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For a function f of bounded variation on compact intervals, satisfying certain 
growth conditions, we estimate the rate of convergence of its expansion in a series 
of polynomials orthogonal on the whole real axis with respect to a weight function, 
now known as a Freud weight. The case where f has higher order derivatives of 
bounded variation is also studied. The principal techniques include the finite-infinite 
range inequalities due to the author and Saff, and Freud’s theorems on one-sided 
weighted Li-approximation. Our theorem holds, in particular, when the weight 
function is exp( -.P), m a positive even integer. 0 1988 Academic Press. Inc. 

1. INTRODUCTION 

In 1979, R. Bojanic Cl] obtained an estimate on the rate at which the 
trigonometric Fourier series of a 2n-periodic function of bounded variation 
converges. His theorem can be stated as follows. 

THEOREM 1.1 (Cl]). Let f be a 2n-periodic function having bounded 
variation on [ - rc, n] and, for n 3 1, let S,(f) denote the nth partial sum of 
the Fourier series off. Then, for x E [ - 71, z] and n 2 1, 

where 

g:(t) := 
i 
f(x + 1) + f(x - t), f#O 
f(x+ )+f(x- )Y t=O 

and V([a, b]), g,*) denotes the total variation of g,* on [a, b]. 

(1.2) 

* The author is grateful to the California State University, Los Angeles, for a leave of 
absence during which this work was done and to the Bowling Green State University, 
Bowling Green, Ohio, for their support during the leave. 
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This theorem seems to have inspired a great deal of research in which 
analogous results have been obtained (e.g., [2, 3,4, 6, 7,9, 10, 11, 12, 
16, 173). All of these papers deal with processes defined for functions of 
bounded variation on compact intervals. Various technical difficulties 
prevent a straightforward extension of these results to the case of functions 
supported on the whole real line. 

In 1974, G. Freud [ 133 proved a theorem of Dirichlet-Jordan type for 
expansions in polynomials orthogonal on the whole real line with respect 
to a weight function satisfying some mild conditions. We postpone the 
detailed statement of his results to Section 2 (cf. Theorem 2.1) but make a 
few comments here. The usual integration-by-parts argument used for 
obtaining such a theorem for Fourier series did not work because of the 
lack of detailed information about the orthogonal polynomials. Freud 
used, instead, a Tauberian argument, involving the comparison of the 
partial sums of the expansion with their shifted artithmetic averages. The 
novelty of his ideas in [13] together with the connections between his 
result and the weighted analogues of Jackson-Favard-type estimates, in 
our opinion, make [13] an important landmark in the theory of weighted 
polynomial approximation. Nevertheless, in order for these ideas to work, 
it is very important that the function being expanded be continuous on the 
whole real line. 

Recent progress in the theory of weighted approximation, particularly 
[19], has made it possible to use the old integration-by-parts argument 
again to obtain the rate of convergence of the orthogonal polynomial 
expansions on the whole real line for functions of bounded variation which 
are not necessarily continuous. In [S], we studied the case of the expan- 
sions in Hermite polynomials, using heavily the special properties of 
Hermite polynomials. In this paper, we continue these investigations for 
a more general class of weight functions and also in the case when the 
function being expanded has higher derivatives. The core of the argument 
is similar to that in [17]; other key ingredients being the finite-infinite 
range inequalities of [19] and the one-sided approximation theorem of 
Freud [ 141. 

In the next section, we state Freud’s theorem in [13] as well as our 
theorem. The proofs are given in Section 3. 

I thank Professor Bojanic for his kind encouragement and generous help 
in this work. 
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2. MAIN RESULTS 

We consider weight functions of the form we(x) := exp( - Q(x)) which 
satisfy the following conditions: 

(Wl ) Q is an even, convex, positive function on R and is differen- 
tiable and increasing on (0, co). 

(W2) Q’(x) -+ cc as x -+ co. 
(W3) 1 + c1 < Q’(lTx)/Q’(x) < 1 + c2, (x > cj). 
(W4) For each sufficiently large n, let qn be the smallest number for 

which 

qn Q’(qJ = n. 

Then there exists a constant B> 1 such that 

Here and elsewhere in the paper we adopt the following convention 
concerning the various constants: we shall denote the constants depending 
on Q alone by c, c,, c2, etc. However, the same symbol may denote 
different constants in different formulas. Constants denoted by capital 
letters, however, retain their value when referred to in different formulas. 

