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We implement a schizophrenic scenario for the active neutrinos in a model in which there are also
exotic right-handed neutrinos making a model with a local U (1)B−L anomaly free. Two of right-handed
neutrinos carry B − L = −4 while the third one carries B − L = 5. Unlike the non-exotic version of the
model, in which all right-handed neutrinos carry the same B − L = −1 charge, in this case the neutrinos
have their own scalar sector and no hierarchy in the Yukawa coupling in the Dirac mass term is necessary.

© 2011 Elsevier B.V. Open access under the Elsevier OA license.
It is well known that B − L is an automatic anomalous global
symmetry of the degrees of freedom of the standard model [1]. In
order to make this a local symmetry is necessary to add right-
handed neutrinos (that are sterile with respect to the standard
model interactions). For instance, three of them with the same lep-
ton number than the left-handed (active) neutrinos. It was shown
in [2] that, working within an SU(2)L ⊗ U (1)Y ′ ⊗ U (1)B−L elec-
troweak model, there exist other solutions in which the number
of right-handed neutrinos are not necessarily three or, they have
other B − L charge assignments. In particular, in the case of three
right-handed neutrinos there is a solution to the anomalies cancel-
lation in which two right-handed neutrinos have B − L = −4 and
the third one has B − L = 5.

On the other hand, recently, it was shown that it is possible to
have schizophrenic neutrinos [3]: the neutrinos of all flavor are part
Dirac and part Majorana, in particular one of the neutrino mass
eigenstates is, at the tree level, Dirac whereas the other two are
Majorana.

Here we shall show that in models with exotic right-handed
neutrinos we can implement a scenario in which the active neutri-
nos are of the schizophrenic type. The mechanism can of course be
implemented in the non-exotic version the model also considered
in Ref. [2] i.e., that in which all right-handed neutrinos carry the
same B − L = −1 assignment. This version is in fact almost similar
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to the model considered in [3]. In this case the mass eigenstates
having the Dirac mass must have an extremely tiny Yukawa cou-
pling. This is because the VEV appearing in the Dirac mass term is
the same that also gives mass to the u-quark. The exotic version on
the other hand predict that neutrinos have their own scalar sector
and the VEVs are not necessarily large thus, avoiding the hierarchy
in the Yukawa coupling mentioned above.

The quantum number of leptons and scalars of the model are
shown in Table 1. As in [3] we impose S3 symmetry which per-
mute the three families among themselves [4], that is they are in
a triplet of S3: (3 = Le, Lμ, Lτ ), this is a reducible representation
since 3 = 2L + 1L . We can define in the lepton sector [5]

1L ≡ L2 = 1√
3
(Le + Lμ + Lτ ),

2L ≡ DL = (L1, L3) =
(

1√
6
(2Le − Lμ − Lτ ),

1√
2
(Lμ − Lτ )

)
,

1μR ≡ nμR , 2eτ R ≡ NR = (neR ,nτ R). (1)

The scalar sector consists of two additional doublets, in relation
to the standard model which scalar is denoted by ΦSM , with weak
hypercharge Y = −1 i.e., Φi = (ϕ0

i ϕ
−
i )T that are singlets of S3 and

three singlets (Y = 0), forming a doublet of S3, � = (φ1, φ2) and a
singlet φ3. See Table 1. We will also impose the discrete Z3 sym-
metry under which L2, Φ1, nμR , and � transform as ω and, DL ,
NR , Φ2 and φ3 transform as ω2, the other fields transform triv-
ially under Z3. With these fields we obtain the following Yukawa
interactions in the lepton sector (quarks are assumed to be sin-
glets under S3) that is invariant under the gauge symmetries and
S3 ⊗ Z3 are
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Table 1
Quantum number assignment in the model. Quarks have the quantum number as
usual. The singlets φx,y (Y = 0) do not interact with any fermion. See the text.

