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Abstract The paper presents an application of the homotopy analysis method for
solving the nonlinear and linear integral equations of the second kind. In this method
a series is created, sum of which (if the series is convergent) gives the solution of dis-
cussed equation. Conditions ensuring convergence of this series are presented in the
paper. Error of approximate solution, obtained by considering only partial sum of the
series, is also estimated. Examples illustrating usage of the investigated method are
presented as well, including the example having practical application for calculating
the charge in supply circuit of flash lamps used in cameras.

Keywords Homotopy analysis method · Nonlinear integral equation ·
Linear integral equation · Convergence · Error estimations
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1 Introduction

Homotopy analysis method was developed by Shijun Liao [28–31, 33]. It enables to
solve the operator equations of different kind. In particular, the method has found a
number of applications in heat conduction problems [1, 16, 18, 26, 56]. It is also used,
among others, for solving the nonlocal initial boundary value problem [35], nonlinear
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reaction-diffusion-convection problems [41] and fractional differential equations [4,
54, 58]. In several papers the method was used for solving the integro-differential
equations [9, 14, 20, 43, 57]. Theoretical results concerning, among others, conver-
gence of the method in case of differential equations are included in papers [29, 31,
38, 39, 44–46, 52]. Various modifications of homotopy analysis method have been
also elaborated, for example, the spectral homotopy analysis method [37], the optimal
homotopy analysis method [19] and the optimal homotopy asymptotic method [22,
34] (see also [33]).

In recent time there have appeared some papers describing application of the
homotopy analysis method for solving integral equations. In papers [40, 42] the
examples of using the method for solving the system of integral equations are
presented. Whereas the examples of applying the method for solving the two-
dimensional integral equations can be found in works [5, 12]. Next, in papers [13, 36]
the possibility of using the method for solving the fuzzy integral equations is shown.
Paper [48] includes the examples of applying the discussed method for solving the
Fredholm and Volterra integral equations of the first and second kind. Abbasbandy
with the co-authors described the usage of homotopy analysis method for solving
the nonlinear Fredholm and Volterra integral equations of the second kind [2, 53]. In
case of the Fredholm equation [2] it was proven that if the series obtained in result
of homotopy analysis method is convergent then its sum satisfies the discussed equa-
tion. The same was proven for the Volterra equation as well [53]. Moreover, in case of
this equation the uniqueness of solution was proven and the sufficient condition for
convergence of created series was given. Additionally, it was proven in both papers
that in the case of investigated integral equations the Adomian decomposition method
represents a special case of the homotopy analysis method. Particular case of nonlin-
ear equation (sought function is in power and inside of integral) is considered also in
paper [10], in which the uniqueness of solution is proven together with the fact that
sum of the series gives the sought solution.

Some modifications of homotopy analysis method have been also used for solv-
ing the integral equations. In particular, in paper [8] the discrete homotopy analysis
method is applied which has been obtained by combining the homotopy analysis
method with quadrature rules. Whereas, in paper [27] the multistage homotopy anal-
ysis method is used. In this method the interval, in which the considered equation
is defined, is divided into several subintervals and next, in each one of them, the
homotopy analysis method is applied.

In the current paper we intend to use the homotopy analysis method for solving the
nonlinear and linear integral equations of the second kind. Discussed equations are
in the more general form than the ones considered in [2, 10, 48, 53]. In particular, we
prove in this paper that under appropriate assumptions the investigated equations pos-
sess unique solutions. We prove also that if the series, obtained in the course of using
the method, is convergent then its sum is a solution of considered equation. Condition
ensuring the series convergence is presented and the error of approximate solution,
obtained by taking the partial sum of the series, is estimated. The paper includes also
the example of using the homotopy analysis method for determining the approximate
solution of the equation having some practical application for calculating the charge
in supply circuit of flash lamps used in cameras.
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2 Homotopy analysis method

Homotopy analysis method serves for solving the operator equations

N(u(x)) = 0, x ∈ �, (1)

where N denotes the operator (in particular, it can be the nonlinear operator), whereas
u is the unknown function. In the first step of method we define the homotopy
operator H in the following way

H(�, p) ≡ (1 − p)L
(
�(x;p)− u0(x)

)− p hN
(
�(x;p)), (2)

where p ∈ [0, 1] is the embedding parameter, h �= 0 denotes the convergence control
parameter [31, 33, 39, 52], u0 describes the initial approximation of the solution of
problem (1) and L is the auxiliary linear operator with property L(0) = 0.