Let Z7, be the class of all polynomials of degree at most n, 
(Pk(X) := ykXk + . . . E nk, yk > 0} the system of orthogonal polynomials 
with respect to wi: 

s P/c(X) Pi(X) W;(X) dX= skj. (2.1) 

IffWeEL’(R), put 

ak .- ‘--+(f) := j- fpkw; dx 

n-1 

(2.2a) 

k=O 

Freud’s theorem can now be formulated as follows. 

THEOREM 2.1 ([ 131). Let f be a continuous function on IL! which is of 
bounded variation over every compact interval and 

s waldf I < 00. (2.3) 
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Then 

lim llw&)Cf(x) -dL x)lll m = 0. (2.4) n--roo 

Freud’s theorem is, in fact, true under much weaker conditions on the 
weight function. 

Before we state our result, we need to introduce additional notation. If 4 
is a function having bounded variation on compact intervals, and x E R, we 
set 

1 
4(t)-&- )3 -co<t<x 

g,(b, t):= 0, 
(2.5) 

t=x 

d(t) - 46 + 19 x<t<co. 

If [a, b] c R, we set 

Finally, denoting the quantity max( y’, 0) by y”+, we put 

i 
(t--x)‘,, 

rAt,X):= (t-x)O, J, 
t-s-0 
r=O (2.7) 

and 

an,.(x) := s,(w& r,t-, x), xl. (2.8) 

Our main theorem can now be stated as follows. 

THEOREM 2.2. Let r 20 be an integer, f an r-times iterated integral of 
a function Q ( = f if r = 0) having bounded variation on compact intervals. 
Suppose that 

f m we(‘) Id’ IMt)l < 00. (2.9) -cc 

Assume that the system of orthogonal polynomials satisfies the condition 

IPn(t) WjWl ~C%Y’*> (ItI G 4,). (PB) 
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Then, for x E R and n = 1, 2, . . . . 

S,(W;,LX)-;(f(J+ )+S(x- I)- II&x+ )-4(x- )I 
r! 0”. r(x) 

qn qn x--if,x+x , 1 ) gx(49.) 
+s” Id watt) I44t)l . CZY” 

(2.10) 

In order to see why the first term on the right hand side of (2.10) tends 
to 0 as n -+ co, observe that q,/n + 0 as n -+ co. Hence, denoting g,(&.) 
by g, 

;‘Tl” ,,([x-~,x+~],,)~c.~~wuldgl (2.11) 

while, if k z Jnq, then 

VQ 
([ 

x-4",.+% ,g I) 
< vQ;,x-jg,x+&,9 g). 

Thus. 

;kzcil+l vQ([x-$x+~]yg) 

<;Q([x-&,x+&g). (2.12) 

Since g is continuous at x, so is its variation function. An integration by 
parts in the formulas for V, then shows that the right hand side of (2.12) 
tends to zero as n + 00. Estimates (2.11) and (2.12) then show that the first 
term on the right hand side of (2.10) tends to 0 as n + cc. 

The Condition (PB) is perhaps unduly stringent. Currently, it is known 
to be true only in the case when Q(x) = x”‘, m being an even, positive 
integer [8]. In [20], it is conjectured that such an estimate is true also 
when Q(x) = IxIa, a > 1. 

When Q(x) = x2, then the orthogonal polynomials are precisely the 
Hermite polynomials. In this case, we found an asymptotic expression 
for c,,,(x) in [S]. In the general case, it is easy to check that 
en, ,(x) = O(q,/n)‘; but a better estimate would be desirable. 
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The proof of our theorem depends upon the relationship between various 
constants. For the convenience of the reader, we give a list of a few 
constants which will be used often along with the location where they first 
occur. 

Symbol Location 

A 
A* 
B 

B, 
B2 
4 
Y 
D 
K 
L 

Condition (PB) in Theorem 2.2 
Formula (3.42) 
Condition (W4) on the weight function 
Lemma 3.1 (b), Formula (3.6) 
Lemma 3.1(c) 
Lemma 3.1(c) 
Formula (3.17) 
Lemma 3.1(d) 
Formula (3.17) 
Formula (3.44) 

3. PROOF 

Before we proceed to prove Theorem 2.2, we summarize some known 
estimates as well as certain computational aspects of our proof in the 
following lemma. 

