ’00, pp. 229–239 (2000)
22. Patterson, D.A., Ditzel, D.R.: The case for the reduced instruction set computer. SIGARCH Comput.

Archit. News 8(6), 25–33 (1980)
23. Ponse, A., van der Zwaag, M.B.: An introduction to program and thread algebra. In: Beckmann, A.,

et al. (eds.) CiE 2006. Lecture Notes in Computer Science, vol. 3988, pp. 445–458. Springer, Berlin
(2006)

24. Salomaa, A.: Two complete axiom systems for the algebra of regular events. J. ACM 13(1), 158–169
(1966)

http://arxiv.org/abs/arXiv:0911.5018v2
http://arxiv.org/abs/arXiv:0909.2089v1

	On the Expressiveness of Single-Pass Instruction Sequences
	Abstract
	Introduction
	Basic Thread Algebra
	Program Algebra
	Interaction of Threads with Services
	Instruction Sequences Acting on Boolean Registers
	Jump-Free Instruction Sequences
	Program Algebra with Labels and Goto's
	A Bounded Number of Labels
	Conclusions
	Acknowledgements
	Open Access
	References