I3 I Y ′ B − L Y Z3

νaL 1/2 1/2 0 −1 −1 ω
laL −1/2 1/2 0 −1 −1 ω
eaR 0 0 −1 −1 −2 1
n(e,τ )R 0 0 4 −4 0 ω2

nμR 0 0 −5 5 0 ω
ΦSM 1/2 1/2 0 0 +1 1
Φ1 1/2 1/2 5 −6 −1 ω

Φ2 1/2 1/2 −4 3 −1 ω2

φ1,2 0 0 −4 4 0 ω

φ3 0 0 −8 8 0 ω2

φx 0 0 6 −6 0 ω

φy 0 0 −3 3 0 ω2

−Lν
Yukawa = h1 L̄2Φ1nμR + y1[D̄ L ⊗ NR ]1Φ2

+ y2

Λ

[
(NR)c ⊗ �

]
1[NR ⊗ �]1

+ y3φ3
[
(NR)c ⊗ NR

]
1 + H.c. (2)

We impose that y1 v2 � y2u1,2/Λ � y3u3 in order to Majorana
masses dominate in the (neR ,nτ R) sector (the notation is 〈ϕ0

1,2〉 =
v1,2/

√
2, 〈φ1,2,3〉 = u1,2,3/

√
2 ). The main contribution to the Ma-

jorana masses for the singlets neR and nτ R comes from the y3
interactions but, they have different Majorana masses due to the
interaction y2. Under those conditions, the interaction proportional
to y1 is relevant mainly to generate the vertex DL NRΦ2.

After integrating out neR and nτ R we obtain the effective inter-
actions [6]

−Leff
Yukawa = h1 L̄2Φ1nμR + h2

2

mne

(L1Φ2)
2

+ h2
3

mnτ

(L3Φ2)
2 + H.c., (3)

where the mixing angles in the (neR ,nτ R) sector have been ab-
sorbed in h2 and h3. Thus, we have the Yukawa interactions in
which one neutrino, ν2, has at the tree level a Dirac mass term
particle mD

2 = h1 v1. On the other hand, the Majorana mass matrix
generated by effective interactions (3) that, at the leading order, is
(in the νe , νμ , ντ basis)

Mν
M = h2

2 v2
2

mne

⎛
⎜⎜⎜⎜⎝

2
3 − 1

3 − 1
3

− 1
3

1
6 + h2

3
h2

2

mne
2mnτ

1
6 − h2

3
h2

2

mne
2mnτ

− 1
3

1
6 − h2

3
h2

2

mne
2mnτ

1
6 + h2

3
h2

2

mne
2mnτ

⎞
⎟⎟⎟⎟⎠ , (4)

which is a consequence of the S3 symmetry [7]. This matrix is
diagonalized at the leading order by a tribimaximal matrix [8]:

U =

⎛
⎜⎜⎜⎝

√
2
3 − 1√

3
0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

− 1√
2

⎞
⎟⎟⎟⎠ , (5)

that is the PMNS matrix if the charge leptons are assumed already
in a diagonal basis.

The eigenvalues in the active neutrino sector from Eq. (4) are
mM

1 = h2
2 v2

2/mne , mM
2 = 0, and mM

3 = h2
3 v2

2/mnτ . The Majorana mas-
sive neutrinos are ν1 and ν3 while ν2 has only a Dirac at the tree
level mD

2 as we see above. If mD
2 ∼ 0.1 eV and the Majorana masses

∼10−2 eV we have the right neutrino mass square differences ob-
served in oscillation experiments [9]. The inverted neutrino mass
hierarchy is a prediction of the model: mD
1 ≡ m1 > mM

1 ≡ m2 �
mM

3 ≡ m3 if mnτ � mne and h2 ∼ h3 � O (1). As we will show be-
low radiative corrections give to ν2 a small Majorana mass and this
neutrino is a pseudo-Dirac one [10]. Solar neutrino data constrain
Majorana masses to be 10−9 eV if all Dirac masses are assumed to
be larger than the Majorana masses [11], however, it does not ap-
ply to the present case since we are in a situation in which only
one of the neutrinos is pseudo-Dirac.