LEMMA 3.1. (a) Let 
n-1 

f&(x, t) := 1 p,c(x) Mt). (3.1) 
k=O 

Then 

K (x ,)=Y.-IPn(X)Pn-I(t)-Pn-t(X)P”(t) ” 7 
Yn x-t 

For K,,(x, x), we have the following: 

K(x, x) G c -$ w;*(x), XER. 
” 

(b) Let m >/ 1 be an integer, a, be defined by the formula 

(3.2) 
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If P E l7, satisfies 

J II’(t) we(t)1 dt d 1 
Ifl 2 20, 

then 

J IP(t)wp(t)12dt<cexp(-B,m). 
111 > 20, 

(3.5) 

(3.6) 

(c) There exist positive constants B2, B, with B2 < 1 such that 
whenever P E 17cB2,,l and 

we have 

J (P(t) we(t)1 dt < 1 (3.7) 
111 c 4, 

s IP(t)w~(t)12dtdc.exp(-B,n), (3.8) 
14 2 -4% 

where A is the constant appearing in (PB). 

(d) There exists a constant D such that for I yJ < Dq,, 

ev ( ) 
-F <c.wo(y). (3.9) 

(e) For any D1 >O, lfz>D,q, then 

s 
m 

v’wp( v) do < c .f$ zrw,(z). (3.10) 
i 

(f) For any D, >O, $1~1 <+D1q,, andO<u,<iD,q,, we have 

w,(x + D, q.) < cl exp( - c2n) wQ(x + u). (3.11) 

(g) For x E IR, t > 0, and integers n 2 r 3 0, let 

G(t) :=-&J; (t - UT &x(4, x + ~1 (3.12) 

/i,(t):=~Jm(t-u)‘p,(x+u)w~(x+u)du. (3.13) 
I 
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Then, for integer k, 0 <k < r, and IX + tl 6 Dq, 

JG(k’(t)l<c4-k-1 ‘Idg,(4,x+u)l 
s 0 

(3.14) 

r-k+1 

q, “2 w,(x + t), n>c,. (3.15) 

Proof of Lemma 3.1. Part (a) was proved in [15]. Part (b) is a special 
case of Theorem 2.7(b) of [19] (cf. Example 3, pp. 7678 in [18]). Since 
Q’(x) is increasing, (3.4) implies that 

qmda,<3q,. (3.16) 

In view of Assumption (W4) on the weight function, we may find BZ, 
0 < B, < 1, such that with m = [B,n J, 

2a, < 69, < Aq,. 

Part (c) now follows with B3 := B,B,/2. In view of Assumption (W3), we 
see that for any D, > 0 

D,q,Q’tDzs,) G K.&n (3.17) 

for some constants K and y independent of D2 or n. Hence, for 
D := (B,/8K)““, 

Dq, Q’tDqJ G 448. (3.17a) 

So, if 1.~4 6 Dq, 

Q(Y) = Q(lvl> G QhJ = QW> + joDq” Q’(l) dt 

G DqnQ’t%) + Q(O) G Q(O) + &n/8. 
This yields (3.9). 

(3.18) 

In order to prove part (e), observe that for u > c, 

[dwg(u)]’ = $J- ‘[2r - uQ’(u)] . wg(u) < 0. (3.19) 

Also, if u>zaD,q,, then Q’(u) > c. n/q,,. So, for u 2 z, 

u’w&) < zrwr(z). c t Q’(u) ~$0). (3.20) 
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Integrating both sides of (3.20) with respect to D between z and co, we get 
(3.10). To prove part (f), we first prove that 

(3.21) 

Indeed, this is obvious when x + u > 0. If x + u < 0 then 

(3.22) 

This gives (3.21) in this case also. Now, 

Gc.q,Q’(D,q,,/4)<c.n. (3.23) 

The Estimate (3.11) follows from (3.23) and (3.22). 
The fact that (3.12) implies (3.14) is a simple application of Leibnitz’s 

formula. Further 

AP’(t) = jm (x + t - u)“‘” p,(u) w;(u) du. (3.24) 
-m 

Let m := C&n]. Then, in view of a theorem of G. Freud on one-sided 
weighted L’-approximation, there exists a polynomial PE IZ, such that 

s m 
r-k+1 

I(x+t-u)‘,-k-P(u)l w&)du<c. WQ(X + t). (3.25) 
-co 

(cf. [14], Lemmas 2.1, 5.1, and the Estimate (5.15). Note, however, the 
difference in notation.) Since pn is orthogonal to P, we see that 

