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1. INTRODUCTION 

In several problems, to prove the existence of convergent or bounded solutions of a differential or 
difference equation is very important (see, [1-11]). In this paper, we study how a "summable" 

dichotomy insures the existence of both convergent and bounded solutions of semilineax difference 
systems. Assume tha t  the linear system 

y(n + 1) = A(n)y(n) (1) 

has a dichotomy, i.e., there exists a projection P for which the behavior of the Green function 

S ~ ( n ) p ~ - l ( i  + 1), n > i, 
r(n, i) (2) 

- ~ ( n ) ( I -  P ) ~ - l ( i  + 1), i > n 

is known (~ is a fundamental matrix of (1)). 

In [12-15], we have studied dichotomies of "uniform type",  tha t  is dichotomies having an 
estimate 

I#(n)e~-x(i)l _< Kh(n)h(i) -1, n > i, 
(3) 

l#(n)(l - P)~-I(i) l _< Kk(n)k(i) -I, i >_ n, 

where P is a projection matr ix and h and k are two given positive sequences. These types 
of dichotomies, called the (h, k) dichotomies and studied in [10,16], have interesting properties 
as to be stable under summable perturbations, see [12-15,17-19]. In this paper, we consider 
"summable" dichotomies, tha t  is satisfying 

OO 

[r(n,i)lhl(i) < Kh2(n - 1), n > n0, (4) 
i - -no  

where r is the Green function and hi (i = 1, 2) are given two positive sequences. 
We think that  the dichotomies in general are decomposed in two big groups: the "uniform" 

dichotomies and the "summable" dichotomies. The uniform dichotomies are the natural extension 
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of the ordinary dichotomy and the summable dichotomies are an extension of the exponential 
dichotomy. Notice, that an exponential dichotomy satisfies (4) with hi -= 1 = h2. This case was 
studied in [20,21]. 

When hi - 1 -= h2, ¢(n)P converges exponentially to zero as n --. oo (see [1,21]), under (4) 
we have 

n-1 [. 5h2( i )  1 
I¢(n)PI < ch2(n-  1) H /hi(i) + Khz( i )J '  n > no, (5) 

i f n o  + 1 

where c is a constant. 
Under condition (4), we investigate the manifold of h2-convergent solutions of systems 

x(n + i) = A(n)x(n) + f(n,  x(n)) (6) 

in terms of the manifold of solutions hz-convergent to zero of the linear system (1), basically 
assuming that the perturbation term f (n,  x) is, in a hi, h2 weighted manner, Lipschitzian with 
respect to x and convergent as n --* oo (see Theorem 1). Moreover, removing the convergence 
condition in Theorem 1 below, it is possible to establish a boundedness result for equation (1) 
(see, Theorem 4). 

In equations (1) and (6), x and y are m-vectors, n 6 N(no) = {no, no + 1,. . .  }, (no is a fixed 
nonnegative integer), A ( n ) is a m x m matrix for n E N ( no ) , f = f ( n, x) is defined on the product 
space N(no) x C m, and C m denotes the m-dimensional complex Euclidean m spaces. 

The convergence problem of ordinary differential equations has been widely investigated by 
many researchers most notably by Avramescu [2], Kartsatos and Michaelides [7], Hallam [5,6]. 
Some results concerning convergent solutions of difference equations were established by Cheng, 
Li and Patula [3], Drosdowicz and Popenda [4], Agarwal [1], Kelly and Peterson [22], Szafranski 
and Szmanda [11], Lakshmikantham and Trigiante [23], Aulbach [24]. However, many of them are 
related with special classes of second-order difference equations, and particularly with solutions 
convergent to zero (see [1,3]). 

2.  P R E L I M I N A R I E S  

Let hi, h2 be two positive sequences. First, we prove estimate (5). 