Considering equation H(�, p) = 0 we get the so-called zero-order deformation
equation

(1 − p)L
(
�(x;p)− u0(x)

) = p hN
(
�(x;p)). (3)

For p = 0 we have L(�(x; 0) − u0(x)) = 0 which implies that �(x; 0) = u0(x).
Whereas for p = 1 we have N(�(x; 1)) = 0 which means that �(x; 1) = u(x),
where u is the sought solution of (1). In this way, the change of parameter p from
zero to one corresponds with the change of problem from the trivial problem to the
original one (and with the change of solution from u0 to u).

By expanding function �(x;p) into the Maclaurin series with respect to parame-
ter p we receive

�(x;p) = �(x; 0)+
∞∑

m=1

1

m!
∂m�(x;p)

∂pm

∣∣∣
p=0

pm. (4)

By designating

um(x) = 1

m!
∂m�(x;p)

∂pm

∣∣∣
p=0

, m = 1, 2, 3, . . . , (5)

the previous relation can be written in the following form

�(x;p) = u0(x)+
∞∑

m=1

um(x) p
m. (6)

If the above series is convergent for p = 1 then we get the sought solution

u(x) =
∞∑

m=0

um(x). (7)

In order to determine function um we differentiate the left and the right side of rela-
tion (3) m times with respect to parameter p, next we divide the received result by m!
and we substitute p = 0. In this way we obtain the so-called mth-order deformation
equation (m > 0):

L
(
um(x)− χm um−1(x)

) = hRm

(
um−1, x

)
, (8)
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where um−1 = {u0(x), u1(x), . . . , um−1(x)} and

χm =
{

0 m ≤ 1,
1 m > 1

(9)

and

Rm

(
um−1, x

) = 1

(m− 1)!
(

∂m−1

∂pm−1
N
( ∞∑

i=0

ui(x) p
i
))∣∣∣∣

p=0
. (10)

If we are not able to determine the sum of series in (7) then we can accept the
partial sum of this series

ûn(x) =
n∑

m=0

um(x) (11)

as the approximate solution of considered equation.
Appropriate selection of the convergence control parameter h has a big influence

on the convergence region of series (7) and on the convergence rate as well [33, 38,
45]. One of the methods for selecting the value of convergence control parameter
is the so-called h-curve. To obtain this curve we need to investigate the behavior of
a certain quantity of the exact solution as a function of parameter h [29, 46]. This
method enables to determine the effective region of the convergence control parame-
ter, however it does not give the possibility to determine the value ensuring the fastest
convergence [33]. Another method is the so-called “optimization method” proposed
in paper [55] (see also [6, 33]). In this method we define the squared residual of
governing equation

En(h) =
∫

�

(
N
[
ûn(x)

])2
dx. (12)

Optimal value of the convergence control parameter is obtained by finding minimum
of this squared residual. Whereas the effective region of the convergence control
parameter is defined as

Rh = {h : lim
n→∞En(h) = 0

}
. (13)

For speed up the calculations Liao [33] suggested to replace the integral in formula
(12) by its approximate value obtained by applying the quadrature rules. In examples
presented by Liao the received optimal values of the convergence control parameter
differ not much from the values obtained by applying formula (12). The residual error
method for obtaining the convergence control parameter (h), shown in (12), has been
applied recently to a number of problems for nonlinear ODEs and PDEs [3, 7, 11,
19, 21, 32, 39, 49–51].

3 Nonlinear integral equation

We consider equation of the form

u(x)−
∫ g(x)

f (x)

K(x, t) R(u(t)) dt = F(x), (14)
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where x ∈ [a, b], R : C[a, b] → C[a, b] is the nonlinear operator, f, g ∈ C[a, b],
a ≤ f (x) ≤ g(x) ≤ b, K ∈ C([a, b] × [a, b]) and F ∈ C[a, b], whereas function u
is sought. We assume that R is the operator satisfying the Lipschitz condition

‖R(v1)− R(v2)‖ ≤ s ‖v1 − v2‖ for every v1, v2 ∈ C[a, b]
and some s > 0. As norm of the function we take the supremum norm

‖v‖ = sup
x∈�

|v(x)|,
in particular

‖K‖ = sup
(x,t)∈[a,b]×[a,b]

|K(x, t)| and ‖F‖ = sup
x∈[a,b]

|F(x)|.

Special cases of the above equation are the Fredholm and Volterra integral equations
of the second kind.