Ifp( = jm [(x+ t-u);? - P(u)1 p,(u) +4 du <J, + Jz, (3.26) 
-02 

where 

J, :=j [(x + t - u)yk - P(u)1 wQ(u) lp,(u) wa(u)l du (3.27a) 
IUI G 4” 

Jz:=j ((x+ t-u)yk-P(u)1 w&)+,(u) wa(u)l du. (3.27b) 
I4 2 4” 



FREUD POLYNOMIALEXPANSIONS 159 

In view of (3.25) and Assumption (PB) on orthogonal polynomials, we 
have 

J, <c*q,“*(q,/n)‘-k+’ wp(x+t). (3.28) 

Also, if Jx+tJ GDq,, P,(v):=(x+ t-u)‘-k-P(o)E17m satisfies, in view 
of (3.25) 

I IP,(u)l w&)dx~c.q;-~. (3.29) 
Id G &. 

So, part (c) of this Lemma implies that 

i IPl(u)l we(u) du < c -exp (3.30a) 
IUI a 4. 

Similarly, 

s IP( wo(u)dv<c.exp (3.30b) 
I4 > ff% 

Thus 

f 
I(x+t-u)‘,-~-P(u)( wJo)dv<c.exp (3.3Oc) 

IDI 2 48 

The part (a) of this Lemma implies that Ip,(u)l w&u) < c . (n/q,)‘j2 for 
all u E R. So, (3.30~) yields 

J, < c . exp( - $B, n). (3.31) 

Since (x + t( < Dq,, part (d) of this lemma now gives 

J,<c.exp 
r-k+1 

w&x+t)<c ?f 
0 n 

qyWQ(X+ t). (3.32) 

Substituting from (3.32) and (3.28) into (3.26), we get (3.15). 1 

In the proof of (3.I5), we did not really use the fact that p,, is a 
polynomial; merely that it is orthogonal to IT,- i. Thus, the same proof 
gives us the following analogue of H. Bohr-type inequality. We shall not 
need it in this paper, but record it here for a possible future reference. 

PROPOSITION 3.2. Let W$E Lm(R), n 3 c be an integer, 0 <p < 1, 

ess sw{lw&MW PI G&J =: W,, (3.33a) 

ess sup(IwQ(t)F(t)l: I4 284.) =: M,,.. (3.33b) 
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Suppose that for every P E IT,,, 

I 
m P(t)F(t) w;(t) dt =O. 
-co 

Let, for an integer r 2 0, 

,(y):=$[’ (y-u)‘F(u)w~(u)du. 
. -cc 

(3.34) 

(3.35) 

Then, for IYI G 4% r) s,, 

Iw~‘(y)~(~)l <cl c ‘+‘M,,,+exp(-c,n)M,,, , 
N > > 

(3.36) 
n 

where c, and c2 are positive constants depending only upon Q, /?, and r. 

For r = 0, a cruder form of this proposition was proved by G. Freud in 
[lS]. From this proposition (in its cruder form), Freud then obtained the 
direct theorems of weighted polynomial approximation. We shall not 
pursue this line of thought here. 

We now return to the proof of Theorem 2.2. We observe that when r = 0 
and hence f = 4, we have (cf. (2.5), (2.7)), for t # x, 

f(t)J-(x+ )+f(x- 1 
2 + Lox + 1 -Ax - )I ~o(t, XI + g,(t). (3.37) 

When r >O then [j-(x+ )+f(x- )]/2=f(x) and the fact that f is an 
r-times iterated integral of 4 can be reformulated to state that for t # x, 

1 
f(t)=P(x, ‘)+(r-l)! I ‘(t-u)‘-‘#(u)du, (3.38) x 

where P(x, .) E I7, and P(x, x) = f(x). A simple computation now gives for 
t # x, 

f(t)=P(x, t)+[4(x+)-4(X-)‘l-(t 
r! I 9 x)+F(x t) , 3 (3.39) 

where 

1 -- 
F(x’ t)-(r- I)! s : (t- ulr--l gx(4, u) du 

=; $’ (t - u)’ &x(4, ~1. 
x 

(3.40) 
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If r = 0, we let F(x, t) := g,(q5, t). Since s,(wi, P(x,.), x) = P(x, x) =f(x), 
we see from (3.37) and (3.39) that 