After the breaking of the electroweak and S3 symmetries
contributions to the neutrino masses induced by one loop ra-
diative corrections. For instance, (3) implies interactions like
(h2/Λ)((νc

aL)ϕ
0∗
2 +(laL)cϕ+

2 )(νbLϕ
0∗
2 +lbLϕ

+
2 ), a,b = e,μ, τ , the ver-

tices from these interactions are ∼h2 v2/Λ. On the other hand, the
scalar sector of the model has three SU(2) doublets one which
give mass to quarks and charge leptons ΦSM = (ϕ+

SMϕ0
SM)T , and

the two exotic doublets carrying B − L charge Φ1,2. Hence, there

exist in the scalar potential terms like λ(Φ
†
2ΦSM)(Φ

†
SMΦ2), imply-

ing a mixing in the mass matrix among the charged scalars, i.e.,
λ(ϕ+

SMϕ0∗
2 ϕ−

SMϕ0
2 + H.c.), and the mixing of ϕ−

SM with ϕ−
2 is ∼λv2

2
(we are working in the flavor basis). When these corrections are
taken into account the corrections to the Majorana mass matrix
(4) that are given by (up to logarithmic terms) [12]

mM
ab ≈ ξ

λh2
2 V 2

S

8π2

v3
2

m2
HΛ

Ubamlamlb

vSM
(6)

(there is no summation over repeated indices), where Λ ∼ mne ,
mnτ , ξ = 2/3 if a = b and ξ = −1/3 if a = b; Uab is the tribi-
maximal mixing matrix (5); V 2

S denotes the mixing angles in the
charged scalar sector, mH denotes a typical value for the masses
in the charged scalars sector, mla is the mass of the charged lep-
tons a = e,μ, τ and vSM is the value of the SM Higgs scalar.
Assuming all dimensionless parameters in (6) are ∼O (1), the
Dirac mass M D

2 gain corrections smaller than 10−4 depending if
v3

2/m2
HΛ ∼ 0.0246. The tribimaximal mixing matrix has to be con-

sidered as a leading order of the PMNS matrix, correction that
turns it more realistic might arise if the charged lepton mass
matrix is almost diagonal, as that in Ref. [13], hence this may
induce a small θ13 angle. Recent global θ13 analysis implies that
sin θ13 = 0.009+0.013

−0.007 [14].
With all the scalar fields shown in Table 1, the scalar potential

invariant under the gauge symmetry of the SM and A4 ⊗ Z3 is

V B−L = μ2
SM|ΦSM|2 + μ2

1|Φ1|2 + μ2
2|Φ2|2 + μ2

3

[
�∗�

]
1

+ μ2
4|φ3|2 + μ2

x |φx|2 + μ2
y|φy|2 + λx|φ2

x |4 + λy|φy|4

+ λSM
(
Φ

†
SMΦSM

)2 + λ1
(
Φ

†
1Φ1

)2 + λ2
(
Φ

†
2Φ2

)2

+ λ3|Φ1|2|Φ2|2 + λ4|ΦSM|2|Φ1|2 + λ5|ΦSM|2|Φ2|2
+ λ6

(
Φ

†
1Φ2

)(
Φ

†
2Φ1

) + λ7
(
Φ

†
1ΦSM

)(
Φ

†
SMΦ1

)
+ λ8

(
Φ

†
2ΦSM

)(
Φ

†
SMΦ2

) + λ9
([

�∗�
]

1

)2

+ λ10
[[

�∗�
]

1′
[
�∗�

]
1′
]

1 + λ11|φ3|4
+ λ12|ΦSM|2[�∗�

]
1 + λ13|ΦSM|2|φ3|2

+ λ14|Φ1|2
[
�∗�

]
1 + λ15|Φ2|2

[
�∗�

]
1 + λ16|Φ1|2|φ3|2

+ λ17|Φ2|2|φ3|2 + λ18
[
�∗�

]
1|φ3|2

+ (
λxyΦ

†
1Φ2φxφy + κ[��]1φ

∗
3 + κxΦ

T
1 εΦSMφx

+ κyΦ
T
2 εΦSMφy + H.c.