Operators L and N can be define in the following way

L(v) = v, N(v) = v(x)− F(x)−
∫ g(x)

f (x)

K(x, t) R(v(t)) dt. (15)

Let u0 ∈ C[a, b]. In this case, by applying the homotopy analysis method we get the
following formula for functions um:

um(x) = χm um−1(x)+ hRm

(
um−1, x

)
, (16)

where χm and Rm are defined by relations (9) and (10), respectively. By using
definitions of the respective operators we obtain

u1(x) = h

(

u0(x)− F(x)−
∫ g(x)

f (x)

K(x, t) R(u0(t)) dt

)

, (17)

and for m ≥ 2:

um(x) = (1 + h) um−1(x)

− h

(m− 1)!
∫ g(x)

f (x)

K(x, t)

(
∂m−1

∂pm−1 R

( ∞∑

i=0

ui(t) p
i

))

p=0

dt. (18)

In literature one can find the expression ∂m−1

∂pm−1 R

( ∞∑
i=0

ui(x) p
i

)

p=0

calculated for

various nonlinear operators R. Most of these results are collected in monograph [33].
Now we proceed to prove that under appropriate assumptions (14) possesses a

unique solution.

Theorem 1 If the following condition is fulfilled

s ‖K‖ (b − a) < 1, (19)

then (14) possesses at most one solution.
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Proof Let us suppose that there exist two solutions u1 and u2. Thus we have

‖u1 − u2‖ = ‖
∫ g(x)

f (x)

K(x, t)
(
R(u1(t))− R(u2(t))

)
dt‖

≤ ‖K‖
∫ g(x)

f (x)

‖R(u1)− R(u2)‖ dt ≤ s ‖K‖ (b − a) ‖u1 − u2‖.

Hence we get
(
1 − s ‖K‖ (b − a)

) ‖u1 − u2‖ ≤ 0.

So, if condition (19) is satisfied then equality u1 = u2 must hold true.

We proceed now to prove the theorem ensuring that the sum of determined series
is the solution of discussed equation.

Theorem 2 Let functions um, m ≥ 1, be defined by relations (17) and (18). Then, if
s < 1 and series in (7) is convergent, the sum of this series is the solution of (14).

Proof Let series (7) be convergent. From the necessary condition for the series
convergence we get that for any x ∈ [a, b]:

lim
m→∞um(x) = 0.

Let us designate

Hm(x) = 1

m!

(
∂m

∂pm
R

(+∞∑

i=0

ui(x) p
i

)) ∣∣∣∣
p=0

.

If R is the contraction mapping (s < 1) and series (7) converges to u(x) then series
∞∑

m=0
Hm(x) converges to R(u(x)) (see [17]).

By using definition of operator L we can write
n∑

m=1

L
(
um(x)− χm um−1(x)

) =
n∑

m=1

(
um(x)− χm um−1(x)

)

= u1(x)+ (u2(x)− u1(x))+ (u3(x)− u2(x))+ . . .

+(un(x)− un−1(x)) = un(x).

Hence
∞∑

m=1

L
(
um(x)− χm um−1(x)

) = lim
n→∞un(x) = 0.

From (8) we receive

h

∞∑

m=1

Rm

(
um−1, x

) =
∞∑

m=1

L
(
um(x)− χm um−1(x)

)
,
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that is, since h �= 0 thus we have

∞∑

m=1

Rm

(
um−1, x

) = 0.

In result of some transformations we get successively

0 =
∞∑

m=1

Rm

(
um−1, x

)

=
∞∑

m=1

(
1

(m− 1)!
∂m−1

∂pm−1

[ ∞∑

i=1

ui(x) p
i − F(x)

−
∫ g(x)

f (x)

K(x, t) R

( ∞∑

i=1

ui(t) p
i

)

dt

]

p=0

⎞

⎠

=
∞∑

m=1

(

um−1(x)− 1 − χm

(m− 1)! F(x)

−
∫ g(x)

f (x)

K(x, t)

[
1

(m− 1)!
∂m−1

∂pm−1 R

( ∞∑

i=1

ui(t) p
i

)]

p=0

dt

⎞

⎠

=
∞∑

m=1

(

um−1(x)− 1 − χm

(m− 1)! F(x)−
∫ g(x)

f (x)

K(x, t)Hm−1(t) dt

)

=
∞∑

m=1

um−1(x)− F(x)−
∫ g(x)

f (x)

K(x, t)

∞∑

m=1

Hm−1(t) dt

= u(x)− F(x)−
∫ g(x)

f (x)

K(x, t) R(u(t)) dt.

Remark 1 In the above proof we used the fact that R is the contraction mapping

in order to ensure the convergence of series
∞∑

m=0
Hm(x) to R(u(x)), in case when

series (7) converges to u(x). The same convergence can be obtained under another
assumptions, for example, when R belongs to class C∞.

Now we present the sufficient condition for convergence of considered series.