&l(w;,f, xl- Ax+ )+f(x-) cw+ )-&-)I ~ 
2 - r! n, r 

(x) 

= && F(x,.), xl. (3.41) 

Thus, the proof of Theorem 2.2 consists of an estimation of 
s,Jwi, F(x, .), x). We now fix x, and for simplicity of notation, write F(t) 
instead of F(x, t) and g(t) instead of g,(q$ t). Set 

A * := min(A, AD), (3.42) 

where A is the constant appearing in Condition (PB) on orthogonal 
polynomials and D is the constant given by Lemma 3.1(d). Assume that n 
is so large that 

1x1 < A*q,. 

Further, let 

L := $0. 

Next, we observe that (cf. [21], p. 39), 

s,(w;, E x) = I O” K,(x, x + t) F(x + t) w;(x + t) dt 
-00 

=z,+z,+z,+z,+z,, 

where, with H(t) := K,,(x, x + t) F(x + t) wi(x + t), 

I, := I H(t) dt 
111 G 4Jn 
- Lq. 

O” z* := I H(t) 4 z3 := I H(t) dt 
--m Lqn 

s - qJn 
z4 := H(t) dt, I, := Lq” H(t) dt. 

- Lq, I qJn 

(3.43) 

(3.44) 

(3.45) 

(3.46a) 

(3.46b) 

(3.46~) 

We shall estimate I,, Z,, Is, the estimation of I, and Z, being similar to that 
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of I, and I,, respectively. The estimation of I, is the simplest. From 
Lemma 3.1(a), we see that 

K,(x,x+r)C~~.JK,(x+r,x+~) 

<c.$w,l(x)wyl(x+f). (3.47) 
” 

Hence. 

lZ,l <c.-fw$(x, j IF(x + t)l wQ(x + t) dr. (3.48) 
n Id GqJn 

But, from (3.40), if ItI <q&z, then 

IF(x+t)l = ;\;(t-u)‘dp(x+u)i 

4nln 
Id& + ~11. 

- 4”lfl 

Also, if It - uI < 2q,/n, (3.43) shows that 

lQb+t)-Qcx+u,I <c+Q’(2~*q,~<c. 

(3.49) 

(3.50) 

Hence, 

w,(x + u) Id& + u)l 
- rlJn 

Hence, (3.48) yields that 

lZ,l Ww,‘(x) f$2([ n’ n]9g). 
x-4” x+4” (3.51) 

Next, we estimate IS. In view of (3.47), 

114 =; lJ;=,K,( x, x + t) w;(x + t) J; (t - u)~ dg(x + u) dtl 

G c .; W~W(k,,l + lZ,,,l + lZ,,,l), n 
(3.52) 
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where 

Z 3,l := 
n 

w,(x + t) joLqd2 It--ul’Idg(x+u)l dr (3.53a) 

Z 3,2 I= jLY w,(x + t) 1,” It-ul’Idg(x+u)l dt (3.53b) 
n LYnP 

Z 3.3 := jrn wp(x+f)~’ lt-ulr Idg(x-u)l dt. (3.53c) 
La, LY” 

If we interchange the order of integration in I,,, and Z3.* and then put 
0 :=x+t, we get 

Lqd* m 
Z 3.1 = I I 

we(u) lu-x-ul’duldg(x+u)l (3.54a) 
0 x+Lq, 

z3,* = Lqn s s Oc W&I) lo-x-ul’duldg(x+u)l. (3.54b) 
bl/* x + h 

We estimate the inner integral in both of these integrals first. In both Z3,1 
and 13.2 we have 1x1 < A*q,, < (D/90) q,, = (L/45) qn < (L/8) q,, u < Lq,, 
and u>x+Lq,, So, 

Iv - (x + 24) d IUI + lx+ ul d Iul + (A* -t L) q” 

Gu+;Lq.=u+;(Lq”-+!) 