LEMMA 1. Let ¢(n) be a nonsingular m × m matr/x for n > no, let P be a projection. The 
relation 

n--1 

I i ( n ) p i - l ( i  + 1)1 hl(i) ~_ Kh2(n - 1) 
i----nO 

for a positive constant K,  implies that 

l l (n )PI  < ch2(n - I) "- 'r ,  .1 
H [ h l ( i ) + K h 2 ( i ) J '  i=no+l 

n >_ n o ,  

where 

C= 
Kl#(no + 1)PI 

hi(n0) 

PROOF. Putting 

we have 

~(n)  = I¢(n)P1-1,  
n-1 

¢(n) = Z ~ ( i +  1)hi(i), 
i--no 

n-1 n- I  
E ~o(i + 1)~(n)Phl(i) = E ~ (n )P~- l ( i  + 1)~(i + 1)P~o(i + 1)hi(i), 
i~-nO i~nO 
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and hence, ~ (n ) - l¢ (n )  <_ Kh2(n- l ) .  Moreover, ¢ ( n + l ) - ¢ ( n )  = ~(n+l)hl(n)  >_ K - l ¢ ( n + l )  
hx(n)/hz(n) >_ K-l¢(n)hl(n)/h2(n).  Then, 

hi (n)  ~ ~)(n), 
¢ ( n + 1 ) ~  1 +  Kh2(n)] n_>no, 

and hence, 

Kh2(n - 1)~p(n) _> 
n - 1  

II 
i----no + 1 

(1 + ~(no + 1)hl(~O), hi(i) 
Kh2(i) ] 

for n ~ nO. 

From where, 

n-1 ( Kh2(i) 
[¢(n)P[ < [¢(no + 1)Plh2(n _ 1) H hl(6"~-~-h2(i)] 

- h i ( n o )  i=no+l 
n ~ _ n O .  

The particular case hi = h2 = h in Lemma 1 gives the following corollary. 

COROLLARY 1. The relation 

n - 1  

y~ [¢(n)P¢-l(i + 1)[ h(i) < K h ( n  - 1), 
i"~nO • 

n > n o  

implies 
n--1  

I¢(n)PI _< ch(n- 1)~ n-"o-1 I~ h(i), n > no, 
i----no + 1 

where c = K[~(no + 1)P[h(no) - t  and B = K(1 + K) -1. 

REMARK. Results as Lemma 1 and Corollary 1 are not known in the literature. In the recent 
Agarwal's book [1], the case hi = h2 = 1 is proven. Moreover, we do not impose K > 1 as in [1, 
Lemma 5.6.5]. 

We will use the space Boo,h2 of all m-vector functions x defined on N(no) and h2-convergent, 
i.e., for which limn-~oo h2(n - 1)-Xx(n) exists. Boo,h2 is a Banach space with the norm 

Hx[[ = Sup h2(n -  1)-l[x(n)l. 
neN(no) 

We denote by zoo = limn-~oo h2(n - 1)-Ix(n), and for/1~ a fundamental matrix of equation (1) 

F k ( n , i ) = ¢ ( n ) P k ¢ - l ( i + l ) ;  k = 1 , 2 ,  P1 = P ,  P 2 - - - I - P .  

3. h 2 - C O N V E R G E N T  S O L U T I O N S  

We begin our study of equation (6) by showing that there is a unique h2-convergent solution 
if f(n,  x) is Lipschitzian with respect to the second variable and is convergent as n --, eo in a 
weighted manner. 

THEOREM 1. Let the following conditions be satisfied. 