Theorem 3 If parameter h is selected in such a way that the constants βh ∈ (0, 1)
and k0 ∈ N exist such that for each k ≥ k0 the following inequality

‖uk+1‖ ≤ βh ‖uk‖, (20)

is satisfied, then the series appearing in (7) is uniformly convergent in interval [a,b].
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Proof Let Sn denote the partial sum of considered series

Sn =
n∑

m=0

um(x).

We intend to show that sequence {Sn} is the Cauchy sequence. For this purpose we
begin by estimating the following norm

‖Sn − Sn−1‖ = ‖un‖ ≤ β ‖un−1‖ ≤ . . . ≤ βn−k0 ‖uk0‖.
Now for any n, k ∈ N, n ≥ k ≥ k0, we have

‖Sn − Sk‖ ≤ ‖Sn − Sn−1‖ + . . .+ ‖Sk+1 − Sk‖
≤ βn−k0 ‖uk0‖ + . . .+ βk+1−k0 ‖uk0‖

= βk+1−k0
(
βn−k−1 + . . .+ β + 1

) ‖uk0‖ = βk+1−k0
1 − βn−k

1 − β
‖uk0‖.

Since β ∈ (0, 1), therefore it implies that sequence {Sn} is the Cauchy sequence. By
using the completeness of space R we can deduce that this sequence is convergent,
which implies convergence of the discussed series.

Remark 2 The above theorem can be generalized in the following way.
If parameter h is selected in such a way that constant k0 ∈ N exists such that for

each k ≥ k0 there exists βh,k ∈ (0, 1) satisfying conditions
∞∏

k=k0

βh,k = 0 and ‖uk+1‖ ≤ βh,k ‖uk‖,

then the series appearing in (7) is uniformly convergent in interval [a, b].

Next theorem concerns the estimation of error of the approximate solution ûn.

Theorem 4 If assumptions of Theorem 3 are satisfied and additionally if n ∈ N

and n ≥ k0, then we get the following estimation of error of the approximate solution

‖u− ûn‖ ≤ β
n+1−k0
h

1 − βh
‖uk0‖. (21)

Proof Let n ∈ N and n ≥ k0. Thus we obtain

‖u− ûn‖ = sup
x∈[a,b]

∣∣∣∣∣
u(x)−

n∑

m=0

um(x)

∣∣∣∣∣
= sup

x∈[a,b]

∣∣∣∣∣∣

∞∑

m=n+1

um(x)

∣∣∣∣∣∣

≤ sup
x∈[a,b]

⎛

⎝
∞∑

m=n+1

|um(x)|
⎞

⎠ ≤
∞∑

m=n+1

(

sup
x∈[a,b]

|um(x)|
)

=
∞∑

m=n+1

‖um‖

≤
∞∑

m=n+1

β
m−k0
h ‖uk0‖ = β

n+1−k0
h

1 − βh
‖uk0‖.
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Remark 3 In particular case when k0 = 0 the formula for estimation of error of the
approximate solution takes the form

‖u− ûn‖ ≤ βn+1
h

1 − βh
‖u0‖. (22)

Generalization from Remark 2 can be also applied for Theorem 4.

4 Linear integral equation

Let us proceed to consideration of the case when operator R : C[a, b] → C[a, b]
is a bounded linear operator. Thus we assume ‖R‖ < ∞. In this case operator Rm

(see (10)) has the form

Rm(um−1, x) = 1

(m− 1)!

(
∂m−1

∂pm−1
N

( ∞∑

i=0

ui (x) p
i

))

p=0

= 1

(m− 1)!
∂m−1

∂pm−1

[ ∞∑

i=1

ui (x) p
i−F(x)−

∫ g(x)

f (x)

K(x, t) R

( ∞∑

i=1

ui(t) p
i

)

dt

]

p=0

= 1

(m− 1)!
∂m−1

∂pm−1

[ ∞∑

i=1

ui (x) p
i − F(x)−

∞∑

i=1

∫ g(x)

f (x)

K(x, t) R(ui(t)) p
i dt

]

p=0

= 1

(m− 1)!

(

(m− 1)! um−1(x)− (1 − χm) F(x)

−
∫ g(x)

f (x)

K(x, t) (m− 1)!R(um−1(t)) dt

)

= um−1(x)− 1 − χm

(m− 1)! F(x)−
∫ g(x)

f (x)

K(x, t) R(um−1(t)) dt.

By using the above relation and formula (16) we receive the following formulas for
functions um:

u1(x) = h
(
u0(x)− F(x)−

∫ g(x)

f (x)

K(x, t) R(u0(t)) dt
)
, (23)

and for m ≥ 2:

um(x) = (1 + h) um−1(x)− h

∫ g(x)

f (x)

K(x, t) R(um−1(t)) dt. (24)

In case of the linear integral equation Theorem 1 remains true if we take s = ‖R‖.
Whereas in Theorem 2 we do not have to assume that R is the contraction mapping.
Respective theorems can be then formulated in the following way.

