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ABSTRACT We report the first theoretical description for the time-dependent fluorescence anisotropy decay resulted from two-photon
excitation (r2p(t)) for fluorophores in macroscopically isotropic and oriented membranes. In case of two-photon excitation, the initial
value of the fluorescence anisotropy r[2](O) immediately after excitation by a flash of polarized light is a function of the components of the
two-photon absorption transition tensor S and the projections of the emission transition moment to the principal axes of S. The
components of S depend on the symmetries of all molecular states relevant to the two-photon absorption process. The maximal value of
r[2](0) is proven to be as large as 0.61 in contrast to 0.4 for the conventional one-photon induced fluorescence anisotropy r[l](0). It is
shown that only for some special cases the ratio of the two-photon r[2](t) over the conventional one-photon r[1](t) will be a constant at all
times for fluorophores in macroscopically isotropic membrane systems. In oriented membrane systems, an additional order parameter
K P6> can be determined by the use of angle-resolved fluorescence depolarization measurements resulted from two-photon excitation.
The advantages of measuring time-resolved fluorescence anisotropy decays or angle-resolved fluorescence depolarization ratios by
two-photon excitation for the study of orientational dynamics in isotropic or oriented membranes are discussed from the theoretical point
of view.

INTRODUCTION
The application of two-photon excitation to the field of
biophysics has been ofconsiderable interest just recently.
Instead of using the conventional ultraviolet light, the
same excited singlet state ofthe fluorophore can be popu-
lated by using a longer and less damaging wavelength of
excitation source (e.g., the red light) via the two-photon
absorption process. In comparison with the one-photon
excitation cross section, the two-photon excitation cross
section for a typical molecule is extremely low at the
intensity of conventional light sources. With the help of
ultrafast pulsed lasers, a very high local instantaneous
intensity can be achieved at the point where the laser
beam is focused. Using the quadratic intensity depen-
dence oftwo-photon excitation and using a pulsed laser,
fluorescence from two-photon excitation was shown to
enhance the signal-to-background ratio and spatial reso-
lution of fluorescence imaging in laser scanning micros-
copy without using confocal spatial filters and ultraviolet
optics ( 1, 2).
The two-photon absorption probability depends not

only on intensity but also on the polarizations of those
two exciting photons. By the use of polarized two-pho-
ton absorption studies, the symmetries of all excited mo-
lecular states involved in the two-photon process can be
elucidated (3-6). Moreover, the two-photon induced flu-
orescence depolarizations of fluorophores in various sol-
vents and at different temperatures have been studied by
frequency-domain fluorometry (7, 8). A significantly
higher limiting fluorescence anisotropy r(O) was re-

ported by using two-photon excitation than by one-pho-
ton excitation in these studies. The observed higher limit-
ing anisotropy value indicates that a higher oriented pop-
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ulation was photoselected by two-photon excitation.
Two-photon excitation was therefore suggested to be
able to enhance the experimental resolution for time-re-
solved fluorescence anisotropy measurements (7, 8). To
justify the above experimental finding and the suggested
advantage of applying two-photon excitation to time-re-
solved fluorescence anisotropy measurements, we have
developed a theory of time-dependent fluorescence an-

isotropy in membranes upon two-photon excitation.
The application of two-photon excitation to angle-re-
solved fluorescence depolarization measurements is also
shown to provide more information on the equilibrium
orientational distribution of fluorophores in oriented
membrane systems.

THEORY OF TWO-PHOTON INDUCED
FLUORESCENCE ANISOTROPY DECAY

In macroscopically isotropic
membranes
We begin with defining the two-photon experimental set-
up as follows: let (XL, YL, ZL) be the laboratory coordi-
nate system and the fluorescent sample be placed at the
origin. Linearly polarized light travels along the XL axis
with polarization along the ZL direction and excites the
sample. In this case all exciting photons are polarized in
the direction ofZL, a unit vector along the ZL axis. The
fluorescence emission intensity polarized along the ZL
direction (vertical), Iv, and along theXL direction (hori-
zontal), IH, are observed along the YL axis. Here XiL is a
unit vector along the XL axis. On the basis of the above
experimental condition, the time-dependent fluores-
cence anisotropy can then be defined as