(i) There exist supplementary projections Pi, i = 1,2 and a constant K > 0 such that 

oo 

y~ Ir(n,i)lht(i) < Kh2(n - 1), n e N(no). 
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(ii) For all Xl,X2 E C m and n > no 

If(n, h2(n - 1)Zl) - f(n, h2(n - 1)x2)I _< ~hx(n)Izl - z21, 

where "fK < 1. 
(iii) There exists a function g : C m ~ C m such that 

lira f (n ,  h2(n - 1 )z )  - g ( h 2 ( n  - 1 )z )  = 0, 
n-*oo hi(n) 

uniformly in z. 
(iv) The limit limn-.oo G(n, z) = G(z) exists, where 

oo r ( n , i ~ g ( h 2 ( i -  1)z )  
G(n,Z) = E " " h2(n 1) 

iffino 

(v) The sequences hi and h2 satisfy 

n-I ( Kh2(i) 

n~oo H kh l ( i )+kh2( i ) ]  =0" 
/=no + 1 

Then, for any ~ E PxC m, there is a unique solution x = x(n, no, xo) with Pxxo = ~ of  equation (6) 
such that limn..,~ h2(n - 1)-Xx(n) = zoo exists. 

Furthermore, this h2-1imit of  x(n), zoo must satisfy the equation 

zoo = G (zoo ). 

Moreover, i f  z~ = ~ ,  then we have the asymptotic formula 

x~ = z~ + G ( n ,  zoo) + o ( h 2 ( n  - 1)),  as  n ~ co.  (7) 

The correspondence x~ ~ z~ is bicontinuous and the application ~ --* x~ is continuous. 

PROOF. For any sequence z E Boo,as let T be the operator 

oo 

T~(n) = ~ r(n, i)/(i ,  z(i)), for n > no. (8) 
/----no 

It must be shown that  lin~_.oo h~(n - 1)- lTz(n)  exists for z E Boo,h2. We write (8) as 

n--1 

Tz(n) = ~ rl(n, i)[/(i, x(il) - 9(h2(i - 1)zoo)] 
i~nO 

O0 O0 

- ~ r2cn,~)lf(i, x(~)) - g(h2(~ - 1)zoo)] + ~ F(n, i)g(h2(i - 1)zoo), 

(9) 

/m'rl. i-~nO 

where zoo -- lim.~..,oo h2(n - 1 ) - l z ( n ) .  
The h2-llmlt of the last term in (9) exists by virtue of Hypothesis (iv). The h2-limlts of the 

remaining terms on the right side of (9) tend to zero as n -* co. The h2-1imit for the term with r l  

n--1 

nli~noo h 2 ( "  - 1 ) - 1  E r l ( . , i ) [ / ( i , x C i ) )  - g (h2( i  - 1)zoo)] = 0 (10) 
isnO 

will be established. The proof that  the h2-term in (9) with r2 approaches to zero follows similarly. 
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Using (iii), for e > 0, we can choose •1 E N(no)  such that  

If(r~,x(n)) - g(h2(n - 1)zoo)l < ~-~hl(n),  n >_ nl.  

By Lemma 1, and Hypotheses (i) and (v), limn-.oo h2(n - 1)-l[~(r~)el[ = 0, therefore, n 2 _> n 1 

can be chosen so that  

1)zoo)]  e 1) ,  n _> n2.  l¢(n)Pl[  P I ¢ - I ( i  + 1)[ f ( i , x ( i ) )  - g(h2(i - < ~h2(n - 
~----~0 

From this inequality, we obtain 

~ F l ( n , i ) [ f ( i , x ( i ) )  - g(h2(i - 1)zoo)] 
i----nO 

< I~(n)Pll  ~ P1¢-1( i  + 1)[ f ( i , x ( i ) )  - g(h2(i - 1)zoo)] 
i=~O 

n--1 

+ ~ IFl(n,i)l  I f ( i , x ( i ) )  - 9(h2(i - 1)zoo)l < eh2(n - 11, n >_ "2. 
l----nl 

This verifies (I0). It follows from (9) that  

T x ( n )  = G(n,  zoo) + o(h2(n - 1)), as n -* oo. (11) 

On the other hand, for any two sequences xl(n) ,  x2(r~) in Boo,h2, we obtain from (i) and (ii) 
o o  

[TXl(n) - Tx2(n)[ < Z Ir(~,i)l  I/(i,~x(i)) - f ( i ,  x2(i))l 
~=nO 
O0 

< ~ Ir(n, illhx(i)'rhz(i - 1 ) - 1 1 x 1 ( i )  - z 2 ( i ) [  
i -~ -n  0 

<_ K'Th2(n - 1)11Xl - x211. 