Theorem 5 If R is the bounded linear operator and the condition given below is
fulfilled

‖R‖ ‖K‖ (b − a) < 1, (25)
then (14) possesses at most one solution.
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Theorem 6 Let R be the bounded linear operator and let functions um, m ≥ 1, be
defined by relations (23) and (24). Then, if series in (7) is convergent, the sum of this
series is the solution of (14).

Proofs of these two above theorems run similarly as the proofs of Theorems 1
and 2.

Theorem corresponding to Theorem 3 can be, in case of linear equation, formu-
lated in the following way.

Theorem 7 If inequality (25) is satisfied then the series appearing in (7) is uniformly
convergent in interval [a, b].

Proof Let u0 be the function of class C[a, b]. We intend to find the boundaries for
function um in interval [a, b]:

|u1(x)| =
∣∣∣h
(
u0(x)− F(x)−

∫ g(x)

f (x)

K(x, t) R(u0(t)) dt
)∣∣∣

� |h|(|u0(x)| + |F(x)| +
∫ g(x)

f (x)

|K(x, t)| |R(u0(t))| dt
)

� |h|(‖F‖ + ‖u0‖ + ‖K‖ ‖R‖ (b − a) ‖u0‖
)
,

|u2(x)| =
∣∣∣(1 + h)u1(x)− h

∫ g(x)

f (x)

K(x, t) R(u1(t)) dt

∣∣∣

�
(|1 + h| + |h| ‖K‖ ‖R‖ (b − a)

) ‖u1‖ = βh ‖u1‖,
where

βh := |1 + h| + |h| ‖K‖ ‖R‖ (b − a).

By using the above result one can easily prove by induction that for m � 1 we have

‖um‖ � βm−1
h ‖u1‖.

In this way, for the considered series (7) we get
∞∑

m=0

um(x) �
∞∑

m=0

|um(x)| � ‖u0‖ + ‖u1‖
∞∑

m=1

βm−1
h ,

Last series in the above estimation is the geometrical series with quotient βh. There-
fore, if βh < 1 (we have certainly βh > 0) then, by virtue of the comparison test, the
discussed series is uniformly convergent in interval [a, b].

Let us answer the question whether parameter h can be selected such that βh < 1,
it means such that

|1 + h| + |h| ‖K‖ ‖R‖ (b − a) < 1.

Last inequality is equivalent to condition (since h �= 0):

‖K‖ ‖R‖ (b − a) <
1 − |1 + h|

|h| . (26)
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One can easily notice that

1 − |1 + h|
|h| =

⎧
⎨

⎩

−1 − 2
h

for h < −1,
1 for h ∈ [−1, 0),
−1 for h > 0.

It implies that if condition (25) is fulfilled then we are able to choose the value of
parameter h such that inequality (26) will be satisfied (for this aim it is enough to
take any h ∈ [−1, 0)), which means that βh < 1.

By using the estimation evaluated in the last proof we can prove the following
theorem.

Theorem 8 If inequality (25) is fulfilled and n ∈ N then we get the following
estimation of error of the approximate solution

‖u− ûn‖ �
βn
h

1 − βh
‖u1‖, (27)

where βh = |1 + h| + |h| ‖K‖ ‖R‖ (b − a).

Remark 4 Let us notice that if we take h = −1 and u0(x) = 0 or u0(x) = F(x) then
the investigated homotopy analysis method is equivalent to the method of successive
approximation as well as to the Adomian decomposition method (in case u0(x) = 0
after removing the first term which is identically equal to zero – see also [2, 53]). It
concerns the case of nonlinear equations as well. Whereas for h = −1 the method is
identical with the homotopy perturbation method (see [23–25]).

Remark 5 In literature (see for example [29, 33]) some other formulation for
homotopy operator can be found, which is

H(�, p) ≡ (1 − p)L
(
�(x;p)− u0(x)

)− p hH(x)N
(
�(x;p)),

where H is the auxiliary function. In this case as well, all the results evaluated in
this paper (for nonlinear and linear equations too) hold true. Only the formula for
constant βh will change.

5 Examples

Example 1 Let us use the investigated method for solving equation of the form

u(x)− 1

3

∫ 1

0
(x − t) (u(t))2 dt = 8

9
x + 1

12
, (28)

for x ∈ [0, 1]. Solution of the above equation is given by function ue(x) = x. In
considered equation we can take K(x, t) = x − t and R(u) = u2/3. Then we have

‖K‖ = 1, s = 2

3
.
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Hence

s ‖K‖ (b − a) = 2

3
,

which means that the discussed equation possesses at most one solution and
if the constructed series is convergent, then its sum is the solution of this
equation.