r(t) = (Iv -IH)/(IV + 2IH).
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Because ofthe involvement ofintermediate states dur-
ing the two-photon absorption process, the photoselec-
tion rule for two-photon absorption is much more com-
plicated than that for one-photon absorption. In general,
the polarization dependence of two-photon absorption
probability is proportional to (,gm 5.-X) (3), where ,u
and X are unit vectors representing polarizations ofthose
two incident photons, and S is a Cartesian tensor of sec-

ond rank and denoting the two-photon absorption tran-
sition tensor in a molecule-fixed coordinate system. The
aflth element of the Cartesian tensor S is defined as (3-
5):

S- = [ glatln><nlfl If> + (glfln><nlsa If>] (2)

EnK~ hp

where g> and If> are the ground state and the final
excited state, respectively. These two molecular states
are connected via simultaneous two-photon absorption
ofthe incident frequency v. En is the energy ofthe virtual
intermediate state n >. In this article two identical excit-
ing photons are considered such that both ,u and X are

equal to ZL. The tensor elements of S depend on the
symmetries of all the relevant transition states of the
fluorophore during the two-photon absorption process.
For identical photon experiments, the two-photon tran-
sition tensors will be symmetric (i.e., S. = Spa) as can be
seen from Eq. 2.
The probabilities of fluorescence emission along the

ZL and XL axes are proportional to (e. ZL)2 and
(e* XL)2, respectively. Here e, a unit vector, denotes the
direction of the emission transition moment and
(en ZL) and (en XL) are projections of the emission
transition moment on the ZL and XL axes, respectively.
Since the emitted intensity is proportional to the ensem-
ble average of the product of the probability that the
fluorophore is excited at time 0 (two-photon absorption)
and the probability that the fluorophore is emitted at
time t, Iv and IH can be described as follows:

IV = KK(Z±*SO- ZL)2(et_ Z.)2>, (3)
IH = KK(Z,_ *SO. Z)2(et _ Xl_)2>. (4)

Where K is dependent on the fluorescence intensity de-
cay law of the fluorophore and also proportional to ab-
sorbance and concentration of fluorophores in the sam-
ple; So and et represent the two-photon absorption tran-
sition tensor at time 0 and the emission transition
moment at time t, respectively. The brackets denote the
ensemble average over all molecular orientations of
fluorophores in the sample up to time t.
For liquids, vesicles, or membrane suspensions, any

chosen local coordinate system ofthe membrane can be
considered to be spherically distributed with respect to
the laboratory coordinate system since the sample is mac-
roscopically isotropic. Here the local coordinate system
is a Cartesian coordinate system that is either molecule-
fixed or having its z-axis along the membrane normal.

On averaging over all possible orientations for the local
coordinate system with respect to the laboratory coordi-
nate system, the time-dependent fluorescence anisot-
ropy function upon two-photon excitation, r,2p(t), can

be evaluated.
In an isotropic system, cylindrical symmetry about the

laboratory ZL axis ensures that IH can be written as

IH= KK(ZL.SOZ.L)2(et. X)2>
=K((Z_ 50.Z)(t yL)2>

(5)

Combining Eqs. 3 and 5 yields

'V+21H =KKZL.SO.ZL)2>

___L)( i6 _) )
an,=xyz

and

IV IH KK(ZL.SO Z_)2P2(et *ZL)>

= K([. S(0)(a.'ZL(ZL)]
a> =xyz

X P2 (et ZL) -

(6)

(7)

Here Sa,,(O) is the aflth element of the Cartesian tensor
So in a local coordinate system (x, y, z) at time 0; P2 is the
2nd rank Legendre polynomial and P2(e,* ZL) =

3/2(e. ZL)2 - '/2; a and ft are unit vectors and run over

three coordinate directions x, y, and z.