Then, 
[ITxl - Tx2[[ <_ 7K[[xx - 12[[. 

Therefore, by the Contraction Principle, the equation x = ¢~ + T x  has a unique solution 
x E Boo,h2. It can easily be checked that x is a solution of equation (6). As a consequence 
of (11), we note that  the fixed point x has h2-1imit zoo, which satisfies formula (7). 

Finally, if z ~  = z¢~ + Tx¢~, then 

(1 - ~ g ) l l x ~ ,  - x~,  II < IIz~, - z~2 II < (1 + ~ g ) l l x ~ l  - ~ II. 

Moreover, 
[[x~1 - z~2[[ <_ M[~I - ~2[ + 7K[[x¢1 - x~2[[, 

where M = [[¢Pl[[oo. This establishes the continuity of ~ -* x¢ and the bicontinuity of z¢ ~ x¢. 
This completes the proof of the Theorem 1. 

Theorem 1 admits a factorized form. 

THEOREM 2. Assume that  Conditions (i), (ii), and (v) of  Theorem 1 hold. Suppose also that: 

(iii)' t h e / / m / t  limn-.oo L(n)  = L(c¢) exists, where 
o o  

L(n)  = h 2 ( n -  1) -1 E F(n , i )hx( i ) ,  
~----nO 

(iv)' the / /m/ t  
lim h l ( r~) - l f (n ,  h2(n - 1)z) = ~(z), 

n - . * o o  

exists uniformly in z E C m. 
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Then, the conclusions of Theorem 1 follows with G(n,z) = L(n)~(z) and G(z )=  L ( ~ ) . ~ ( z ) ,  
i.e., zoo satisfies the functional equation 

zoo = L(c~)~(z~), 

and the asymptotic formula (7) takes the form 

x~ = z~ + L(n)~(zoo) + o(h2(n - 1)), as n --* c~. 

The case hi = h2 = h gives the statement. 

THEOREM 3. Assume the following hypotheses. 

(i)* There ex/sts a constant K > 0 such that 

Ir(n , i ) lh( i )  _< Kh(n - 1), 
i----nO 

(ii)* The function f satisfies the Lipsehitz condition 

n _)  n O .  

If(n, x l )  - f (n ,  x2)[ < 7lxi - x21 

with 7K  < 1. 
Off)* There /s  a function g : C m --* C m such that 

Faro f( i ,  h(i - 1)z) - g(h(i - 1)z) = 0 

exists ,mlformly in z. 
(iv)* For any z e C ra, there exists the limit limn-.oo G(n, z) = G(z), where 

oo 

G(n,  z) = h(n - 1) -1 i)g(h(i- a)z). 

(V)* I|m.._,_ ~ - ~  ~-[n-1 h(~) = 0, ~ = KI(1 + K). - , .  ~ r -  A A $ ~ n O ' I ' I  

Then, for any ~ E P I C  n, there exists a unique solution x = x(n;no, xo) with Plxo = ~ of 
equation (6) such that Famn_.oo h( n -  1)- ix(n)  = za¢. This limit satisaes the ftmctional equation 

Zoo ~- G ( z o o ) .  

Moreover, if  z~ = ~ ,  then we have the asymptotic formula 

x~ = z~ + G(n,z~)  + o ( h ( n -  1)), n - - +  e o .  

The correspondence z~ ~* z~ is Mcontinuous and ~ -* x~ is continuous. 