By taking the initial approximation as zero: u0(x) = 0, we get successively

u1(x) = − 1

36
h (3 + 32x),

u2(x) = − 1

36
h (1 + h) (3 + 32x),

u3(x) = − 1

23328
h
(
648(3 + 32x)+ 1296h(3 + 32x)+ h2(−3 + 23414x)

)
,

u4(x) = − 1

7776
h (1 + h)

(
216(3 + 32x)

+ 432 h(3 + 32x)+ h2(−1299 + 9590x)
)
,

u5(x) = − 1

7558272
h
(
209952(3 + 32x)+ 839808 h(3 + 32x)

+ 3888 h3(−1299 + 9590x)+ 1944 h2(−3 + 23414x)

+ h4(−3157593 + 11898032x)
)
,

...

In Fig. 1 the plots of logarithm of squared residual En for n = 3, 5, 7 are presented.
In this case the numerically determined, by minimizing the squared residual of gov-
erning equations, optimal value of the convergence control parameter was equal to
−1 (h = −1). Figure 2 presents the h-curve of u′(0).
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Fig. 1 Logarithm of squared residual En for n = 3, 5, 7
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Fig. 2 The h-curve of u′(0)

By calculating the partial sums of series in (7) for h = −1, which means by
determining the successive approximate solutions ûn, we obtain

û1(x) = 0.0833333 + 0.888889 x,

û3(x) = −1.28601 · 10−4 + 1.00369 x,

û5(x) = −4.5685 · 10−4 + 1.00019 x,

û7(x) = 7.06342 · 10−5 + 0.999873 x,

û9(x) = 5.05985 · 10−6 + x,

û11(x) = −1.57935 · 10−6 + x,

û13(x) = 6.01773 · 10−8 + x,

û15(x) = 3.35277 · 10−8 + x,

where x ∈ [0, 1]. In considered equation for h = −1 the equality û2n−1(x) ≡ û2n(x)

holds.
Table 1 compiles the percentage relative errors of the exact solution recon-

struction for various values of the convergence control parameter h. As revealed
by the above results, together with increase of the components number in sum
(11) the errors quickly decrease. The fastest error decrease can be observed for
optimal value h = −1. For this value the approximate solution û5 provides
the approximation of the sought function with the error not higher than 6.3764 ·
10−2 %, while the approximate solution û15 gives the error not higher than 4.0685 ·
10−6 %. Whereas, by moving further away from this value, the errors decrease
slower.

Differences |ue(x) − ûn(x)| for n = 5 and n = 15 are displayed in Fig. 3.
Obtained results indicate that the method is very rapidly convergent and calculation
of only few first terms of the series ensures very good approximation of the exact
solution.
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Table 1 Values of the percentage relative errors in reconstruction of the exact solution