)
, (7)

where we must take into account that 2 ⊗ 2 = 1 + 1′ + 2, 1′ ⊗
1′ = 1 [5]. The Higgs potential above without the singlets φx,y ,
has three extra global U (1) symmetries. If these symmetries are
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not extended to the Yukawa interactions there are three pseudo-
Goldstone bosons [15]. In the model of [2], in which this model is
based, there are two U (1) extra global symmetries. In that case the
pseudo Goldstone are eliminated by introducing one singlet sin-
glets [16]. Thus, for this reason we introduce in the present model
two extra singlet denoted by φx and φy (see Table 1).

The conditions ∂V B−L
∂φi

|φi=V i = 0, φi = V i/
√

2, V i = vSM , v1,2,

u1,2,3, v v , v y imply [after shifting the neutral component η0 =
(1/

√
2 )(V i + Reη0 + i Imη0)]

vSM
[
2μ2

SM + 2λSM v2
SM + λ7 v2

1 + λ8 v2
2 + λ12

(
u2

1 + u2
2

) + λ13u2
3

]
+ κx v1 vx + κ2 v2 v y = 0,

v1
[
2μ2

1 + 2λ1 v2
1 + (λ3 + λ6)v2

2 + λ7 v2
SM

+ λ14
(
u2

1 + u2
2

) + λ16u2
3

] + κx vSM vx + λ19 v2 vx v y = 0,

v2
[
2μ2

2 + 2λ2 v2
2 + (λ3 + λ6)v2

1 + λ8 v2
SM + λ15

(
u2

1 + u2
2

)
+ λ17u2

3

] + κy vSM v y + λ19 v1 vx v y = 0,

u1
[
2μ2

3 + 2λ9
(
u2

1 + u2
2

) + 2λ10
(
u2

1 − u2
2

) + λ12 v2
SM + λ14 v2

1

+ λ15 v2
2 + λ18u2

3 + √
2κu3

] = 0,

u2
[
2μ2

3 + 2λ9
(
u2

1 + u2
2

) + 2λ10
(
u2

1 − u2
2

) + λ12 v2
SM + λ14 v2

1

+ λ15 v2
2 + λ18u2

3 + √
2κu3

] = 0,

u3
[
2μ2

4 + 2λ11u2
3 + λ13 v2

SM + λ16 v2
1 + λ17 v2

2 + λ18
(
u2

1 + u2
2

)]
+ √

2κ
(
u2

1 + u2
2

) = 0,

vx
[
2μ2

x + 2λx v2
x + κx v1 vSM + λxy v1 v2 v y

] = 0,

v y
[
2μ2

y + 2λy v2
y + κy vSM v2 + λxy v1 v2 vx

] = 0. (8)

From Eqs. (8) we see that u1 = u2 ≡ u (an S2 symmetry remains
unbroken). Solutions with μ2

1 > 0, μ2
2 > 0 are then possible. Since,

if κ1,2 = 0 the symmetries of the model increase these parameters
may be naturally smaller that the electroweak scale, the same for
the VEVs vx,y if they are not the main responsible for the breaking
of the B − L symmetry (and for the masses of the Z ′ vector boson).
Hence, there also solutions with μ2

1,2 � |κx vx|, |κy v y |, vx v y . Then,

we have 2λSM v2
SM ≈ −2μ2

SM − 2λ12u2 − λ13u2
3, and

v1 ≈ κx vx

2μ2
1 + 2λ14u2 + λ16u2

3

vSM,

v2 ≈ κy v y

2μ2
2 + 2λ15u2 + λ17u2

3

vSM. (9)

Therefore, we see that it is easy to obtain solutions to the
above equations having the following hierarchy: u ∼ u3 � vSM �
v1 > v2, independently of the values of the dimensionless λs.
Hence v1,2 appearing in the neutrino Yukawa effective interac-
tions (3) may be smaller than the others and the hierarchy in the
Yukawa couplings appears in the VEVs values which numerical
values are hidden under the mechanism of spontaneous symme-
try breaking. In spite the low value of v1,2, the respective neutral
fields are heavy since they have masses ∼μ2