4. h2-BOUNDED S O L U T I O N S  

Assuming Condition (i) and the Lipschitz Condition (ii) of our Theorem l, the existence 
of a h2-bounded solution of equation (6) can be proved. However, without the convergence 
Conditions (iii),(iv), in general, it is not possible to have h2-convergent solutions. If in Theorem 1, 
we remove Hypotheses (iii) and (iv), then we can establish an h2-boundedness result. 

THEOREM 4. Let the following conditions be satisfied. 

(a) Condition (i) of Theorem 1 holds. 
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(b) For all (n, u), (n, v), where n e N(no) and )u[ _< 61, Iv[ _< 61, and 
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(c) 

If(n,  h2(n -- 1)u) - f (n ,  h2(n - 1)v)[ _~ Ahl(n)[u - v[ 

with •K < 1. 
The function f = f ( n , x )  satisfies 

p : Sup h l ( n ) - l l f ( n , x ) l  < oo and 61 -- p g  )> O, 
(n,z)EN(no) x B6t 

(d) 
where B61 = {x E C m I Ilxll 6 1 } .  

The sequence 

n--1 

11 
i=no+l  

Kh2(i)  
hi(i) + Kh2(i)  ] '  

is bounded. 

Then, for any ~ e PIC m such that I~1 [[~P1[[~c,h2 -< 61 - -  pK,  there is a un/que h2-bounded 
solution X = x(n,  nO, XO), with Fix0 = ~, of equation (6) such that  Ilxll=,h2 _< 61. Furthermore, 
we have the asymptotic formula 

x(  = z~ + [¢(n)PllO(1) + o(h2(n - 1)), as n --* oo, 

where z 6 = ~(n)~. The correspondence x 6 ~ z~ is bicontinuous and the application ~ ~ x~ is 
continuous. 

PROOF. Let B6 - B6,h2 = {x e B(N(no))  [ h2(n - 1)-1Ix(n)[ _< 6}, where B(N(no) )  is the space 
of all real m-vector functions defined and h2-bounded on N(no).  On B6~ we define an operator A/" 
as follows: 

oo 
Arx( . )  = + r(n,  i)f(i ,  x(i)). 

i~no 

By Lemma 1, we find that  there exists a positive constant M such that  for all n E N(no), 
[~(n)Pzl (_ M h 2 ( n  - 1). Choose ~ so that  M]~ [ <_ 61 - pK. Then, i f x  E B61, 

IArxCn)lh2Cn- 1) -x < MI~I + ~ Ir(n,i)lhlCi)lf(i, x( i ) ) lhl ( i )  -1 
i-~-nO 

_~ (61 -- o K )  -b p K  = 61, 

Thus, A/" maps B61 into itself. Further, for Xl,X 2 E B61, as in Theorem 1, we obtain 

ll./V'Xl -- J~Z2H ~ )kKIIXl -- Z2[[. 

Therefore, by Contraction Principle, A f has a unique fixed point x E B61; i.e., x(n) = Afz(n). 
This fixed point is indeed a solution of equation (1) on N(no).  The other statements can be 
demonstrated as in Theorem 1. 

The case hi = h2 = h gives the result. 
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THEOREM 5. Asaume that  the following conditions hold. 

(ay Condition (i)* of  Theorem 3 holds. 
(by For all (n, u), (n, v), where n E N(no) and lul < ~x, Ivl _< @1, we have 

If(n,  u) - f (n ,  v)l < ?lu - vl, 

(c)' The function f satisfies 

7 K <  1. 

(d)' The sequence h satisfies 

n-1 

/3'~ H h(i), /3 = K(1 + K )  -1 
i----no+l 

is bounded. 

Then, the conelnsions of  Theorem 4 are true with h2 = h. 

We are able to obtain Agarwal's Theorem 5.8.5 [1, pp. 272-273] as a corollary of Theorem 5. 

5.  S O M E  E X A M P L E S  

Now, we present some simple examples of the results obtained. 