n h = −1.25 h = −1.1 h = −1 h = −0.9 h = −0.75 h = −0.5

1 28.217 13.997 7.349 10.897 24.562 49.437

2 8.382 7.155 7.349 7.155 8.382 24.562

3 6.853 2.399 0.350 2.011 4.104 12.632

4 3.691 0.633 0.350 0.538 1.866 6.937

5 1.960 0.336 6.376 · 10−2 0.126 0.770 4.092

6 0.948 3.643 · 10−2 6.376 · 10−2 2.733 · 10−2 0.286 2.531

7 0.293 5.240 · 10−2 6.458 · 10−3 2.289 · 10−2 8.986 · 10−2 1.592

8 0.115 2.194 · 10−2 6.458 · 10−3 9.243 · 10−3 1.926 · 10−2 0.997

9 0.140 1.082 · 10−2 1.097 · 10−3 3.426 · 10−3 1.544 · 10−3 0.616

10 0.113 4.319 · 10−3 1.097 · 10−3 1.406 · 10−3 4.313 · 10−3 0.373

11 7.162 · 10−2 2.661 · 10−3 1.472 · 10−4 6.982 · 10−4 3.141 · 10−3 0.221

12 4.285 · 10−2 1.424 · 10−3 1.472 · 10−4 2.721 · 10−4 1.719 · 10−3 0.128

13 3.094 · 10−2 4.876 · 10−4 1.858 · 10−5 7.296 · 10−5 8.493 · 10−4 7.184 · 10−2

14 2.319 · 10−2 1.745 · 10−4 1.858 · 10−5 2.246 · 10−5 4.242 · 10−4 3.914 · 10−2

15 1.471 · 10−2 1.150 · 10−4 4.069 · 10−6 1.474 · 10−5 2.208 · 10−4 2.055 · 10−2

Example 2 In the next example we deal with equation which may be practically
applied for calculating the charge in supply circuit of flash lamps used in cam-
eras [15, 24]. Supply circuit of flash lamps may be pictured as a simple electrical
circuit consisting of source and series connected ideal switch, resistor and capacitor.
For modeling the charging or discharging process the first convolution integral may
be used. In this example we consider the equation representing the charge referred
to some value which gives the input signal for main controller to stop, for exam-
ple, the charging process of the capacitor or discharging the capacitor by connected
flash lamp. Part of this equation, connected with second integral, may represent the
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Fig. 3 Distribution of error of the exact solution approximation for n = 5 (a) and n = 15 (b)
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simplified measurement circuit (with characteristic described by integral function)
calculating the charge collected on capacitor in some time interval.

Thus we seek for the solution of integral equation of the form

u(x)−
∫ x

0
(x − t)

(∫ t

0
v(τ) u(t − τ) dτ

)
dt = F(x), (29)

for x ∈ [0, 1] where (see Fig. 4):

v(t) =
⎧
⎨

⎩

1
2 , t ∈

[
0, 1

4

)
∪
[

3
4 , 1
]
,

1, t ∈
[

1
4 ,

3
4

)
,

and

F(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
24

(
48x − x4

)
, x ∈

[
0, 1

4

]
,

1
6144

(−1 + 12304x − 96x2 + 256x3 − 512x4
)
, x ∈

(
1
4 ,

1
2

]
,

1
6144

(
12319 − 12528x + 672x2 − 768x3

)
, x ∈

(
1
2 ,

3
4

]
,

1
3072

(
6281 − 6912x + 1632x2 − 1536x3 + 384x4

)
, x ∈

(
3
4 , 1
]
.

Plot of function F looks illusively like some polyline, but certainly it is not (see
formula above).

Exact solution of the above equation has the form (see Fig. 5):

ue(x) =
⎧
⎨

⎩

2 x, x ∈
[
0, 1

2

)
,

2 (1 − x), x ∈
[

1
2 , 1
]
.

In Fig. 6 the plots of logarithm of squared residual En for n = 3, 4, 5 are shown.
Numerically determined, by minimizing the squared residual of governing equations,
optimal value of the convergence control parameter was h = −1. Figure 7 presents
the h-curve of u′(0).
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Fig. 5 Exact solution of (29)

By taking the zero initial approximation u0(x) = 0 and the optimal value of
convergence control parameter we receive successively

u1(x) = F(x),

u2(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
10080x

4
(
420 − x3

)
, x ∈

[
0, 1

4

]
,

1
82575360

(
13441 − 215068x + 1290576x2 − 3442880x3

+ 6890240x4 − 21504x5 + 28672x6 − 24576x7
)
, x ∈

(
1
4 ,

1
2

]
,

1
82575360

(−416703 + 3226468x − 9036720x2

+ 10337600x3 − 26880x4 + 21504x5 − 16384x7
)
, x ∈

(
1
2 ,

3
4

]
,

1
10321920

(−461148 + 2588243x − 5514768x2

+ 5230960x3 − 1384320x4 + 75264x5 − 32256x6

+ 4096x7
)
, x ∈

(
3
4 , 1
]
.
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Table 2 displays the absolute errors (�) and the percentage relative errors (δ) with
which the approximate solution ûn approaches the exact solution ue. Differences
|ue(x)− ûn(x)| for n = 2, 4 are displayed in Fig. 8.

There are also presented in table the estimations of error of the successive approxi-
mate solutions resulting from relation (27). In considered example we have ‖K‖ = 1,
‖F‖ = 1 and ‖R‖ = 3/4. Thereby for the optimal value of convergence control
parameter h = −1 we obtain β−1 = 3/4, ‖u1‖ = ‖F‖ = 1 and

‖u− ûn‖ �
βn
−1

1 − β−1
‖u1‖ = 4

(
3

4

)n
.

Presented data imply that the real errors of approximate solution are significantly
smaller than the estimations following from relation (27).

As indicated by the example, with the properly chosen value of convergence
control parameter h, if it is impossible to predict a general form of function um or cal-
culate the sum of series in (7), it is sufficient to use the sum of several first functions
um to obtain a very good approximation of sought solution.