The orientations of et and ZL can be denoted by the
polar (0) and azimuthal (po) angles with respect to the (x,
y, z) coordinates. It is important to realize that the en-
semble averages involve integrating over all polar and
azimuthal angles weighted with a distribution function
of the time t. It is advantageous to evaluate the integra-
tion over the polar and azimuthal angles of ZL first for
all the terms containing the projections ofZLto the x, y,

or z axes. On performing this time-independent ensem-

ble averaging for ZL, Eqs. 6 and 7 become (see Appen-
dix):

IV + 2IH =
I

K[2(5:=S) + (trS)2], (8)

IV - IH = K(trS) < e -
So et> + AK<et.-So - So - e>

2
K[2(SS)+ (trS)2]. (9)

105we 2tlgi s:
Here we use the following definitions:

trS = Hi Saa =SS, + Soy + S,
a

S:S = z SawSfiaX
a,.8

_t - 50 - &t = 2: ea( t)S( O ) eo(t)9
a,,lS

(10)

(11)

(12)
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SO SOet= ea(t)Sa.(0)S.(O)ey(t), (13)

here all subscripts (a, ,3, and ay) run over x, y, and z. Both
trS and S:S are invariants (independent of coordinates

and time) because the two-photon tensor S is symmetric
(Sat = S.,a) for identical photon experiments. The above
results can also be obtained from McClain's (4) general
derivation for the special case oftwo identical photons. If
the principal axes ofS are chosen as the coordinates and
they are perpendicular to each other, then Eqs. 8 and 9
can be further simplified to

Iv + 2IH = I5 K[2(S,2, + Syy + S2 ) + (tr=S)2], ( 14)

4

IV IH 0 K Saa(2Saa+ trS)<P2(a*et)>, (15)
105a

here Saa is the diagonal element ofS(SxX, Syy, Sz), and a
sums over x, y, and z. Eq. 15 can be reduced to only two
terms by the use ofthe following property (see Appendix
for proof).

KP2(Qx t)) + KP2(y - et)> + KP2(z.e)> = 0. (16)

Upon substituting KP2(x et)> for -(KP2(y- et)> +

KP2(z et)>), Eq. 15 becomes:

IV- IH = A0 K[S (2SY + trS) - Sx,(2S,, + trS)]

X (P2(y et)>
4

+ 10 K[Szz(2Szz + trS) - S.(2SXX + trS)]
105_

X (P2(Zte)>- (17)

Usually a fluorescent probe with cylindrical symmetry
is used for studying the static and dynamic properties of
membranes. If the two-photon transition tensor of the
probe under study has the property of SE,, SY), Eq. 17

then becomes:

4
IV- IH =

4

K[S,,(2S= + trS) - S,,(2S,, + trS)]
105

X (P2(z. et)>. ( 18)

Combining Eqs. 14 and 18, we obtain

4
r7[2(t) = M<P2(z *e)>, (19)

and

M S.(2S= + trS)-S(2Sm + trS) 20)
2(2S2 + S2 ) + (trS)22(

From the computer simulation a maximal value of
1.0716 can be obtained for M (e.g., when Sxx = SYY =

-0.12 and Szz = 0.92). In this case the initial fluores-
cence anisotropy r[2](0) can be as large as 0.61 when the
emission transition dipole is along the molecular z axis.

Inthecaseof I S,:| I II Sn I,thevalueofMwill
be approximately equal to one and

r[2J(t) (P2(z- et)>. (21)

Interestingly, the above expression of r121(t) is similar to
that of the conventional one-photon r111(t), which reads

r,11(t) =
2

<P2(ao. et)>, (22)

where ao is a unit vector along the direction of the ab-
sorption transition moment at time 0 (9, 10). Ifthe one-
photon transition moment ao of the probe is roughly
along the molecular long axis (the z-axis), then r[2J(t)
and r[1](t) will have the similar time-dependent decay
behavior. In this case the final function form of r[21(t)
will be like that of r111(t), which depends on the packing
symmetry ofthe membrane and the rotational modes of
the probe in the membrane ( 11). Note that a constant
ratio of 10:7 (1.43) can be obtained for r[21(t)/r[lj(t)
only in this special case. On the contrary, ifa probe with
Szz < 5r is used in the fluorescence experi-

ment, thenM will be approximately equal to -1/2 and
therefore

r[21(t) - 2P2(Z et)>. (23)

Inthiscasearangeof-5/7( -0.71)to10/7( 1.43)
is possible for the ratio of r[21/r[l] depending on the direc-
tion of one-photon absorption transition moment.