(1) The solutions of equation (6) described by Theorem 1 are defined on all of N(no). If (iii) 
is valid only for n > nl  large enough, then the conclusions of Theorem 1 are also valid. 
This is the case when (ii) is satisfied with 

If(n,  x x ) - f ( n ,  x 2 ) l < 7 ( n ) l x l - x 2 1 ,  x ~ e C  "~, i = 1 , 2 ,  n > n o ,  

and 7(n) --* 0 as n --* co. 
(2) Furthermore, if in (1) above 7 E £1(N(no)), then h2(n - 1) - lTz(n)  --* 0 as n -* co, and 

the solutions x = x~ of equation (6) in Theorem 1 h2-converge to zero as n --* co. 
(3) I f / ( n , z )  = / ( n )  and h l ( n ) - l f ( n )  -~ v as n --* co, v constant, then for any ~ ~ P1C m, 

there is a unique solution x = x~ of equation 

XCn + 1) = ACn)xCn) + fCn), 

(4) 

such that  
lira hz(n - 1)- ix(n)  = L(co)(v). 

~t---#oo 

For the linearly perturbed linear system 

x(n + 1) = (ACn) + B(n))xCn), 

if h l ( n ) - l B ( n ) h 2 ( n  - 1) --* B as n --, co, with B a constant matrix, then Theorem 2 
establishes the existence of a unique h2-convergent solution z = z (n ,  no, xo) such that  for 
any ~ e P1C =,  

x(n)  = ~(n)~ + L(n)Bzoo + o(h2(n - 1)), as n --* co. 

(5) An interesting particular case of our results is present when P = I, the identity matrix. 

p = sup h(n) -Xl f (n ,x )[  < co and p < 8 IK  -x. 
(n,z) E N(no) X B61 
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We conclude with a simple i l lustrat ion that describes a setting where the Theorem 2 with 

hi -- h2 = I is applicable. Let the coefficient matrix A be given as 

A ( k )  = 2 0 , k >_ O. 

0 2 

A fundamen ta l  m a t r i x  solut ion is given explicit ly by 

T h e  pro jec t ion  employed  in the  T h e o r e m  2 can be t aken  as the  mat r ices  P1 = diag(1, 0) and 

P2 = diag(0,  1). A c o m p u t a t i o n  shows t h a t  

rl(n, k ) =  diag (2-("-k), O) , 

r2(n, k) = diag (O, 2-("-k)) , 

For n • N(O),  we have 

0 < k < n - 1 ,  

n < k .  

and 

o o  

L(n )  = diag(1 - 2 - n ,  - 2 ) ,  Z 
i=nO 

L(oo) = lim L(n) = diag(1,-2). 

[ F(n,  i) = 3 - 2 - n ,  and 

Then ,  Hypo these s  (i) and  (iii) of  T h e o r e m  2 are satisfied. 

Now, to  comple te  the  i l lustrat ion,  we exhibi t  a funct ion which is admissible  as a pe r tu rba t ion  
term:  for a(n) ,  b(n) <_ 1/4, and a(n) ,  b(n) ---+ 1/4 as n -* oo, l e t / ( n ,  x) be defined as 

f (n ,  x) = (a(n)lxl, b(n)Zl), x - - - -  (Zl, Z2). 

Thus, If(n, xx) - f ( n ,  x2)l < (1/4)lxl -x21, and 7 = 1/4  and  K = 3 sat isfy 7 K  < 1. T h e  l imit  

f ( n , x )  = l ( I x l , z l  ) = g(x) ,  lira 
n-- -+OO 

is un i form for all eous tan t  x. Then,  for any  ~ • P I R  2 there  is a unique solut ion x = x~ of 

the  difference equa t ion  (6) descr ibed above and limn-.a¢ x (n )  = x m  exists.  Fur the rmore ,  this  
l imit  x ~  of x ( n )  satisfies the  equa t ion  

xc¢ -- L(oo)g(xoo). 
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