16 
~v+;(Lq,+x)slu. (3.55) 

Moreover, x + Lq, 2 Lq, - 1x12 ZLq,,. Thus, we may use Lemma 3.1(e) 
with &L in place of D, to get 

s :,,,. Iv-b+WwgWdu 

<C. I ,Lqn lulr w&4 do 

G c .t (x + Lq,)’ WQ(X + Lq,). (3.56) 
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Substituting this in (3.54), we have 

lZ3.11 a.+ tx+Lq,l’We(X+Lq,)~~~~12 Idg(x+u)J 

lZ3.21 a.: Ix+Lq,l’wg(x+Lqn)jL4” Idg(x+u)l. 
La/2 

(3.57a) 

(3.57b) 

Our next objective is to bring the wp term inside the integral. In Z,,, , 
u<$Lq, and 1x1 <+Lq”. So, we apply Lemma 3.1(f) to get 

wp(x + Lq,) 6 cl exp( -c2n) wo(x + u). 

Since Ix + Lq,l < cq,, we now obtain that 

I 
kd2 

IU dc=M-c,n) w,(x + u) I&(x + UN. (3.58) 
0 

In h2 x + u > u - (xl 2 ($L - (L/8)) qn > 0. So, w,(x + Lq,) < w,(x + u). 
Also, 

Ix + Lq,1’6 cq; < c(x + uy. 

Hence, (3.57b) gives 

II,,) Gc.4” 
s 

LYn 

n Lg.12 
lx + uIr w,(x + u) Idg(x + u)l 

GC.4” 5 
Cc 

I~l’w&) I&(t)l. (3.59) 
n x+(~/2)qn 

Next, we estimate Z3,3. Interchanging the order of integration in (3.53c), 

z3,3= jLY” jx~*~-U)r~Qwu l&(x+u)l. (3.60) 

Since x + u 2 Lq, - 1x1 2 $Lqn, we may use Lemma 3.1(e) again with $L in 
place of D, to get 

I m (u-X-~)~W~(u)dv~c.~(X+U)‘Wa(X+~). 
XCU 

Substituting this into (3.60), we get 

qn m <c.- n f x+(L,2)q” I4’w&) l&(t)l. (3.61) 
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In view of (3.58), (3.59), (3.61), and (3.52), we have 

+IW fw,W I&(t)l . (3.62) 
-x + (L/2) 4” 

Next, we turn to the estimation of I,. This estimation is done using an 
integration by parts argument similar to the one in [17]. The details are, 
however, more complicated partly because we need an estimate involving 
V, instead of the ordinary total variation. In view of (3.2), we may write 

z 5 =y {Pn-I(X)Z5,1-Pn(X)Z5,2)~ 

where, with the notation (3.12) and (3.13), 

I 
LY. 

Z 5,l := 
Ynln 

p,(x + t)G(t) w;(x + t) dt 

(3.63) 

Z 5.2 := 
s 
4;; pn- 1(x + t)G(t) w;(x + t) dt. 

Now, using the inequality [15] 

Yn-l/Yn~% 

and Condition (PB), for (xl < A*q,, 

1151 <c.qy2 w~1bHl~5,11 + lZ,,,I 1. 

(3.64b) 

(3.65) 

(3.66) 

We shall estimate I,, i ; the estimate for I,,, is similar. With the notation of 
(3.13), 

Z5,1= s Lq” (-l)‘+l A;+“(t)G(t)dt. (3.67) 
4th 

Integrating by parts several times, 

I,,, = i (-1)“ G’k’(~q,)~~-k’(~q,)-G’k’ 
k=O 

+ jL4” A,(t) dG”‘(t). 
4Jn 

(3.68) 

640/55/2-4 
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To estimate the integrated terms, we recall that when q,,/n < t< Lq,, 
lx + tl < $Lq, + Lq, d Dq,. So, Lemma 3.1 (g) can be applied to get 

lG’k’Wq,) WkVLqn)l 

(3.69) 

~C.4,‘“(~)‘w~(x+~)~~l~g(x+u)l. (3.70) 

Now, when 0 < u < q,,/n and (xl < A*q,, 

and so, 

The estimation of the right hand side of (3.69) is similar to that of Z3, 1 and 
Z3,* of (3.53). Thus, if (L/2) qn d ZJ < Lq, then 

Then w,(x + Lq,) d w,(x + U) and q; < cJx + u(‘. Hence, 

q;wQ(x + Lq,) /;q;2 I&(x + u)l 

6c s m lX+Ulr w&x+u) I&(x+u)l 
LqJ2 

(3.72) 

If 0 < u < (L/2) q,, , then we may apply Lemma 3.1 (f) to get 

w,(x + Lq,) < c .exp( -c,n) w&x + 24). 
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so, 

q~wQ(x+Lq,)~~q”‘2,dg(x+u),Ccle~“”VQ([X,X+~],~). (3.73) 