In macroscopically oriented
membranes
A propagating light wave in a uniaxial medium such as
an oriented membrane can have two independent direc-
tions of polarizations of the electric field ( 12). The first,
the ordinary ray, has its electric field polarized perpendic-
ular to the axis of symmetry for all angles of incidence.
The second, extraordinary ray, is polarized in the plane
of incidence, that is, the plane through the incoming
beam and the normal to the oriented membrane. We will
assume that the oriented membrane consists of a num-
ber of bilayers parallel to each other and to the cover
slides ( 13). The preferred orientation ofthe molecules in
such samples coincides with the normal to the cover
slides. In fluorescence depolarization experiments in ori-
ented membranes, it is thus possible to measure the in-
tensity for four combinations ofpolarized directions: I.,,
Io, I,,, and Iee. Here the suffix o denotes the ordinary
ray and the suffix e denotes the extraordinary ray: the
first suffix refers to the exciting light and the second
corresponds to the emitted light ( 12). To eliminate the
dependence of these intensities on unknown quantities,
such as the incident light intensity and illuminated vol-
ume, the depolarization ratios R. = Ioe/Io and Re =
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'e,/Iee are measured. The experimental arrangements
for measuring these ratios are depicted in Fig. 1. Other
geometries are also possible ( 14). The unit vector p and r
denote the extraordinary polarization directions of the
emitted and incident light, respectively, and are defined
as:

p = z cos 6 + y sin 0,

r = z cos 0 + y sinq.

(24)

(25)

The depolarization ratios for the two-photon fluores-
cence are given by

-o <((X. S. X2(gt. p)2>/<(xC.So x)2e x)2>, (26)
Re[2] - K(ro - r)2(et. )2>/K(r.!S_ r)2(et. p)2>. (27)

It is ofinterest to consider the special case where the only
dominant principal axis of the tensor S is along the mo-
lecular direction ao and the emission moment is also
along ao, which is a unit vector. At time 0, immediately
after excitation by a flash of polarized light, the depolar-
ization ratio Ro[2] in this case is:

Cos2 o<(xL. a)4(Z. a)2>
+ sin2 0(x. &)4(y_ a)2>

K(x o)6>
(28)

Here we make use of the fact that due to symmetry the
average of (x * &o)4(z*-a)(y. ao) vanishes. The ratio
Re[2](0) can be calculated similarly. Because of azi-
muthal symmetry around the z-axis, the averages
K(X. ao)4(Z_ o)2), K(X- ao)4(y. o)2> and K(( o)6>
can be reduced to:

<(x ao)4(Z_ ao)2> = <1 2t)2t2>' (29)
8

K((V ao)4(y. ao)2> = ( 1 -42)3>, (30)

K(x. ao)6>=i5K(1 42)3> (31)
16

where denotes a0- z. R.[2](0) can be rewritten as:

Ro2](0) =
I

[A2 - (A2 - 1) sin2 0] (32)
5

with

A2 6K( 2)22>) (33)

Using the order parameter KP2>, KP4>, and KP6> de-
fined as:

KP2>= (3 42- 2)' (34)

<P4>=
35 44-38 2 + 3) (35)

FIGURE I (A) Experimental arrangement for measuring the "ordi-
nary ratio," R. I=,/4, Ie is the intensity of the fluorescence at
excitation with polarized light in the ordinary direction (the X-axis,
perpendicular to the page) viewed through a polarizer in the extraordi-
nary direction (in the Z Y-plane, perpendicular to the fluorescent
beam), and I.. the fluorescence intensity for which both excitation and
emission polarizers are along the X-axis. The angle ( between the fluo-
rescent beam and the plane ofthe membrane can be varied. (B) Experi-
mental arrangement for measuring the "extraordinary ratio," R,, =