Table 2 Errors of the exact
solution approximation
(� – absolute error, δ –
percentage relative error) and
estimation of the error resulting
from relation (27)

n � δ [%] (27)

1 1.6444 10−2 2.8481 3.0000

2 3.1343 10−5 5.4288 10−3 2.2500

3 1.7221 10−8 2.9828 10−6 1.6875

4 4.1791 10−12 7.2385 10−10 1.2656

5 5.4237 10−16 9.3942 10−14 0.9492

6 4.2031 10−20 7.2800 10−18 0.7119

7 2.0945 10−24 3.6277 10−22 0.5339

8 7.0892 10−29 1.2279 10−26 0.4005
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Example 3 Next example shows that the discussed method may be effectively
applied for solving linear equations not satisfying inequality (25). Let us consider
equation of the form [47]:

u(x)−
∫ π

0
cos x cos t u(t) dt =

(
1 − π

2

)
cos x + sin x, (30)

for x ∈ [0, π]. Solution of the above equation is given by function ue(x) = cos x +
sin x. In this case we have

‖K‖ = 1, ‖R‖ = 1.

Hence
‖R‖ ‖K‖ (b − a) = π > 1.

By taking the initial approximation of the form

u0(x) =
(

1 − π

2

)
cos x + sin x,

we receive successively

u1(x) = 1

4
h (π − 2) π cos x,

u2(x) = −1

8

(
h (π − 2)− 2

)
h (π − 2) π cos x,

u3(x) = 1

16

(
h (π − 2)− 2

)2
h (π − 2) π cos x,

u4(x) = − 1

32

(
h (π − 2)− 2

)3
h (π − 2) π cos x,

u5(x) = 1

64

(
h (π − 2)− 2

)4
h (π − 2) π cos x,

...

One can easily prove by induction that for any m ∈ N we get

um(x) =
(
−1

2

)m+1 (
h (π − 2)− 2

)m−1
h (π − 2) π cos x.



Numer Algor (2014) 67:163–185 181

From this we have

u(x) = u0(x)+
∞∑

m=1

um(x) =
(

1 − π

2

)
cos x + sin x

+h (π − 2) π cos x
∞∑

m=1

((
−1

2

)m+1 (
h (π − 2)− 2

)m−1
)

=
(

1 − π

2

)
cos x + sin x + h (π − 2) π cos x

1
4

1 −
(
− 1

2

)
(h(π − 2)− 2)

=
(

1 − π

2

)
cos x + sin x + h (π − 2) π cos x

1

2h(π − 2)
= cos x + sin x,

if only the condition of convergence of the geometrical sequence is satisfied, which
in this case takes the form

∣∣∣
(
−1

2

) (
h(π − 2)− 2

)∣∣∣ < 1.

The above inequality is satisfied if

h ∈
(

0,
4

π − 2

)
.

Certainly the above interval determines the effective region of the convergence con-
trol parameter Rh = (0, 4/(π−2)). It means that by taking any value from the above
interval we obtain the exact solution of the above equation.

In considered example we can determine in analytical way the squared residual of
governing equations

En(h) = 1

512
42−n π3 (π − 2)2 (h (π − 2)− 2

)2n
, n ∈ N.
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Fig. 9 Logarithm of squared residual En for n = 3, 5, 7
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Fig. 10 The h-curve of u′ ′(0)

Logarithms of squared residual En, for n = 3, 5, 7, are presented in Fig. 9. Whereas,
Fig. 10 presents the h-curve of u′′(0). One can easily verify that for any n ∈ N

function En takes minimum for

h = 2

π − 2
.

It means that the optimal value of convergence control parameter h is equal
to 2/(π − 2).

6 Conclusion

In this paper the homotopy analysis method has been successfully applied for solv-
ing the nonlinear and linear integral equations of the second kind. The homotopy
analysis method consists in formulating the series, elements of which are iteratively
determined. We prove that if this series is convergent then its sum is a solution
of considered equation. This series contains the convergence control parameter h.
Appropriate selection of this parameter influence the region of convergence of the
series and the convergence rate. In many case we are able to determine analytically
the sum of obtained series and, in this way, to compute the exact solution of consid-
ered equation. Whereas in cases when analytical determination of sum of the series
is impossible, we can use its initial terms for creating the approximate solution. In
most of cases, with regard to the rapid convergence of considered series, only few ini-
tial terms ensures a very small error of the exact solution approximation. Condition
ensuring the convergence of obtained series is presented in the paper and the error
of approximate solution received by taking the partial sum of the series is estimated
as well. Presented examples show that investigated method is effective in solving the
equations of considered kind. Proved Theorems 3 and 7 define the sufficient condi-
tions for convergence of the series constructed in the course of applying the homotopy
analysis method. Additionally the third example shows that the method can be used
as well for equations not satisfying the conditions given in the above theorems.
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