1,2 [17].
The model has in the scalar sector three SU(2) doublets, ΦSM

(Y = 1) and Φ1,2 (Y = −1) and five scalar singlets (Y = 0), φ1,2,
φ3 nd φx,y . All of them but ΦSM carry B − L charge, while φ1,2,3
couple in the flavor basis only to the right-handed neutrinos, φx,y

do not couple with any fermion of the model. The VEV of the
doublets Φ1,2 my be smaller than vSM ∼ 174 GeV. This implies
that the Yukawa couplings may take natural values, �O (1), and
the Majorana masses mne and mnτ do not need to be very large
as well. What possibility is the most interesting will depend on
the following: (i) if there exist a combination of the neutral scalar
components, say ξ , incorporated into a single flat direction and,
for this reason, driven the inflation; (ii) the scalar singlets and/or
the heavy right-handed neutrinos can be dark matter candidates;
(iii) the decay of the scalar singlets and/or the heavy right-handed
neutrinos can generate the observed asymmetry through a soft
leptogenesis mechanism. We are working on these possibilities in
the supersymmetric version of the model. Finally, we must stress
that this sort of models has a new neutral vector boson which
mass is related to the scalar singlet VEVs and if it is of the or-
der of TeVs, the boson may be discover at the LHC and study with
more precision at the ILC [18].

References

[1] G. ’t Hooft, Phys. Rev. Lett. 37 (1976) 8.
[2] J.C. Montero, V. Pleitez, Phys. Lett. B 675 (2009) 64.
[3] R. Allahverdi, B. Dutta, R.N. Mohapatra, Phys. Lett. B 695 (2011) 181, arXiv:

1008.1232.
[4] P.F. Harrison, W.G. Scott, Phys. Lett. B 333 (1994) 471;

E. Derman, D.R.T. Jones, Phys. Lett. B 70 (1977) 449;
S.L. Adler, Phys. Rev. D 59 (1999) 015012.

[5] H. Ishimori, et al., arXiv:1003.3552v2.
[6] S. Weinberg, Phys. Rev. Lett. 43 (1979) 1566;

F. Wilczek, A. Zee, Phys. Rev. Lett. 43 (1979) 1571;
E. Ma, Phys. Rev. Lett. 81 (1998) 1171.

[7] R.N. Mohapatra, S. Nasri, H.-B. Yu, Phys. Lett. B 639 (2006) 318.
[8] P.F. Harrison, D. Perkins, W.G. Scott, Phys. Lett. B 530 (2002) 167.
[9] B. Aharmin, et al., Phys. Rev. Lett. 101 (2008) 111301;

M.H. Ahn, et al., Phys. Rev. D 74 (2006) 072003;
Y. Ashie, et al., Phys. Rev. Lett. 93 (2004) 101801.

[10] L. Wolfenstein, Nucl. Phys. B 186 (1981) 147.
[11] A. de Gouvea, W.-C. Huang, Phys. Rev. D 80 (2008) 073007.
[12] K.S. Babu, V.S. Mathur, Phys. Rev. D 38 (1988) 3550.
[13] A.C.B. Machado, V. Pleitez, Phys. Lett. B 674 (2009) 223.
[14] KamLAND Collaboration, arXiv:1009.4771v2.
[15] S. Weinberg, Phys. Rev. Lett. 29 (1972) 1698.
[16] J.C. Montero, B. Sánchez-Vega, arXiv:1102.0321.
[17] E. Ma, U. Sarkar, Phys. Rev. Lett. 80 (1998) 5716.
[18] E.C.F.S. Fortes, J.C. Montero, V. Pleitez, Phys. Rev. D 82 (2010) 114007, arXiv:

1005.2991.


	Schizophrenic active neutrinos and exotic sterile neutrinos
	References