4,,/4,,, 4,, is the intensity of the fluorescence at excitation with polar-
ized light in the extraordinary direction (in the Z Y-plane, perpendicu-
lar to the incident beam) viewed through a polarizer along the X-direc-
tion, I,,e is the intensity for which both excitation and emission polar-
izers are along the extraordinary direction. In the incident beam, the
polarization is in the Z Y-plane perpendicular to the incident beam, the
polarizer on the emission side is also in the Z Y-plane, but perpendicu-
lar to the fluorescence beam. Both the angle X (between the incident
beam and the plane of the membrane) and the angle 0 (between the
fluorescent beam and the plane ofmembrane) can be varied. The pre-
ferred direction of the molecules (depicted as dumbbells) is along the
Z-axis. The system will have some disorder, however, allowing the
molecules to undergo wobbling oftheir long axes (depicted with double
arrows) and other motions.
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the parameter A2 can be expressed as

3[11 -21 P4) + 1OKP6)][33 55KP2) + 27KP4> - 5KP6>]
Note that in one-photon induced fluorescence depolar-
ization the ratio in this case would read ( 14):

Ro[l]() = [Al- (Al- 1) sin2 0] (38)

with

A _4(1 )0)2 _ 7 + 5P2>- 12KP4>
K(1 - 2)2> 7 - 1lOP2> + 3<P4>

For a given distribution function the order parameters
KP2>, KP4>, and KP6> are defined as:

(40)

where t = cos 0 (0 = angle between a0 and membrane
normal), f(l) is the orientational distribution function
(equilibrium distribution function), and Pn ( ) (n = 2, 4,
6) are the 2nd, 4th, and 6th order Legendre polynomials.
A geometrical interpretation of the possible ranges for
these order parameters can be derived as follows: every
continuous distribution function can be approximated
by a series of delta functions:

N

PO = I :nb(t -nn)in=l
(41)

where the coefficients an are positive or zero and the sum
of a, (from n = 1 to n = N) is equal to 1, and the values (n
are between -1 and 1. This approximation becomes bet-
ter for larger values ofthe integer N. The points n corre-

spond to points (xn, Yn, Zn) = (P2(n), P4(n), P6(Wn)) in
three-dimensional space forming a polyhedron touching
the curve (P2(e), P4(e), P6(e)). Parametric three-di-

mensional plots of the curve (P2(e), P4(e), P6(s)) with
O t < 1 are shown in Fig. 2 from two different view-
points. The possible values for P2>, P4>, and P6)
correspond to points ( FP2>, KP4), KP6>)) inside or at the
surface of such polyhedrons. From visual inspection of
the (P2(e), P4(e), P6( )) curve, it is clear that these poly-
hedrons are between the following two surfaces:

X I~/1 P M
upper surface (1 X)I) + X P (~) ), (42)

Z ) (I )P6d
with O < A c I and -1 < t < l; and

B

l.5 P6

P6

0 1 p

P2 ~~1 p4

FIGURE 2 The three-dimensional parametric plots of the curve
(P2(s), P4(e), P6(e)) for 0 < < 1 (A) from the viewpoint of (2.64,
-2.11, 2) and (B) from the viewpoint of(2.64, -2.11, 0). These plots
are made by using the Mathematica program.

with 0 < A < 1 and -1 < 1. This geometrical relation
yields an inequality for P6> at given P2> and P4)>:

-
5

( 1 - A) + kuP6(0) < KP6O < 1 - X + XP6(U2), (44)
16

where X, A9 ~, and ~2 are given by

P2> = 1- X + XP2(02) (I -A)+ AP2( ,), (45)

lower surface (y)
/ -1/2 / P2(e)

(1 - A) 3/8 +p,(
-5/ 16 P6(0)

KP4> = X- + XP4(02) =
3

(11-A) + AP4(1). (46)

Solving for X, A, t,, and 42 and expressing X, ,u, P2( I),
(43) P2( 2), P4(Q1), and P4(Q2) in terms of FP2> and <P4>
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I

.P-> = P.(.)f(.)d. n=2,4,6,
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and substituting these expressions back into the inequal- Fig. 3 and they correspond to the P6) value of 0.064
ity (44) yields: and 0.736, respectively.