Substituting from (3.72) and (3.73) in (3.69), we get 

+sy IfI’ WQ(‘) l&(t)l . 
I 

(3.74) 
x+(m)% 

Next, we have to estimate the integral expression in (3.68). Using (3.15) 
with k = 0, we see that 

n.,(l)dG”)(~)l~cq;“‘(~~+‘f~~we(n+t),dG”’(r),. (3.75) 

An application of Leibnitz’s formula now yields that 

I Lqn w,(x + t) IdG”‘(t)l 
4nln 

<c s 
Lq” wQ(;2+ ‘) f’ Idg(x + u)l dt 
vnh 0 

+C I Lq* wQ(x + t) Idg(x + t)l 
t 

(3.76) 
6-h 

The last integral above can be estimated as usual. We integrate by parts 
and get 

f 
Lqn wQ(x + t) Idg(x + t)j 

4Jn t 

1 <- I Lq” wQ(x + t) (dg(x + t)l 
Q” 0 

+z s 
enin 

qn 0 
wQ(x + f) I&(x + t)l 

+ fq;; tC2 f; wQ(x + u) Idg(x + u)l dt. (3.77) 
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The first integral on the right hand side of (3.76) is easy to estimate when 
x20. In this case, since wp is a decreasing function on (0, co), 
w&x + t) < w,(x + U) for all u with 0 <U < t. Then 

jLq” w,(x + t) tr2 s’ Idg(x + u)l dt 
%!f” 0 

w,(x + u) (dg(x + u)l dt. (3.78) 

When x < 0, the estimate is somewhat more difficult. If 0 < u < t < 21x1 then 

lQ(x + t) - Q(x + u)l < cxQ’(x). 

s 2’x’ wQ(;+ t, /-’ (dg(x + u)l dt 
e/n 0 

Q cl ev(c2xQ’W) fz’ $ [i wQ(x + u) (dg(x + u)l dt. (3.79) 

If t>2lxl, but O<~Ulxl, then 

06 lx+ul= -x--u< -x= IxI<2lx) +x<x+ t. 

So, w&x + t) 6 w&x + U) and we get 

wQ(x + u) (dg(x + u)l dt. (3.80) 

Finally, if t>2lxl and tau>lxl, then O<x+u<x+t and hence 
WQ(X + t) < WQ(X + 24). so, 

J -%I WQ(X + t) f ’ I&(x + ~11 dt 
ml t2 I.4 

w,(x + u) (dg(x + u)l dt. (3.81) 
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Adding (3.79), (3.80), and (3.81), we get 

s Lq” wQ(;2+ “5’ Idg(x+ u)l dt 
9Jn 0 

6 c.exp(clxQ’(x)) IqLE tr2 1: wQ(x + u) Jdg(x + u)l dt (3.82) 
n 

when x -C 0. In view of (3.78), we see that (3.82) holds for all x E R. We now 
substitute from (3.82) and (3.77) into (3.76) and then use the resulting 
estimate in (3.75) to get 

<c.q,‘P !!c 

0 

r 

n evhxQ’(4) 

*{; vQ(t- x>x+Lq,l, g)+ VQ ([x,x+$) 

+tlq;; vQ([x.;2+rl~ g),}. (3.83) 

A routine computation now yields that 

<ccexp(c,xQ’(x))q;‘/2 (:y’$, vQ([x,x++)- (3.84) 

In view of (3.71), (3.74), (3.75), (3.84), and (3.68), 

lZ,,,l Wex~hxQ’(x)) q,?2 ($);$l '0 ([& .+$]y g) 

O” + cq, 1’2 
I ItI’ wQ(‘) lddt)l. (3.85) x + Lq,i2 

We estimate Z5,2 in a similar fashion and use this estimate along with (3.85) 
in (3.66) to get 

ItI’ wQ(') I&(t)1 
> 

. (3.86) 
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Here we have also used the fact that x+ (L/2) qn> ((L/2)-A*)q,a 
(L/4) qn. The estimations for Z, and Z4 are done in the same way as for I, 
and I,, respectively. When we use these estimations along with (3.87), 
(3.62), and (3.51) in (3.45), we see that 

(3.87) 

In view of (3.41), this completes the proof of Theorem 2.2. 
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