5 35

352 (F2)+ )G DISCUSSION

49 From frequency-domain fluorescence anisotropy mea-
c <P6>c 1 - 8(1 K- P2>)H, (47) surements, a constant anisotropy ratio (r[21/r[1]) of

1.44 ± 0.02 ( 10:7 ) was observed for both 2,5-diphenyl-

G 2[7+264 -4>/)81 1, (48) oxazole (PPO) in propylene glycol (7) and 1,6-diphenyl-
5 7 35 <P2> + 1/2/J hexatriene (DPH) in triacetin (8) at all frequencies. This
1 25 132 /1 - p2)\1 2 corresponds to a constant ratio of r[2](t)/r[,](t) at all

H 7 7 35 + 1. (49) times. Because of this identical time-dependent decay
~P4>

behavior of one- and two-photon r( t), it appears to sig-
The range of possible values of P6) for given KP2 > and nify that the two-photon transition tensor of both PPO
KP4) can be estimated by using the above inequality. For and DPH possesses a dominant element and the corre-

instance, if P2> = 0.6 and P4) = 0.5, then the range of sponding axis is along the one-photon transition mo-

possible KP6> values will be from 0.064 to 0.736. Fig. 3 ment. However, the reported r[21(0) values of PPO and
shows the values of Ro0[1I (0) and Ro[2](0) as a function of DPH are 0.54 and 0.52, respectively (7, 8). These values
sin2 0 (0 is the angle between the fluorescent beam and are significantly smaller than the predicted r[21(0) value
the plane of the membrane) for an oriented membrane of0.57 for molecules with Szz > Sxx - SYI1. These
system with <KP2> = 0.6 and <P4> = 0.5. A wide range of lower r[21(0) values imply that the emission dipole is not
Ro[2](0) is possible for this given pair of order parame- exactly along the dominant axis of S or Szz is not com-

ters. The lower and upper limits ofRo[2](0) are shown in pletely dominant among all S components. Moreover,

the suggested advantage ofthe higher r(0) value resulted

Ro(O) from two-photon excitation for the resolution of fluores-
0.6 cence anisotropy measurement will be canceled out by

the weaker signal resulted from two-photon excitation
compared with one-photon excitation.

0.5 -. Note that the general two-photon induced time-de-

pendent fluorescence anisotropy decay is very compli-

cated and depends not only on the patterns ofS but also

0.4 - on the time-dependent correlations of et to all three prin-
cipal axes ofS at time 0 (see Eqs. 8 and 9). Even for a

planar molecule like anthracene with D2h symmetry, the
photon-selection probability for the two-photon Bjg

0.3 A ,g transition is proportional to (cos 1 sin cos f) ( 15)
and not simply to cos4 0, which was used for those elon-

|two-photon \ | gated fluorophores (7, 8). Here 0 is the angle between a

0.2 - chosen molecular axis and the excitation polarization
and # is the angle between the plane ofthe molecule and
the plane perpendicular to the excitation polarization

0.1 ( 15). In this case the ratio of two-photon fluorescence

anisotropy over one-photon fluorescence anisotropy can
be proven to be 5:14 (instead of 10:7), which will cause a
decrease (instead of an increase) for the resolution of

0.0 0.2 0.4 0.6 0.8 1.0 time-resolved fluorescence anisotropy decay measure-
2

ments. Ideally, only when the two-photon transition ten-
sin e sor of the probe satisfies the special conditions discussed

in the theory section, theoretical dynamic models and
FIGURE 3 A plot of the limiting depolarization ratio RO(O) with the their corresponding functional forms of r,, (t) in liquids
ordinary ray incident as a function of sin2 0 (0 is the angle between the ( 16), and macroscopically isotropic membrane systems
fluorescent beam and the plane of the membrane) by one-photon exci- (9-1 1 ) can still be applied to the two-photon case by
tation R.1,1(0) (dotted line) and two-photon excitation R. 2](0) (solid simply multiplying with a constant. Note that the two-

line). The dotted line is drawn for a system with <P2> = 0.6 and <P4 > =

0.5. The upper solid line is drawn for a system with KP2> 0.6, < 4 photon experiments we have mentioned here were using
0.5, and KP6) 0.736 (the maximum value for KP6>in this case). The two identical photons. Iftwo photons ofmixed polariza-
lower solid line is for a system with KP2> =0.6, FP4) =0.5, and <P6> = tions are used to investigate the system, a different time-
0.064 (the minimum value for K*6> in the case). dependent fluorescence anisotropy decay profile can be
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expected due to a different photon-selection process.
The information concerning the two-photon induced
excited state symmetry and the rotational dynamics of
the fluorophore with respect to each ofits molecular axes

could be resolved by the use of a combination of mixed
polarized photons.
The application of two-photon excitation to angle-re-

solved fluorescence depolarization measurements has
been demonstrated to provide a more precise picture
about the equilibrium orientational distribution of fluo-
rophores in an oriented membrane system. The limiting
value of Ro[2] at time 0 obtained from angle-resolved
fluorescence anisotropy measurements can be used to
extract the value of the sixth rank order parameter,
KP6>, which was considered to be inaccessible by the
conventional one-photon induced fluorescence measure-
ments (10-12). In combination with the second and
fourth rank order parameters (K P2> and KP4)) obtained
from conventional one-photon induced angle-resolved
fluorescence measurements, a more detailed molecular
orientational distribution for the membrane system can

be reconstructed.
In summary, two-photon excitation can complicate

the time-dependent fluorescence anisotropy decay be-
havior offluorophores in membranes due to the depolar-
ization effects from all transition moments involved in
the two-photon process. However, if fluorophores with
special two-photon transition tensors are used, the time-
dependent fluorescence anisotropy decay in isotropic
membranes by two-photon excitation and that by one-

photon excitation will have a constant ratio with respect
to each other at all times. In this case, two-photon excita-
tion can be further utilized to provide more detailed ori-
entational distribution information for the fluorophore
in oriented membranes by angle-resolved fluorescence
depolarization measurements. Otherwise the two-pho-
ton transition tensor ofa specific fluorophore needs to be
evaluated first by differential absorption studies of lin-
early and circularly polarized light of fluorophores in
isotropic solution. Then the corresponding time-depen-
dent fluorescence anisotropy decay behavior of that
fluorophore in membranes can be derived.

APPENDIX
In macroscopically isotropic membrane systems, molecules are isotro-
pically distributed with respect to the laboratory coordinate system.
Consider the term < (a' Z *L)(# Y * Z7L)(P * Z L>)), where a, fi, y,
or p equals x, y, or z, which are unit vectors along the local x-, y-, and
z-axis, respectively. Note that in this term at least two of the four unit
vectors (a, fl, y, p) must be equal to each other. For evaluating this
term, a new local coordinate system is defined with the z'-axis along
this pair of identical unit vectors, the x'-axis perpendicular to the
z'-axis, and the y'-axis perpendicular to both the z'- and x'-axis,
with the unit vectors x', y', and z', along the x'-, y'-, and z'-axis,
respectively. Using this new coordinate system, it is found that
<(a * ZZL )('Y * Z)(P * ZL)> can have three possible values:

1<aZL)(fl ZL)('Y ZL)(PZL)>>
cos4OsinOdOdso-= if a=#= z=p47r 5

2 <( ZL)(fl* ZL)('Y * ZL)(P_ ZL)
1 C2 T=J J cos26sin26cos2wcsinadadp

_I I cos2 0Osin2 0 sin2 p sin 0 do dip = _
4 Jo J01

if (a = p) v (a = P)
v (a P Y)

3. <(a' ZL)(ft ZL)('Y ZL)(P- ZL)>

= g § cos3 0 sin 0 cos ( sin 0 dO dp47r JO J

= |2T |T cos3 0 sin 0 sin (p sin 0 dO ds
47r JO Jo

=-I JCos2 Osin2 sin cos p sin 0 dO do- O
47r o

for all other cases.

These three results can be summarized in one equation, using the
Kronecker delta, 6jj, bij = 1 if i = j, and6ij = 0, if i * j (i,j a, fl, Y, or p):

<(a' ZL)(fl ZL)('Y ZL)(P'ZL)>>

1 5( 6yp + 6aa 6jp + 6ap 60Y). (Al)
15

Using similar arguments, we find

K(a Z L)(O Z L)(Y Z L)(P Z L)(k1 L)(O Z L)>

(6 6 6 + 6 6 +6b36 +6by6 p6
105 a~yT7p'

+ b'y6 64p + 676046pr + bap60 Y67 + kjp61767
+ bapb646"6z + 6Cavfl-ybp4 + bar/6O~p6y4 + ar6M+AN'lp
+ an a api + ao op ar + a4 a7d p , (A2)

with a, 0, -y, p, a7, A, = x, y, z.

By using the property of Eq. A 1, the ensemble average of

(ZL. S- ZL)2 in Eq. 6 can be evaluated as follows:

([ES. 6(0)(a * ZL)(flB ZL))

( E Sa((O)Syp(O)(a* ZL)(j8* ZL)(+ ZL)(P+ZL)

5 KSa o(O)S7(0) ) +(ba + sp )

15a, 3,

+ - Z < Sa(O)Soa(O) > -

15 a,f

(A3)

On further using the definitions of trS and S:S (see Eqs. 10 and 1 1), we
arrive at

2~~~~
([SES. (0)(a * ZL)(.f * ZL) )

= (trs2 + SS. (A4)
15 - 15==
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Note that these terms are independent oftime (see text). Similarly, the
ensemble average in Eq. 7 can be evaluated using Eqs. A2. It is demon-
strated as follows:

([ S.,(°)(Y ZDO ZL)] P2(et' ZL)

2 I KSa.(O)MSp(O)(et ni)(91 41)(a ZL)(O ZL)('Y. ZL)(P ZL)(' ZL)(V ZL)>

2 ([a8 aS(O)(.- Z )( ZL)]

Sa,(0)S,,(OX(e1 -1)(& )' )>(bap6,p6b,0 + &ap,I&(7 165 + ap 670 1 + bay6Span + 6 ay61l6p + ay 64671p + ba66 6

a6Fp# +6aa6 61p + a 16 6 + a66 + a6 6 + 6 6 a + 6 6 6 + 64 6,,p) (trS) - S:S

I [~ S(0)S(0) + [ Saa(O)SYP(0)(et p)(& 'Y) + E Saa(O)Syp(°(O)(t - 1)(_ t P) + Sa((O)Sat(O)
aL,y acp cryp af

+ z S. (0)Sap(O)(9t /:)(e P) + E Sa,(0)Sap((O)(tt * t)(e_t pp) + (S aOS(°O)
aSp app a

+ E Sa(O)S.Y.(O)(et- #6)(egt y) + z Sa(O)Sya(O)(Ct O)(gt Y) + z Safl(°)Sn()(et a)(et fl)
al5Y aY a

+ z Sa(0)(et- a)(e* 7?y) + z Saj(O)S.y(O)(et #)(eot c) + z Sa.j(0)Sy(O)(et a)(et 'y)
a,6Jy ao- a,3-y

+ z Saf(0)S,(O)(et a)(_t, p) + E Sa,6(0)SO,(O)(9t a)(et )- (trS) S- S. (A5)
30 = 15

By using the definitions 10-13, a more compact final expression can be
obtained as follows:

([zS.,(°)(a' ZL)(:- ZL)] P2(9t' ZL))

2trSKet ±=So et> + 3 < sO - et>

4 2
S S - 1 (trS2 (A6)

105 == 105 -

Eq. 16 in the theory section can be proven as follows:

<P2(X. ZL)> + <P2(Y ZL)> + <P2(Z. ZL))
P2(X ZL) + P2(Y ZL) + P2(Z ZL)>
3(A[(X.Z)2 + (YZL)2 + (Z. Z)2] - 3

=(3-3) = O (A7)
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